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Abstract 27 

To investigate the factors predicting severity of bicycle crashes in Italy, we used an observational 28 

study of official statistics. We applied two of the most widely applied data mining techniques, 29 

CHAID decision tree technique and Bayesian network analysis. We used data provided by the 30 

Italian National Institute of Statistics on road crashes that occurred on the Italian road network 31 

during the period ranging from 2011 to 2013. In the present study, the dataset contains information 32 

about road crashes occurred on the Italian road network during the period ranging from 2011 to 33 

2013. We extracted 49,621 road accidents where at least one cyclist was injured or killed from the 34 

original database that comprised a total of 575,093 road accidents. CHAID decision tree technique 35 

was employed to establish the relationship between severity of bicycle crashes and factors related 36 

to crash characteristics (type of collision and opponent vehicle), infrastructure characteristics (type 37 

of carriageway, road type, road signage, pavement type, and type of road segment), cyclists 38 

(gender and age), and environmental factors (time of the day, day of the week, month, pavement 39 

condition, and weather). CHAID analysis revealed that the most important predictors were, in 40 

decreasing order of importance, road type (0.30), crash type (0.24), age of cyclist (0.19), road 41 

signage (0.08), gender of cyclist (0.07), type of opponent vehicle (0.05), month (0.04), and type of 42 

road segment (0.02). These eight most important predictors of the severity of bicycle crashes were 43 

included as predictors of the target (i.e., severity of bicycle crashes) in Bayesian network analysis. 44 

Bayesian network analysis identified crash type (0.31), road type (0.19), and type of opponent 45 

vehicle (0.18) as the most important predictors of severity of bicycle crashes. 46 

Keywords: data mining, cycling, bicycle crash, injury, fatality, safety, decision tree 47 

  48 
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1. Introduction 49 

It is recognized that the use of bicycle as a mode of transport is associated with 50 

environmental and societal benefits (de Nazelle et al. 2011, Xia et al. 2013, Macmillan et al. 51 

2014) as well as health benefits (Kelly et al. 2014, Götschi et al. 2016). However, there are also 52 

societal costs of bicycle use, especially in terms of consequences of bicycle crashes.  53 

In Europe, 8% of people choose bicycles as the most common mode of daily transport 54 

(European Commission 2014). Nevertheless, cyclists still represent one of the road user categories 55 

with the highest risk of injuries and fatalities. From 2004 to 2013, cyclists’ fatalities decreased by 56 

32%, but from 2010 this tendency has stagnated, with less than a 1% year-to-year reduction. 57 

Furthermore, 31% of the fatalities happen at junctions (European Commission 2015). Risks for 58 

non-fatal accidents are higher for cyclists than for car drivers (de Hartog et al. 2010). 59 

Similar to European data, in Italy, 6% of the population indicates the bicycle as the most 60 

common mode of transport (European Commission 2014). In 2014, there were 18.055 bicycle 61 

accidents and 273 cyclists’ fatalities recorded in Italy, leading to a 9% increase in comparison to 62 

2013. In Italy, the mortality index (deaths every 100 accidents) for cyclists is 1.42, which is more 63 

than double compared to car users (ISTAT 2015). 64 

Various contributing factors to bicycle crashes have been identified in literature. Accident 65 

analysis revealed that violation of traffic rules plays a key role in fatal crashes involving cyclists. 66 

Red-light violation is one typical violation behaviour among cyclists (Wu et al. 2012, Pai and 67 

Jou 2014). Other violations commonly associated with collision were riding against traffic, in a 68 

wrong-way, or coming from an unexpected side of the road (Atkinson and Hurst 1983, Ashbaugh 69 

et al. 1995, Kim and Li 1996, Wachtel and Lewiston 1996, Wessels 1996, Räsänen et al. 1998, 70 

Vandenbulcke et al. 2014, Hamann et al. 2015). 71 
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Although fall and collisions with non-motorized users may happen more frequently, 72 

collisions involving motor vehicles account for majority of the reported bicyclists’ fatalities and 73 

serious injuries (Rosenkranz and Sheridan, Rowe et al. 1995, Nicaj et al. 2009, Chong et al. 74 

2010, Sze et al. 2011). Exposure to traffic increases the risk of collision (Hagel et al. 2014, Chen 75 

2015). Another possible reason might be blind spot conflicts (Wachtel and Lewiston 1996).  76 

Different approaches have been employed to investigate these factors. One of these 77 

approaches is based on investigating factors that increase the severity of bicycle crashes. 78 

Usually, collision data are gathered from official sources (Klassen et al. 2014). Using this 79 

approach, factors contributing to the severity of bicycle crashes have been studied at various 80 

levels: crash characteristics (e.g., type of collision and opponent vehicle), infrastructure 81 

characteristics (e.g., type of carriageway, road type, road signage, and type of road segment), 82 

cyclists (e.g., gender and age), and environmental factors (e.g., time of the day, darkness, day of 83 

the week, and weather). In terms of infrastructure characteristics, crashes in straight sections 84 

have been found to be the most fatal (Klop and Khattak 1999, Bíl et al. 2010). Bicycle crashes 85 

occurring at signalized intersections were less severe than those elsewhere (Eluru et al. 2008).  86 

Among the crash characteristics, the involvement of trucks and heavy vehicles in the 87 

bicycle crash was found to increase the severity of bicycle crashes compared to other types of 88 

vehicles (Kim et al. 2007, Moore et al. 2011, Yan et al. 2011). Moreover, head-on and angle 89 

collisions were found to increase the level of bicyclist injury severity (Kim et al. 2007, Bíl et al. 90 

2010, Yan et al. 2011). 91 

In terms of environmental characteristics, the consequences of bicycle crashes tend to be 92 

less severe if they occur at day-time under good visibility, whereas crashes occurring in night-93 

time traffic in places without streetlights have the worst consequences for cyclists (Klop and 94 
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Khattak 1999, Kim et al. 2007, Eluru et al. 2008, Bíl et al. 2010, Yan et al. 2011). Cycling in the 95 

night (e.g., from midnight to 6 a.m.) has been found to increase the likelihood of fatal injury 96 

(Stone and Broughton 2003, Eluru et al. 2008). Also, inclement weather (Kim et al. 2007) and 97 

foggy weather (Klop and Khattak 1999) were associated with more severe consequences of 98 

bicycle crashes. Concerning factors related to cyclists, there is evidence that male cyclists are 99 

more likely to suffer a bicycle fatal injury than female cyclists and that older cyclists (e.g., above 100 

