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Abstract The class of majorization-minimization algorithms is based on the
principle of successively minimizing upper bounds of the objective function.
Each upper bound, or surrogate function, is locally tight at the current esti-
mate, and each minimization step decreases the value of the objective function.
We present a majorization-minimization approach based on a novel convex-
nonconvex upper bounding strategy for the solution of a certain class of non-
convex nonsmooth optimization problems. We propose an efficient algorithm
for minimizing the (convex) surrogate function based on the alternating di-
rection method of multipliers. A preliminary convergence analysis for the pro-
posed approach is provided. Numerical experiments show the effectiveness of
the proposed method for the solution of nonconvex nonsmooth minimization
problems.
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1 Introduction

This paper is concerned with the computation of approximate solutionsx∗ ∈ Rn
of nonconvex nonsmooth minimization problems of the form

arg min
x∈Rn

J (x), J (x) :=
1

2
‖Ax− b‖22 +

s∑
i=1

µiφ ((Lx)i; ai) , (1)

where ‖v‖2 and vi denote the `2 norm and the i-th element of a vector v,
respectively, b ∈ Rm is the vector of observed data, µi > 0, i = 1, . . . , s,
represent the adaptive counterpart of the classical regularization parameter
and control the trade-off between fidelity to the observations and regularity in
the solutions x∗ of (1), A ∈ Rm×n and L ∈ Rs×n can be either the identity
operator (m = n and/or s = n) or generic linear operators. The so-called
penalty or potential functions φ(·; ai) : R → R are nonconvex nonsmooth
functions parameterized by the scalar parameters ai > 0 which control the
degree of nonconvexity of φ(·; ai) and will be referred to as the concavity
parameters. The aim/effect of using such nonconvex penalty functions is to
promote sparsity of the vector Lx∗ in the solutions of (1). The high flexibility
of model (1) provided by the adaptive parameters µi, ai can be reduced to a
unique scalar value for µ and a if not strictly required.

The general minimization problem (1) encompasses a wide variety of prob-
lems that have been extensively studied in many different research areas, in-
cluding numerical linear algebra [5, 50], image restoration [29, 46], pattern
recognition [19, 33], and compressed sensing [8, 20]. Different choices of the
linear operators A and L yield a variety of popular models that have been
successfully used in many research and application fields. For instance, model
(1) with A ∈ Rm×n, m < n, and L the identity operator can be used to com-
pute sparse solutions of undetermined linear systems; when A is the identity
operator and L is a linear operator representing discrete finite difference ap-
proximations of first- or second-order derivatives, model (1) can be used for
denoising signals or images corrupted by additive Gaussian noise; when A is
a sampling operator, model (1) can be applied for compressed sensing.

The functional J (x) in (1) is given by the sum of a convex smooth (quadratic)
fidelity term and a nonconvex nonsmooth regularization term. Hence, J (x) is
surely nonsmooth but can be convex or nonconvex depending on A, L, µi and
ai. In fact, in case that A has full column rank, i.e. ATA is invertible, the
quadratic fidelity term is strongly convex and its positive second-order deriva-
tives holds the potential for compensating the negative second-order deriva-
tives in the regularization term. The idea of constructing and then optimizing
convex functionals containing nonconvex (sparsity-promoting) regularization
terms, referred to as Convex-NonConvex (CNC) strategy, was first introduced
by Blake and Zisserman [6] in the context of Graduated Non Convexity (GNC)
and by Nikolova [37] for the denoising of binary images. The CNC approach
has very recently been explored by Selesnick and others for different purposes,
see [12, 18, 30, 32, 41, 46, 47] for more details. The attractiveness of such CNC
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approach resides in its ability to promote sparsity more strongly than using
convex regularization while at the same time maintaining the convexity of
the optimization problem, so that well-known reliable convex minimization
approaches can be used to compute the (unique) solution.

A first contribution of this paper is the derivation of conditions that ensure
the functional J in problem (1) is convex – despite the regularization term
being nonconvex. However, these conditions can be quite restrictive. Hence,
in order to strongly promote sparsity, we are still interested in solving prob-
lem (1) when J is not convex. As a second contribution we thus allow J to
be nonconvex, so that the regularizer can better approximate the `0 “norm”,
which is known to strongly promote sparsity. In this case, the CNC approach
is not applied directly as in [12,18,30,32,41,46,47]. In fact, we present an iter-
ative approach to solve problem (1) when the functional J is not convex, that
leverages the CNC strategy at each iteration. In particular, to obtain an ap-
proximate solution of problem (1) we use the Majorization-Minimization (MM)
procedure, which consists in replacing the original problem (1) by a sequence
of simpler problems. Specifically, the k-th iteration of the standard MM ap-
proach applied to the solution of (1) consists of two main computational steps:
a majorization step which generates a so-called surrogate function majorizing
(i.e., upper bounding) the objective function in (1), and a minimization step
which computes the minimizer of this surrogate function:

S1) Generate a surrogate function S(x, x(k)) : Rn→R, majorizing J (x) at x(k)

S2) Compute the next iterate by solving

x(k+1) = arg min
x∈Rn

S(x, x(k)) (2)

We propose a non-standard class of surrogate functions with the aim that
they more accurately approximate the objective function J as compared to
the standard approaches. Consequently, we expect to obtain faster conver-
gence and more robust convergence to the global minimizer. Commonly used
majorizers proposed in literature include quadratic [17, 42] and piecewise lin-
ear [2, 9] functions, which we will refer to as Q-MM and L-MM, respectively.
In contrast to these majorizers (which are convex), in this paper we propose to
majorize the regularization term by a nonconvex function, with the constraint
that the total surrogate function S(x, x(k)) in (2) be strictly convex in x. We
will refer to this method as Convex-NonConvex Majorization-Minimization
(CNC-MM).

Summarizing, the key contributions of this paper are as follows:

a) Derivation of sufficient conditions for strict convexity of the cost functional
J (x) in (1) which generalize results presented in [47], [46], [41];

b) Proposal of a novel CNC-MM strategy applied to the solution of nonconvex
nonsmooth optimization problems of the form (1);

c) Analysis of convergence of the proposed CNC-MM approach applied to (1);
d) Proposal of an efficient algorithm for minimizing the (convex) surrogate

function based on the Alternating Direction Method of Multipliers (ADMM).
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In particular, we address the case where A in problem (1) has full column
rank, i.e., ATA is invertible. The more general case (which includes compressed
sensing, ill-conditioned deconvolution, super-resolution, and tomography) will
be addressed in future work and will build upon the results herein for the
full column rank case. The case considered in this paper has applications in
denoising using total variation [30,46], wavelets [18], and the short-time Fourier
transform [12].

This paper is organized as follows. In Section 2 we formally define the
class of nonconvex nonsmooth sparsity-promoting penalty functions used in
the considered model (1) and then give some popular examples. In Section 3
we derive sufficient conditions for strict convexity of model (1). In Section 4
and Section 5 we illustrate in detail how the majorization and minimization
steps are carried out in our CNC-MM proposal, respectively. More precisely,
in Section 4 we outline the proposed strategy for generating CNC surrogate
functions majorizing the nonconvex nonsmooth original functional, whereas in
Section 5 we present an efficient algorithm for minimizing the CNC surrogate
functions based on the ADMM. Convergence analysis is carried out in Section
6. Numerical examples evaluating the performance of the proposed approach
are presented in Section 7 and, finally, conclusions are drawn in Section 8.

1.1 Related work

The proposed approach builds upon and complements other work to solve
nonconvex problems of the form (1), in particular majorization-minimization
(MM) [21,28] and graduated nonconvexity (GNC) [6,38,40].

Other types of algorithms aiming to solve nonsmooth linear inverse prob-
lems of this form include iteratively reweighted least squares (IRLS) [17], it-
eratively reweighted `1 (IRL1) [2, 9], FOCUSS-type algorithms [35, 42]. Algo-
rithms developed for the nonconvex case include [13,48], and [10,11], and new
proximal algorithms [14,43].

Since the proposed approach calls for the solution of a sequence of convex
problems, some convex optimizations algorithm can be utilized. A few such
algorithms are the iterative shrinkage/thresholding algorithm (ISTA/FISTA)
[5, 22], proximal methods [4, 15,16], and the ADMM [1,7, 25].

2 Nonconvex penalty functions

We denote the sets of non-negative and positive real numbers as R+ := { t ∈
R : t > 0} and R∗+ :={ t ∈ R : t > 0}, respectively. We consider parameterized
penalty functions φ(·; a) : R → R such that for any value of the parameter
a ∈ R∗+ the following assumptions are satisfied:

A1) φ(·; a) ∈ C0(R) (φ continuous in t on R)

A2) φ(−t; a) = φ(t; a) ∀ t ∈ R∗+ (φ even in t)
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A3) φ(·; a) ∈ C2(R∗+) (φ twice continuously differentiable in t on R∗+)