55 or 65 years old) are the most vulnerable age group (Kim et al. 2007, Eluru et al. 2008, Bíl et 101 

al. 2010).  102 

The analysis of the predictors of the severity of bicycle crashes has been conducted using 103 

different types of analysis such as the generalized linear model of logistic regression, binary logit 104 

model, multinomial logit model, and mixed logit model (Klassen et al. 2014). However, because 105 

of the mass of complicated data on road accidents, it is difficult to use regression models to 106 

investigate the predictors of the severity of bicycle crashes. Firstly, regression models rely on 107 

different and strong statistical assumptions such as no outliers, linearity in modelling the 108 

relationship (Harrell 2001, Cohen et al. 2003, Tabachnick and Fidell 2012), which are hardly to 109 

be valid for accident data (Chang and Wang 2006, Yan et al. 2010, de Oña et al. 2011). 110 

Secondly, interaction may occur in complex forms and its detection using cross-product terms 111 

may be a daunting task (Yan et al. 2010). Thirdly, regression models may not satisfactorily 112 

handle many discrete variables or variables with a high number of categories (Harrell 2001, 113 

Cohen et al. 2003, Tabachnick and Fidell 2012). 114 

Data mining techniques refer to an analytic process aimed at exploring large amounts of 115 

data (also known as ‘big data’ in the popular press) in search of structures, commonalities, 116 

hidden patterns (or rules) among data (Hand et al. 2001, Pujari 2001, Han et al. 2012). Data 117 
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mining techniques such as CHAID decision tree technique and Bayesian network analysis have 118 

the following advantages: (1) no problem with outliers, (2) no assumption on variable 119 

distributions is made and a priori probabilistic knowledge about the severity of bicycle crashes is 120 

not needed, (3) many discrete variables or variables with a high number of categories are more 121 

properly handled compared to regression models, and (4) it is possible to extract information 122 

from large amounts of data (Breiman et al. 1984, Friedman et al. 1997, Sutton 2005, Strobl et al. 123 

2009). CHAID decision tree technique and Bayesian network analysis have been successfully 124 

applied to investigate the predictors of head injury for pedestrians and cyclists (Badea-Romero 125 

and Lenard 2013), train–vehicle crashes at passive highway-rail grade crossings (Yan et al. 126 

2010), traffic injury severity (Chang and Wang 2006, Mujalli et al. 2016), traffic accident injury 127 

severity on rural highways (de Oña et al. 2011, de Oña et al. 2013), and driver injury severity in 128 

rear-end crashes (Chen et al. 2015). However, to our knowledge, no research has used both 129 

CHAID decision tree technique and Bayesian network analysis in the study of the severity of 130 

bicycle crashes. 131 

1.1 Study objectives 132 

The main aim of the present study was to identify factors and rules crucial to the 133 

occurrence of fatal bicycle crashes. Crash characteristics (type of collision and opponent 134 

vehicle), infrastructure characteristics (type of carriageway, road type, road signage, pavement 135 

type, and type of road segment), cyclists (gender and age), and environmental factors (time of the 136 

day, day of the week, month, pavement condition, and weather) were considered as predictors of 137 

bicycle injury severity. 138 

2. Method 139 

2.1 Road transport in Italy 140 
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Based on data from the National Institute of Statistics, the total population of Italy in 141 

2016 is 60,665,552. According to Eurostat, in Italy in 2013, the total length of motorways was 142 

6,751 kilometres (based on the last available data from 2013), whereas the total length of other 143 

roads was 249,288 kilometres. The total length of state, provincial and communal roads was 144 

19,920, 154,948, and 74,420 kilometres, respectively. The motor vehicles movement on national 145 

territory was 51,293 million vehicles-kilometres. The estimated passenger road transport on 146 

national territory was 770,590 million of passenger-kilometres. 147 

2.2 Data 148 

The data used in this study were provided by the Italian National Institute of Statistics 149 

(ISTAT). The ISTAT gathers data about all road crashes collected by public institution. The data 150 

are collected through a broad collaboration among different public institutions: ISTAT, Italian 151 

Automobile Club, the Italian Ministry of Transport and Infrastructure, different National Police 152 

organizations, and local Municipalities.  153 

 154 

  155 
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Table 1 156 

Descriptive Statistics of Crash Data 157 

Variable Count % Variable Count % Variable Count % 

Month   Type of carriageway   Pavement Condition   

January 2444 4.9 One-way carriageway 10786 21.7 Dry 45079 90.8 

February 2163 4.4 Two-way carriageway 34953 70.4 Wet 4178 8.4 

March 3427 6.9 Two carriageway 3138 6.3 Slippery 234 0.5 

April 3899 7.9 Two carriageways or more 744 1.5 Frozen 87 0.2 

May 5322 10.7 Road Type    Snowy 43 0.1 

June 5562 11.2 Urban regional 533 1.1 Road Signage   

July 5588 11.3 Urban municipal  39327 79.3 Absent 4171 8.4 

August 4901 9.9 Urban provincial 3505 7.1 Vertical 3265 6.6 

September 5247 10.6 Urban national 1035 2.1 Horizontal 3988 8.0 

October 4680 9.4 Rural municipal 934 1.9 Vertical and horizontal 38197 77.0 

November 3609 7.3 Rural provincial 2972 6.0 Weather   

December 2779 5.6 Rural national 796 1.6 Clear 44072 88.8 

Day    Other roads 181 0.4 Foggy 267 0.5 

Monday 7034 14.2 Rural regional 338 0.7 Rainy 2381 4.8 

Tuesday 8194 16.5 Pavement type   Hail 10 0.0 

Wednesday 7813 15.7 Paved street 49173 99.1 Snow 74 0.1 

Thursday 8156 16.4 Uneven paved street 318 0.6 Strong wind 49 0.1 

Friday 7830 15.8 Non paved street 130 0.3 Other 2768 5.6 
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Variable Count % Variable Count % Variable Count % 

Saturday 6494 13.1 Road segment   Type of Collision   

Sunday 4100 8.3 Intersection 11031 22.2 Head-on collision 3201 6.5 

Severity    Roundabout 4424 8.9 Angle collision 25082 50.5 

Injury 48798 98.3 Signalized intersection 7391 14.9 Sideswipe collision 9611 19.4 

Fatality 823 1.7 
Intersection with traffic 

lights or policeman 
2646 5.3 

Hit parked or stationary 

vehicle 
2721 5.5 

Cyclist age   Unsignalized intersection 1200 2.4 Hit pedestrian 257 0.5 

0 - 14 3142 6.3 Grade crossing 26 0.1 Rear-end collision 3920 7.9 

15 - 24 5919 11.9 Straight road 20350 41.0 Hit stopped vehicle 344 0.7 

24 - 44 14550 29.3 Curve 1998 4.0 Hit obstacle  778 1.6 

45 - 54 7974 16.1 Bump or bottleneck 152 0.3 Run-off-the-road 1912 3.9 

55 - 64 6236 12.6 Slope 301 0.6 Sudden Braking 104 0.2 

65 and older 11504 23.2 Tunnel with street light 69 0.1 Falling from the vehicle 1691 3.4 

Not specified 296 0.6 Tunnel without street light 33 0.1 Opponent Vehicle   

Cyclist gender   Time of the day   Car 35246 71.0 

Male 33912 68.3 6 a.m. to 6 p.m. 40676 82.0 Bus 365 0.7 

Female 15709 31.7 6 p.m. to midnight 7881 15.9 Truck 3050 6.1 

   Midnight to 6 a.m. 898 1.8 Powered two wheelers 2952 5.9 

   Not specified 166 0.3 Other vehicles 945 1.9 

      Multiple vehicles 910 1.8 

      No opponent vehicles 6153 12.4 
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In the present study, the dataset contains information about road crashes occurred on the 158 

Italian road network during the period ranging from 2011 to 2013. At the time of the study, 2013 159 

was the most recent available ISTAT data. In 2010 (Law L. 29/7/2010 n. 120) a new national 160 

traffic law was approved, with minor changes involving also bicycle use. Therefore, to have a 161 

trade-off between the need to have a large sample size and the need to control for change in road 162 

regulation, we chose a three-year period ranging from 2011 to 2013. 163 

The ISTAT database does not include a distinction between different levels of injuries, 164 

thus making a distinction only between road crashes resulting in injuries or fatalities (within 30 165 

days). As shown in Table 1, the database was rearranged and 15 categorical variables were 166 

selected: (1) month of the year, (2) day of the week, (3) time of the day (4) cyclist age, (5) cyclist 167 

gender, (6) road type, (7) accident location, (8) road pavement type, (9) road pavement 168 

condition, (10) type of junction, (11) road signage, (12) weather condition, (13) type of collision, 169 

(14) type of opponent vehicle and (15) outcome of the crash. Regarding the road type category, 170 

the administrative classification of the Italian Road Code classifies roads as highways, national 171 

roads, regional roads, provincial roads, or municipal roads (Maggiora 2005). Each type of road is 172 

built, owned and maintained by different organizations. Highways and national roads are owned 173 

by the central government and maintained by the national roads agency (ANAS) or by 174 

contractors. Typically, the responsibility for municipal roads, provincial roads, and regional 175 

roads rests with each respective level of government (e.g., the local government is responsible 176 

for municipal roads). Furthermore, the Italian Road Code categorises roads crossing urban 177 

communities with less than 10,000 inhabitants as urban national, urban regional, and urban 178 

provincial roads, respectively. Regarding the type of collision, the ISTAT database provides a 179 

classification in 12 categories.  180 



DATA MINING AND BICYCLE CRASHES SEVERITY                                                         12 

 
2.3 Statistical Analysis 181 

We analysed data about road crashes occurred on the Italian road network from 2011 to 182 

2013 using CHAID decision tree technique and Bayesian network analysis. We divided the 183 

dataset into training data (70%) and test dataset (30 %). In the present study, the CHi-squared 184 

Automatic Interaction Detection (CHAID) and Bayes network techniques were employed using 185 

IBM SPSS Modeler version 18. The CHAID is a decision tree algorithm that allows splitting into 186 

more than two subgroups. In the present study, we employed exhaustive CHAID because of its 187 

superior ability to examine all possible splits. For the purpose of cross-validation, the dataset was 188 

split into two parts: a training dataset and a test dataset. Specifically, the total data was split into 189 

70% for training and 30% for the test data. The training dataset was used to estimate the model 190 

parameters and build the model, while the test dataset was used to test the model for its 191 

applicability to independent data and to determine model’s ability to generalize. Given the 192 

intrinsic imbalanced nature of the data, we altered the misclassification penalty using cost matrix 193 

manipulation (McCormick et al. 2013). Specifically, we chose a misclassification cost ratio of 194 

100:1 to force CHAID to identify the fatal injury cases correctly more often (Roumani et al. 195 

2013).  196 

The CHAID was also used to reduce the set of variables because Bayes network work 197 

best with a small set of predictors. The Bayes network analysis is based on Bayesian probability 198 

theory. To calculate a posterior distribution for variables of interest, Bayesian probability 199 

employs prior distributions of each variable and joint distributions. In the present study, we used 200 

the tree augmented naïve Bayesian because it models interactions (i.e., it allows each predictor to 201 

depend on one other predictor). To reduce the impact of the intrinsic imbalanced nature of the 202 

accidents data on Bayesian network analysis, we carried out simple random oversampling 203 
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(Mujalli et al. 2016). We refer to IBM (2016) for a detailed description of the algorithm used in 204 

CHAID Bayesian network analysis. 205 

3. Results 206 

The original database comprised a total of 575,093 road accidents, from which we 207 

extracted the 49,621 road accidents where at least one cyclist was injured or killed. Of these 208 

roads accidents involving at least one injured or killed cyclist, the number of bicycle fatalities 209 

was 823 (1.7%). 210 

3.1 CHAID Decision Tree Technique  211 

The CHAID decision tree technique belongs to a group of rule-based classifiers, and 212 

orders the rules in a tree structure. The percentage of records having the particular value for the 213 

outcome variable, given values for the input variables represents the confidence (accuracy) of the 214 

produced rules. Using CHAID decision tree technique, the overall classification accuracy of the 215 

training set and testing set was 98%. In addition, the area under the curve (a goodness of fit 216 

measure for the classifier) of the training set and testing set was 0.83 and 0.81, respectively. That 217 

indicates quite accurate classification with no overfitting. 218 

The relative importance of the input variables in the model is indicated by the length of 219 

the bars and their corresponding values in Figure 1. Predictor importance was determined by 220 

calculating the decrease in variance of the outcome variable (i.e., severity of bicycle crashes) due 221 

to each predictor, through a sensitivity analysis. The values of predictor importance are relative, 222 

and the sum of the values for all predictors on the display is 1.0. We refer to IBM (2016) for a 223 

detailed description of the algorithm used here. The x-axis shows the predictors while the y-axis 224 

shows the predictor importance score for each variable. According to Figure 1, road type (0.30), 225 

crash type (0.24), and age of cyclist (0.19) were the most important predictors in determining the 226 
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severity of bicycle crashes. However, predictor importance scores are not revelatory of the 227 

reasoning behind their predictions. To get a deeper insight into the predictions of CHAID, we 228 

should explore the decision tree.  229 

 230 

 231 

Figure 1. Predictor importance scores. 232 

 233 

As it was explained earlier, CHAID is a classification method for building a decision tree. 234 

A decision tree split a data set into subgroups on the basis of the relationships between input 235 

variables (i.e., predictors of the severity of bicycle crashes) and the outcome variable (i.e., 236 

severity of bicycle crashes). At each tree node, the data is recursively split into two or more 237 

distinct groups by the values of an input variable, resulting in subgroups, which are then split 238 

again into smaller subgroups, and so on. To identify optimal splits, the CHAID employs the Chi-239 

square independence test. The crosstabulations between each of the input variables and the 240 

outcome are examined and tested using a chi-square independence test. The CHAID selects the 241 

most significant input variable. If an input variable has more than two categories, the CHAID 242 
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compares these categories, and those with no differences in the outcome are merged together. 243 