A4) φ′ (t; a) > 0 ∀ t ∈ R∗+ (φ strictly increasing in t on R∗+)

A5) φ′′(t; a) 6 0 ∀ t ∈ R∗+ (φ concave in t on R∗+)

*A6) sup
t∈R∗+

φ′(t; a) <+∞, inf
t∈R∗+

φ′′(t; a) >−∞ (φ′/φ′′ bounded from above/below)

A6) φ(0; a) = 0, sup
t∈R∗+

φ′(t; a) = 1, inf
t∈R∗+

φ′′(t; a) = −a (φ, φ′, φ′′ normalization)

We denoted by φ′(t; a) and φ′′(t; a) the first-order and second-order deriva-
tives of φ with respect to the variable t, respectively, while in the following
φ′a(t; a) indicates the mixed second-order derivative with respect to t and the
parameter a. Assumptions A1)–A5) are quite standard and encompass a wide
class of nonsmooth nonconvex sparsity-promoting penalty functions [23, 24].
Assumption *A6), which corresponds to imposing boundedness of first-order
and second-order derivatives of the penalty function φ(·; a), is mandatory when
constructing CNC functionals (see, e.g., [12,30,41,46,47]). In fact, if the second-
order derivative of the penalty function goes to−∞ at any point in the domain,
there is no possibility to compensate it by the positive but bounded second-
order derivatives of the convex quadratic fidelity term. In particular, we notice
that the popular `p quasi-norm with 0 < p < 1, namely φ(t; p) = |t|p, even if it
has been successfully applied, e.g., in image restoration [31], satisfies assump-
tions A1)–A5) but not *A6), since φ′(0+; p) = +∞, φ′′(0+; p) = −∞. As a
consequence, such a penalty function does not allow for applying the CNC
strategy. Efficient strategies for the solution of (1) where the `p quasi-norm is
used can be found in [29,44].

We notice that, without loss of generality, assumption *A6) can be replaced
with A6) which can be easily obtained by scaling and normalization. Assump-
tion A6) represents a useful normalization of the penalty functions which has
been used, e.g., in [12, 18]. In particular, from the assumption on φ′′(t; a) it
follows that the parameter a represents a scalar indicator of the “degree of
nonconvexity” of the penalty function φ, thus justifying the name concavity
parameter.

The following assumptions A7)–A9) are proposed in this paper to allow
for constructing CNC majorizing functions, as it will be illustrated in detail
in Section 4.1:

A7) φ′(t; ·), φ′′(t; ·) ∈ C1(R∗+) ∀ t ∈ R∗+ (φ′, φ′′ differentiable in a on R∗+)

A8) φ′a(t; a) < 0 ∀ t ∈ R∗+ (φ′ non-increasing in a on R∗+)

A9)
φ′′(t; a1)

φ′(t; a1)
>
φ′′(t; a2)

φ′(t; a2)
∀ t ∈ R∗+ , ∀ a1 < a2

We notice that A9) represents a monotonic relationship between the parameter
a and the ratio between the first-order φ′ and second-order φ′′ derivatives.

Finally, we notice that any penalty function satisfying assumptions A1)–
A9) tends to the absolute value function f(t) = |t| when a approaches zero.
Hence, we set:

φ(t; 0) := |t| . (3)
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φlog φrat φatan

φ
log(1+a|t|)

a
|t|

1+a|t|/2
atan

(
1+2a|t|√

3

)
−π

6

a
√
3/2

φ′ sign(t)
1+a|t|

sign(t)

(1+a|t|/2)2
sign(t)

1+a|t|+a2t2

φ′′ − a
(1+a|t|)2 − a

(1+a|t|/2)3 − a (1+2a|t|)
(1+a|t|+a2t2)2

φ′′′ 2a2sign(t)

(1+a|t|)3
3a2sign(t)

2(1+a|t|/2)4
6a3t(1+a|t|)

(1+a|t|+a2t2)3

lim
t→±∞

φ +∞ 2
a

2
a
π
√
3

9

Table 1 Examples of penalty functions satisfying assumptions A1)–A9).

According to (3), the `1-norm penalty is recovered as a special case of the
parameterized penalty function φ(·; a) when a = 0.

In Table 1 we report three examples of (sparsity-promoting) penalty func-
tions, referred to as φlog, φrat, φatan, which satisfy all the above assumptions
A1)–A9) and will be used in the paper. These functions have been considered
variously in e.g. [9, 24, 39]. In Table 1 we also report the associated first, sec-
ond and third-order derivatives. In Figure 1 we show the plots of the penalty
functions φlog, φrat, φatan with a varying value of the concavity parameter
(a = 2, 3, 4).