Therefore, the CHAID provides the details in the form of a decision tree model that classifies 244 

bicycle crashes resulting in non-fatal injury or fatal injury using a series of if–then–else rules. By 245 

using this type of decision tree model, researchers can understand the data structure or the 246 

combinations of variables that result in the highest (or lowest) risk for a condition of interest.  247 

Figure 2 displays the final tree structure the severity of bicycle crashes. All bicycle 248 

crashes resulting in non-fatal injury or fatal injury were divided into 31 subgroups from root 249 

node to leaf nodes through different branches. The percentage of bicycle fatal crash varied from 250 

0 to 11%. The tree structure involves eight splitting variables, including road type, road section 251 

type, cyclists’ age, cyclists’ gender, crash type, opponent vehicle, month, and road sign. The first 252 

optimal split in node 0 was according to road type, which classified bicycle crashes into four 253 

groups: if road type is urban regional, urban provincial or urban national, the tree predicts 2.37% 254 

of fatality crash; if road type is urban municipal, the percentage of fatality crash was 0.97%; if 255 

road type is rural municipal, the tree predicted 4.31% of fatality crash; and if road type is rural 256 

provincial, rural regional, or rural national, the percentage of fatality crash was 5.97%.  257 
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 258 

Figure 2. Decision Tree.  259 
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Note. Ja = January; Fe = February; Ma = March; Ap = April; Ma = May; Jun = June; Jul = July; Au = August; Se = September; Oc = 260 

October; Nov = November; Dec = December; <45 = age less than 45 years; 45-64 = age between 65 and 64 years; <65 = age less than 261 

65 years; >65 = age 65 and older; Inj = Injury; Fat = Fatality; Mal = Male; Fem = Female; Ur = Urban regional; Um = Urban 262 

municipal ; Up = Urban provincial; Un = Urban national; Rm = Rural municipal; Rp = Rural provincial; Rn = Rural national; Oro = 263 

Other road; Rr = Rural regional; Int = Intersection; Rou = Roundabout; Sint = Signalized intersection; Itl = Intersection with traffic 264 

lights or policeman; Nsi = Non signalized intersection; Gc = Grade crossing; Sro = Straight road; Cu = Curve; Bob = Bump or 265 

bottleneck; Sp = Slope; Twl = Tunnel with street light; Tnl = Tunnel without street light; Abs = Absent; Ver = Vertical; Hor = 266 

Horizontal; VeO = Vertical and horizontal; Hc = Head-on collision; Ac = Angle collision; Sc = Sideswipe collision; Rec = Rear-end 267 

collision; Hp = Hit pedestrian; Hpsv = Hit parked or stationary vehicle; Hsv = Hit stopped vehicle; Ho = Hit obstacle in carriageway; 268 

Rr = Run-off-the-road; Sb = Sudden Braking; Ffv = Falling from the vehicle; Car = Car; Bus = Bus; Truck = Truck; Powered two 269 

wheelers = PTW; Ov = Other vehicles; Mv = Multiple vehicles; Nv = No opponent vehicles. 270 

 271 
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In the second level of the tree, the group including urban regional, urban provincial, and 272 

urban national road type led to another split based on type of opponent vehicle. If the opponent 273 

vehicle is a bus, a truck, or multiple vehicles are involved, the percentage of fatality crash was 274 

6.82%, whereas if the opponent vehicle is a car, a powered two-wheeler or there was not 275 

opponent vehicle, the percentage of fatality crash was 1.75%. In the third level of the tree, for 276 

this group of opponent vehicle (i.e., cars, powered two wheelers or no opponent vehicle), type of 277 

road section segmented the data into two subgroups: in case of straight, curved, or steep road or 278 

tunnel without lighting, the percentage of bicycle crash was 3.24%, whereas in the other types of 279 

road section (e.g., intersection, roundabout, tunnel with lighting), the percentage of fatal crash 280 

was 0.57%. In the fourth level of the tree, the age of cyclists segmented the data concerning 281 

straight, curved, or steep road or tunnel without lighting into three subgroups. If the age of the 282 

cyclist was 65 years or higher, the percentage of fatal crash was 6.67%. The percentage of fatal 283 

crash decreased to 3.51% among cyclist aged between 45 and 64 years and to 1.09% among 284 

cyclist younger than 44 years.  285 

In the second level of the tree, crash type segmented the group of rural provincial, rural 286 

regional, or rural national road type into two groups. In case of head-on or rear-end collisions, 287 

the percentage of fatal crash was 11.34%, whereas in the other types of crash, the percentage of 288 

fatality crash dropped to 4.10%. In the third level, the age of cyclists split the other type of crash 289 

category (i.e., excluding head-on or rear-end crash type) into two groups. If cyclists were 65 290 

years old or older, the percentage of fatal crash was 10.51%, whereas this percentage among the 291 

other cyclists was 2.25%.  292 

In the second level of the tree, the age of cyclists segmented the data regarding urban 293 

municipal in two groups. If the age of cyclist was 65 years or higher, the percentage of fatal 294 
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crash was 2.80%, whereas if the age was lower than 65 years the percentage of fatal crashes 295 

decreased to 0.42%. In the third level, the gender of cyclists led to the split in cyclists aged 65 296 

years or older. The percentage of fatal crash was 1.34% among female cyclists and 3.56% among 297 

male cyclists. In the fourth level of the tree, type of road sign led to another split among the 298 

group of male cyclists: if road sign was missing or there were only road markings, the percentage 299 

of fatal crash was 5.75%, whereas it dropped to 3.14% if a road sign was present. In the third 300 

level, crash type led to the split in the groups of cyclists aged less than 65 years. The percentage 301 

of fatal crash was 1.43% in case of rear-end crash type, 0.80% in case of head-on, fall from the 302 

vehicle, skid, and run-off-the-road, and 0.27% in the other types of crash. In the fourth level, 303 

head-on, fall from the vehicle, skid, and run-off-the-road crash types were segmented in two 304 

groups according to the month of the year. The percentage of fatality crash was 1.16% in March, 305 

April, May, September, and October, whereas was 0.15% in the other months of the year. In the 306 

fourth level, the ‘other’ type of crash (i.e., excluding rear-end, head-on, fall from the vehicle, 307 

skid, and run-off-the-road) was split into three groups according to the type of opponent vehicle. 308 

This finding indicates that the involvement of a bus, a truck or multiple vehicles had a higher 309 

percentage (0.88%) of fatal crash compared to crashes involving no vehicle or a car (0.20%) or 310 

PWT or other vehicles (0.43%). In the fifth level, the gender of cyclist led to the split in the 311 

group of car or no opponent vehicle. In case of male cyclists, the percentage of fatality crash was 312 

0.26%, whereas in case of female cyclists the same percentage dropped to 0.09%.  313 

3.2 Bayesian Network Analysis 314 

The eight predictors of the severity of bicycle crashes that were selected using CHAID 315 

algorithm (see Figure 1) were included as predictors of the target (i.e., severity of bicycle 316 

crashes) in Bayesian network analysis. The accuracy of the Bayesian network model is 79% for 317 
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both the training set and the test set, which is a good value. The area under the curve of both the 318 

training set and testing set was 0.86. A Bayesian network is a probabilistic graphical modelling 319 

technique that shows variables (referred to as nodes) in an acyclic graph. The acyclic graph 320 

represents the probabilistic, or conditional, independencies between the nodes described through 321 

the links in the network (also known as arcs). In other words, a Bayesian network model consists 322 

of the directed acyclic graph with nodes and a set of directed edges together with a conditional 323 

probability table for each node given values of its parent nodes. Figure 3 displays the resulting 324 

network graph of nodes that shows the association between the target and its predictors. In the 325 

tree augmented naïve Bayesian, each predictor (i.e., characteristics of bicycle crashes) has the 326 

target variable (i.e., severity of bicycle crashes) as a parent and can have one other predictor as a 327 

parent. The network was consistent of nine nodes, one for the target and one for each predictor. 328 

The relationship between the predictors is also displayed. The graphical model highlights the 329 

predictor importance (i.e., the relative importance of each predictor in estimating the model): the 330 

darkness indicates the closeness of the relationship to severity of bicycle crashes. The darkest 331 

coloured predictors, and, thus, the most important predictors of severity of bicycle crashes were 332 

crash type (0.31), road type (0.19), and type of opponent vehicle (0.18). As these three predictors 333 

were identified as the key determinants of severity of bicycle crashes, the three related 334 

relationships will be further discussed. As it was explained earlier, the Bayesian network model 335 

provides a conditional probability table for each related node. The Bayesian network model 336 

computes the joint probability distribution as a product of conditional probabilities for all nodes, 337 

given the values of each node’s parents. Each column of the conditional probability table 338 

corresponds to a value of the predictor while each row corresponds to a combination of values of 339 

the target and parent predictor variables. 340 
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 342 

Figure 3. The Bayesian network model and predictor importance. 343 
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Table A1 (see Appendix A) summarizes the conditional probability for each values of 344 

crash type across all combination of values of target and month (i.e., its parents). The conditional 345 

probabilities of crash type suggest that fatality crashes were less probable than injuries crashes 346 

following angle crashes with another vehicle, especially in the period between February and 347 

December. In the same period, fatality crashes were more likely than injuries crashes following 348 

rear-end collisions. 349 

Table A2 (see Appendix A) displays the conditional probabilities of road type taking into 350 

consideration the influence of road segment. Compared to injuries crashes, fatalities crashes were 351 

less likely in urban provincial road, especially at non-signalized intersection, straight road, and 352 

tunnel with street light. However, fatality crashes were more likely than injuries crashes in urban 353 

provincial road inside tunnel without street light.  354 

Table A3 (see Appendix A) shows the conditional probabilities of type of opponent 355 

vehicle considering the influence of crash type. Fatality crashes were more likely than injuries 356 

crashes in collisions involving trucks following angle or sideswipe collisions and collisions 357 

involving multiple vehicles where a stopped vehicle was hit. Moreover, fatality crashes were 358 

more likely than injuries crashes in collisions involving a car following three types of collisions: 359 

angle, sideswipe, and hit stopped vehicle. 360 

4. Discussion 361 

Results from both CHAID decision tree technique and Bayesian network analysis 362 

revealed that crash type and road type were the most important predictors of the severity of 363 

bicycle accidents. According to CHAID decision tree technique, rear-end collisions increased the 364 

severity of bicycle accidents in urban municipal road and, especially, in rural provincial, rural 365 

regional, and rural national roads. In these types of rural roads, more than one out of ten bicycle 366 
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injury collisions results in bicycle fatality. Bayesian network analysis showed that rear-end 367 

collisions were the most dangerous types of collisions, while angle crashes were the less 368 

dangerous. Rear-end collisions often imply an impact on cyclists who may not expect a crash 369 

with an oncoming motor vehicle and, therefore, are not ready to prevent the damages of the 370 

collision. However, the findings of Bayesian network analysis also showed that fatality crashes 371 

were more likely than injuries crashes in angle collisions involving a truck or a car. The most 372 

likely explanation for this apparent discrepancy is that, as in previous research (Yan et al. 2011), 373 

among patterns of types of crash, angle collisions occurred most frequently and, therefore, may 374 

involve different types of vehicle other than cars and trucks. Thus, when considering all the types 375 

of vehicle involved in angle collisions with bicycles, they may not be considered particularly 376 

dangerous. However, consistent with previous research (Moore et al. 2011, Yan et al. 2011), 377 

angle collisions involving cars or trucks significantly increased the level of bicyclist injury 378 

severity. 379 

The results show that — in line with the literature (Macpherson et al. 2004, Amoros et al. 380 

2011, Moore et al. 2011, Boufous et al. 2012) — the severity of bicycle crashes is different 381 

between rural and urban roads. There are clear differences (e.g., speed limits and actual speed, 382 

traffic flow, road design, lack of appropriate cycling infrastructure) between rural and urban 383 

roads which may impact the severity of bicycle crashes. The present study adds to literature by 384 

finding that the relationship between road type and severity of bicycle crashes is much more 385 

complex than the distinction between rural and urban roads. Urban regional, urban provincial or 386 

urban national roads cross small urban centres (urban communities with population less than 387 

10,000 inhabitants). In these segments of urban roads, the speed of drivers of motorized vehicles 388 

is generally high (Montella et al. 2012). Motorized vehicle speed is one of the factors that 389 
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increase the probability of a bicyclist suffering a fatal injury in a crash because of the increased 390 

kinetic energy and greater impact (Kim et al. 2007, Moore et al. 2011). Thus, a likely 391 

explanation is that over-speeding in urban areas is more probable in urban regional, urban 392 

provincial, or urban national than municipal roads. Indeed, a previous study on powered two-393 

wheeler crashes in Italy revealed that crash severity is substantially lower in municipal roads 394 

than other urban roads (Montella et al. 2012). 395 

Consistent with past research (McCarthy and Gilbert 1996, Kim et al. 2007, Yan et al. 396 

2011), it was found in the current study that in a crash event where a large vehicle (i.e., truck or 397 

bus) was the opponent vehicle, the likelihood of fatality crash increases. The present study adds 398 

to literature by finding that this increased risk is not similar across urban regional, urban 399 

provincial, or urban national roads. Since over-speeding may be a problem in these types of 400 

urban roads (Montella et al. 2012), the bicycles’ tendency to be in blind spots and bicycle’s poor 401 

conspicuity may be exacerbated. In addition to being visible (i.e., to be usefully seen by 402 

satisfying geometric and optical requirements), a bicycle must also be conspicuous, that is, being 403 

able to attract the driver's attention (Langham and Moberly 2003). In rural roads, the increased 404 

crash severity does not seem to differ between large vehicles and other motorized vehicles 405 

because the increased speed limits are enough to increase the severity of collisions with every 406 

motorized vehicle.  407 

In addition, this study goes beyond the existing literature by showing that not only the 408 

involvement of large vehicles increases the severity of bicycle crashes, but also the involvement 409 

of multiple vehicles. This is not surprising: when more vehicles are involved, multiple impacts 410 

are more likely (Tay and Rifaat 2007). However, the involvement of multiple vehicles has 411 

received little attention in the literature on bicycle safety though its occurrence is not rare. We 412 
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note the in the present study, the involvement of truck was about 6% of the accidents and the 413 

involvement of multiple vehicles was about 2% the accidents. Moreover, a study on safety 414 

performance of roundabouts revealed that bicyclists were involved in 35% of the multiple 415 

vehicle-crashes (Daniels et al. 2010). The impact of multiple-vehicles accidents on bicycle safety 416 

may be an area for future research. 417 

In line with several studies (Haileyesus et al. 2007, Bíl et al. 2010, Amoros et al. 2011), 418 

male cyclists were more likely to sustain a fatal injury than female cyclists. This variation may 419 

be explained by differences in bicycling exposure, risk-taking behaviours, and helmet use. Male 420 

cyclists have a greater exposure rate and case fatality rate than female cyclists (Li and Baker 421 

1996).Compared to female cyclists, male cyclists have a higher tendency towards disregarding 422 

potential risks and committing traffic violations, including non-compliant roadway-crossing, 423 

disobeying the traffic signal at signalized intersections (Bernhoft and Carstensen 2008, 424 

Deffenbacher 2008, Yan et al. 2011, Johnson et al. 2013). Helmet use is lower in male cyclists 425 

than female cyclists (Harlos et al. 1999) and risk compensation has been observed only among 426 

male cyclists as helmeted male bicyclists tended to ride faster than non-helmeted ones (Messiah 427 

et al. 2012). In the present study, we have found that gender differences in severity of bicycle 428 

crashes are marked in urban municipal road, while in the other types of road, there is no evidence 429 

of gender differences. This finding suggests that gender differences in severity of bicycle crashes 430 

are context-specific. This could explain why evidence concerning gender differences in severity 431 

of bicycle crashes has been inconsistent, with some studies reporting no difference in this regard 432 

(Hoffman et al. 2010, Heesch et al. 2011). With regard to the fact that male cyclists were more 433 

likely to sustain a fatal injury than female cyclists in urban municipal roads, we argue that road 434 

type or (urban/rural) environment is a potentially important situational variable. Compared to 435 
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rural environments, several factors are more characteristics of urban environments: congestion, 436 

rush-hour traffic, crowding, time-pressured commutes, more intersections and traffic lights 437 

(Deffenbacher 2008). These characteristics of urban environment may provide more chances to 438 

commit traffic violations and risk-taking behaviours which are more likely among male cyclists 439 

than female cyclists (Bernhoft and Carstensen 2008, Deffenbacher 2008, Yan et al. 2011, 440 

Johnson et al. 2013). Indeed, there is evidence that rural drivers are less likely to commit traffic 441 

violations than urban drivers (Zhang et al. 2013). This explanation should be examined in future 442 

research. 443 

Injury severity increased among cyclists aged 65 and over compared to the youngest age 444 

group. This result is in line with the literature showing that injury severity increases with age 445 

(Eilert-Petersson and Schelp 1997, Rodgers 1997, Ekman et al. 2001, Stone and Broughton 2003, 446 

Kim et al. 2007, Eluru et al. 2008, Bíl et al. 2010, Yan et al. 2011, Boufous et al. 2012, Schepers 447 

2012, Rivara et al. 2015). Physical fragility (susceptibility to injury) and, to a lesser extent, crash 448 

over-involvement due to of unsafe driving are likely to explain the excess death rates among 449 

older drivers per vehicle-mile of travel (Li et al. 2003, Anstey et al. 2005, Schepers 2012). 450 

Susceptibility to injury due to fragility of older cyclists seems to be one possible explanation for 451 

the increased likelihood of sustaining a fatal injury since the protection of cyclists is more 452 

worrisome than the protection of vehicle occupants. In the present study, in municipal roads (the 453 

less dangerous among all the types of road probably because of the low operating speed of 454 

motorized vehicles), the percentage of fatal injury is 0.42% among people aged less than 65 455 

years, whereas is 2.80% among people aged 65 years and over. This finding seems to support the 456 

hypothesis of physical fragility: even a slight mishap can have serious consequences. Another 457 

possible explanation could be linked to risk factors associated with older age. As indicated in 458 
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earlier studies (Eluru et al. 2008, Rivara et al. 2015) older individuals tend to have higher 459 

perception and reaction times which contribute to their higher injury risk propensity when 460 

cycling. Furthermore, Maring and van Schagen (1990) pointed out that even though age by itself 461 

was not the causal factor, older age was strongly associated with relevant variables such as less 462 

perceptual-motor speed and cognitive deterioration. Another risk factor for older cyclists, as it 463 

has been found for older drivers (Ball et al. 1993, Caird et al. 2005) could be their propensity to 464 

lower attentive states during the riding task.  465 

In our study, the absence of road markings seems to increase the crash severity in older 466 

male cyclists in urban roads. Marked centre and edge lines provide a visual reference to guide 467 

motorists in the driving task, but potentially for cyclists as well. Schepers and den Brinker (2011) 468 

found that the characteristics of the visual design play a role in crashes where cyclists collide 469 

with a kerb, bollard or road narrowing, or ride onto the verge. They recommended a minimal 470 

level of guidance (e.g., edge markings) and conspicuity of obstacles (e.g., bollards). 471 

In the present study, we found an increase in crash severity during spring (March, April, 472 

May) and the beginning of autumn (September and October), compared to other period of the 473 

year. As previously suggested in literature, the season and weather conditions have an influence 474 

on bicycle crashes (Liu et al. 1995, Kaplan and Giacomo Prato 2013). We believe that the 475 

unpredictability of the weather conditions in those specific months plays a key role in increasing 476 

the severity of crashes. As a matter of fact, the weather conditions are more variable in spring 477 

and autumn and thus road users could find themselves forced to drive or ride in adverse weather 478 

conditions without expecting it. Sudden bad weather could entail a more slippery road pavement 479 

and less conspicuity by the road users. 480 

 481 
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4.1 Limitation of the Study 482 

Several limitations of this study also deserve comment. Although ISTAT collects the 483 

most complete data of road accidents in Italy, similar to other countries, some crashes and some 484 

important variables that may affect bicycle safety may be unavailable. We believe that the main 485 

limitation of the study is the limitation of the data available. For instance, vehicle speed prior to 486 

impact plays an important role in increasing the probability of fatal injury (Kim et al. 2007). 487 

Since the vehicle speed prior to impact was not collected, in-depth accident studies should 488 

enhance our understanding of the factors predicting the severity of bicycle crashes. Another 489 

important variable not included in the ISTAT database is the traffic flow condition. As a matter 490 

of fact, it is reasonable to argue that crashes in low traffic conditions could entail different risk 491 

factors and knowing the traffic conditions at the very moment of the crash could give more 492 

insight on the weight of different predictors and outcomes. Another flaw in the ISTAT database 493 

is that the classification of roads does not corresponds entirely to the functional classification 494 

present in the Italian Highway Code. In addition, when those data are available in crash 495 

databases, future studies are recommended to expand and update the extent of the current 496 

research. Finally, the predictors were based on previous theoretical and empirical work. 497 

Although the establishment of temporal ordering is essential for making firm causal 498 

interpretations, it is not sufficient. Some unobserved “third” variables may better explain the 499 

observed relations. 500 

4.2 Conclusions and Recommendations 501 

The issue of cyclist safety is crucial. In the present study, we employed CHAID decision 502 

tree technique and Bayesian network analysis to determine the predictors of the severity of 503 

bicycle crashes. According to the results of CHAID analysis, the most important predictors were, 504 
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in decreasing order of importance, road type, crash type, age of cyclist, road signage, gender of 505 

cyclist, type of opponent vehicle, month, and type of road segment. These eight variables were 506 

included as predictors of the target (i.e., severity of bicycle crashes) in Bayesian network 507 

analysis. By applying Bayesian network on these eight predictors, crash type, road type, and type 508 

of opponent vehicle resulted as the most important predictors of severity of bicycle crashes.  509 

These findings suggest the importance of divisions on rural roads (i.e., rural provincial, 510 

rural regional, or rural national), which can separate bicycles from motor vehicles maintain high 511 

operating speeds. A bikeway separated from motorized traffic is likely to reduce the possibility 512 

of bicyclists riding with high-speed traffic, and, thus, reduce the risk for leading to those most 513 

dangerous patterns of crashes (i.e., rear-end, head-on). A bikeway separated from motorized 514 

traffic could be effective at reducing the severity of crashes in rural roads where motor vehicles 515 

maintain high operating speeds and head-on and rear-end collisions are more fatal. It is 516 

interesting to note that older cyclists are more concerned about the absence of a bikeway 517 

separated from motorized traffic and tend to feel the presence of cycle paths most important for 518 

their comfort (Bernhoft and Carstensen 2008). In addition, an in-bicycle consumer-friendly 519 

vehicle detection system could warn motorists of the cyclist’s presence by flashing lights and, at 520 

the same time, inform the cyclist about the speed and distance of approaching vehicles. Another 521 

recommended countermeasure for reducing the frequency of rear-end collisions is increasing rear 522 

conspicuity of bicycles or bicyclists. According to a systematic review (Kwan and Mapstone 523 

2006), fluorescent materials in yellow, red, and orange colours improve detection and 524 

recognition of cyclists in the daytime. For night-time conspicuity, lamps, flashing lights, and 525 

retroreflective materials in red and yellow colours increase detection and recognition. Bicycle 526 

lights improve conspicuity and decrease the risk of an accident and they are assumed to decrease 527 
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severity due to reduced reaction time and the ability to take evasive action for the vehicle driver 528 

involved in the accident (Kim et al. 2007). In several countries, it is therefore mandatory to use 529 

lights during night-time, including Italy. Evidence-based public campaigns and police 530 

enforcement can increase the willingness to use bicycle lights. 531 

In municipal urban roads, a bikeway separated from motorized traffic could be less 532 

effective in reducing the severity of bicycle crashes given the low risk of fatal bicycle crashes. 533 

(Mulvaney et al. 2015). Integration as opposed to segregation, as expressed by the concept of 534 

urban shared spaces (Hamilton-Baillie 2008a, b, Biddulph 2012, Karndacharuk et al. 2014), 535 

could be the most promising approach to reduce the severity of bicycle crashes. In urban 536 

regional, urban provincial, or urban national roads, speed-reducing measurements, such as speed 537 

calming measures, speed bumps, and elevated bicycle crossings, could be effective 538 

countermeasures to mitigate the problem of excessive speed. A driving simulator experiment 539 

revealed that perceptual cues such as gateways (aimed at reducing the speed of vehicles entering 540 

in the urban area) and traffic calming devices (aimed at complementing the gateway effect inside 541 

the urban area) have proved to be effective in reducing speed in rural highway crossing a small 542 

urban community (Galante et al. 2010). A recent review of the literature recommends the use of 543 

30 km (20 mph) speed restrictions in urban areas to effectively reduce bicycle crashes (Mulvaney 544 

et al. 2015).  545 

Finally, given that large vehicles increased the severity of bicycle crashes, in-vehicle 546 

systems that detect and alert drivers of the cyclists’ presence in traffic could be useful. Also, 547 

infrastructure-based detection and cooperative systems could be useful to improve detection of 548 

cyclists and may assist drivers in minimizing blind spots. 549 

  550 
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Appendix A. 794 

Table A1 795 

Crash Type/Month Conditional Probabilities  796 

Month Severity 

of Bicycle 

Crashes 

Run-

off-

the-

road 

Head-

on 

collisio

n 

Sudde

n 

Brakin

g 

Angle 

collisio

n 

Fallin

g from 

the 

vehicl

e 

Sideswi

pe 

collision 

Rear-

end 

collisio

n 

Hit 

pedestri

an 

Hit 

parked 

or 

stationa

ry 

vehicle 

Hit 

stoppe

d 

vehicl

e 

Hit 

obstacle 

in 

carriagew

ay 

January Fatality 0.06 0.09 0 0.51 0.05 0.13 0.13 0 0 0 0.02 

February Fatality 0.03 0.08 0 0.43 0.05 0.08 0.32 0 0.02 0 0 

March Fatality 0.08 0.11 0 0.41 0.09 0.09 0.19 0 0.03 0.01 0 

April Fatality 0.05 0.03 0 0.31 0.09 0.15 0.34 0 0 0.01 0 

May Fatality 0.03 0.15 0 0.4 0.06 0.08 0.19 0 0.02 0 0.06 

June Fatality 0.04 0.11 0 0.35 0.04 0.12 0.31 0 0.03 0 0.01 

July Fatality 0.05 0.15 0 0.35 0.07 0.15 0.24 0 0 0 0 

August Fatality 0.03 0.05 0 0.41 0.03 0.21 0.27 0 0.01 0 0 

September Fatality 0.05 0.15 0 0.42 0.04 0.14 0.19 0.01 0 0 0 

October Fatality 0.07 0.05 0 0.31 0.06 0.2 0.2 0.01 0.05 0 0.03 

November Fatality 0.01 0.11 0.02 0.31 0.06 0.21 0.26 0 0.02 0 0 

December Fatality 0 0.07 0 0.42 0.05 0.15 0.28 0 0.03 0 0 

January Injury 0.03 0.08 0 0.53 0.03 0.18 0.07 0 0.05 0.01 0.01 

February Injury 0.03 0.07 0 0.54 0.04 0.18 0.07 0 0.05 0.01 0.01 
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March Injury 0.05 0.06 0 0.51 0.03 0.19 0.08 0 0.05 0.01 0.02 

April Injury 0.04 0.06 0 0.51 0.04 0.2 0.07 0.01 0.05 0.01 0.01 

May Injury 0.04 0.06 0 0.5 0.04 0.21 0.07 0.01 0.05 0.01 0.02 

June Injury 0.04 0.07 0 0.49 0.04 0.2 0.08 0.01 0.05 0 0.02 

July Injury 0.04 0.07 0 0.5 0.03 0.2 0.08 0 0.06 0.01 0.02 

August Injury 0.04 0.07 0 0.5 0.04 0.2 0.08 0.01 0.05 0 0.02 

September Injury 0.04 0.06 0 0.49 0.03 0.22 0.08 0 0.05 0.01 0.01 

October Injury 0.04 0.05 0 0.53 0.04 0.19 0.07 0.01 0.06 0.01 0.01 

November Injury 0.03 0.07 0 0.52 0.02 0.19 0.08 0 0.07 0.01 0.01 

December Injury 0.03 0.05 0 0.57 0.03 0.17 0.08 0 0.06 0 0.01 

 797 

  798 
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Table A2 799 

Road Type/Road Segment Conditional Probabilities  800 

Severity of 

Bicycle 

Crashes 

Road 

segment 

Urban 

municipa

l  

Urban 

provincia

l 

Urban 

national 

Rural 

municipa

l 

Rural 

provincia

l 

Rural 

national 

Other 

road 

Rural 

regional 

Urban 

regional 

Fatality Intersection 0.62 0.05 0.03 0.07 0.16 0.05 0 0.02 0 

Fatality Roundabout 0.54 0.08 0 0.02 0.16 0.12 0.02 0.05 0 

Fatality Signalized 

intersection 

0.4 0.1 0.04 0.06 0.27 0.08 0 0.05 0.01 

Fatality Intersection 

with traffic 

lights or 

policeman 

0.63 0.09 0.02 0 0.12 0.12 0 0 0.02 

Fatality Non 

signalized 

intersection 

0.65 0.14 0 0.15 0.06 0 0 0 0 

Fatality Straight 

road 

0.42 0.1 0.02 0.04 0.27 0.09 0.01 0.03 0.02 

Fatality Curve 0.32 0.19 0 0.1 0.21 0.1 0.02 0.07 0 

Fatality Bump or 

bottleneck 

0.39 0.23 0 0.18 0.2 0 0 0 0 

Fatality Slope 0.54 0.12 0 0 0.09 0.1 0.14 0 0 
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Fatality Tunnel with 

street light 

0.33 0 0 0 0.33 0.35 0 0 0 

Fatality Tunnel 

 

  

0.7 0 0 0 0 0 0 0 0.3 
Injury Intersection 0.84 0.07 0.02 0.01 0.03 0.01 0 0 0.01 

Injury Roundabout 0.75 0.11 0.03 0.01 0.08 0.01 0 0.01 0 

Injury Signalized 

intersection 

0.79 0.07 0.02 0.02 0.06 0.02 0 0.01 0.01 

Injury Intersection 

with traffic 

lights or 

policeman 

0.89 0.05 0.02 0.01 0.02 0.01 0 0 0.01 

Injury Non 

signalized 

intersection 

0.81 0.1 0.02 0.02 0.03 0.01 0 0 0.01 

Injury Straight 

road 

0.8 0.06 0.02 0.02 0.06 0.01 0 0.01 0.01 

Injury Curve 0.57 0.09 0.02 0.07 0.18 0.03 0.01 0.01 0.01 

Injury Bump or 

bottleneck 

0.66 0.05 0.02 0.04 0.16 0.02 0.02 0 0.01 

Injury Slope 0.64 0.08 0.01 0.04 0.11 0.04 0.07 0 0.02 

Injury Tunnel with 

street light 

0.68 0.03 0.03 0 0.09 0.12 0.03 0.03 0 
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Injury Tunnel 

without 

street light 

0.33 0 0 0 0.44 0.17 0 0 0.06 

 801 

  802 
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Table A3 803 

Type of Opponent Vehicle/Crash Type Conditional Probabilities  804 

Crash type Crash 

severity  

Car Bus Truck PTW Other 

vehicles 

Multiple 

vehicles 

No 

opponent  

Head-on collision Fatality 0.78 0 0.11 0.04 0 0.05 0.01 

Angle collision Fatality 0.67 0.01 0.17 0.06 0.04 0.05 0.01 

Sideswipe collision Fatality 0.42 0.08 0.36 0.03 0.06 0.04 0 

Rear-end collision Fatality 0.8 0.01 0.1 0.02 0.02 0.04 0.02 

Hit pedestrian Fatality 0 0 0 0 0 0 1 

Hit parked or stationary 

vehicle 

Fatality 0.59 0 0.12 0 0.08 0.2 0 

Hit stopped vehicle Fatality 0 0 0 0 0 0 1 

Hit obstacle in 

carriageway 

Fatality 0 0 0 0 0 0 1 

Run-off-the-road Fatality 0 0 0 0 0 0 1 

Sudden Braking Fatality 0 0 0 0 0 0 1 

Falling from the vehicle Fatality 0 0 0 0 0 0 1 

Head-on collision Injury 0.73 0.01 0.06 0.08 0.02 0.02 0.08 

Angle collision Injury 0.82 0.01 0.06 0.07 0.01 0.01 0.02 

Sideswipe collision Injury 0.75 0.02 0.09 0.07 0.03 0.02 0.02 

Rear-end collision Injury 0.73 0 0.07 0.08 0.04 0.05 0.03 
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Crash type Crash 

severity  

Car Bus Truck PTW Other 

vehicles 

Multiple 

vehicles 

No 

opponent  

Hit pedestrian Injury 0 0 0 0 0 0 1 

Hit parked or stationary 

vehicle 

Injury 0.83 0.01 0.09 0.01 0.02 0.04 0.01 

Hit stopped vehicle Injury 0 0 0 0 0 0 1 

Hit obstacle in 

carriageway 

Injury 0 0 0 0 0 0 1 

Run-off-the-road Injury 0 0 0 0 0 0 1 

Sudden Braking Injury 0 0 0 0 0 0 1 

Falling from the vehicle Injury 0 0 0 0 0 0 1 

 805 

 806 