−4.0 0 +4.0
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+0.5

+1.0
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t
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 rat
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Fig. 1 Plots of the penalty functions φlog(t; a), φrat(t; a), φatan(t; a) defined in Table 1, for
different values of the concavity parameter a: a = 2 (left), a = 3 (center), a = 4 (right).

3 Convexity conditions for J (x)

In this section, we investigate convexity of functional J (x) in (1). More pre-
cisely, we seek to find sufficient conditions on the linear operators A ∈ Rm×n
and L ∈ Rs×n and on the parameters µi ∈ R∗+ and ai ∈ R∗+, i = 1, . . . , s, to
ensure that J (x) is strictly convex in its entire domain x ∈ Rn. We notice
that, in practice, the linear operators A and L are generally prescribed by the
specific application considered for model (1), so that the derived convexity
conditions can be regarded as constraints on the free parameters µi and ai.

The aim of the investigation is twofold. First, we could impose constraints
on the parameters µi and ai such that J (x) is strictly convex. This would allow
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us to directly apply the CNC approach to model (1). This will be considered
in the experimental section, but is not the main contribution of this paper.
A more significant benefit is obtained by pushing the functional J (x) beyond
the derived convexity limits, and, consequently, by applying a CNC-MM opti-
mization upper bounding it by a sequence of surrogate functions which instead
satisfy constraints on the penalty parameters and are thus strictly convex. This
represents the main goal of this paper.

Let us first introduce two useful lemmas: the first one follows easily and
does not need a demonstration, whereas the proof of the latter can be found
in [41].

Lemma 1 Let Z ∈ Rd1×d1 , Y ∈ Rd2×d2 , X ∈ Rd2×d1 , d1 6 d2, be matrices
such that Z = XTY X. Then, a necessary and sufficient condition for Z being
symmetric positive definite is that X has full column rank and Y is symmetric
positive definite.

Lemma 2 Let φ ( · ; a) : R→R be a function satisfying assumptions A1)–A6)
in Section 2 with a ∈ R∗+ and let u ( · ; a) : R→ R be the function defined by

u(t; a) := φ(t; a)− |t| . (4)

Then, the following statements hold:

1) u(·; a) ∈ C2(R) ∀ a ∈ R∗+ ,

2) u′′(t; a) ∈ [−a , 0 ] ∀ a ∈ R∗+, ∀t ∈ R .

Based on the above lemmas, in the proposition below we give sufficient
conditions for convexity of J (x).

Proposition 1 Let J : Rn → R be the functional defined in (1), with φ : R→ R
a penalty function satisfying assumptions A1)–A6) in Section 2, A ∈ Rm×n,
L ∈ Rs×n and µi ∈ R∗+, ai ∈ R∗+ ∀ i ∈ {1, . . . , s}. Then, J is strictly convex
if the following two conditions both hold:

1) ker
{
ATA

}
= {0} , (5)

2) µiai < ρ(A,L) ∀ i ∈ {1, . . . , s} , (6)

where the positive scalar ρ, depending on matrices A and L, is defined as:

ρ(A,L) :=
σ2
A,min

σ2
L,max

, (7)

with σA,min and σL,max denoting the minimum singular value of matrix A and
the maximum singular value of matrix L, respectively.
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The proof is provided in the Appendix.

Our proposal requires the knowledge of the values of σA,min and σL,max for
computing the scalar value ρ in (7), which, in many popular applications, can
be derived by explicit formulas. This is the case for a few interesting models
of the form (1) that make use of the following well-know matrices A and L:

– A = In, L = D1, D2, where D1, D2 represent the dicretization of the first-
or second- order derivatives, for example signal/image denoising,

– A = In, L := W where W represents an orthogonal basis or an over-
complete dictionary, which satisfies the tight frame condition, i.e., LTL =
rIn, r > 0, for signal/image reconstruction (analysis approach),

– A := W−1, L = In for the sparse reconstruction (synthesis approach).

In a general case where no explicit expressions for σA,min and σL,max are
available, efficient numerical procedures can be used for their accurate estima-
tion [3].

In case that the functional J (x) in the original optimization problem (1)
satisfies both conditions 1) and 2) in Proposition 1, i.e. J (x) is strictly convex,
then there is no reason to apply the proposed CNC-MM approach. In fact, in
this convex case at the first iteration the CNC-MM algorithm would generate a
surrogate function which is J (x) itself, thus reducing the CNC-MM procedure
to a single iteration yielding the global minimizer; this will be clarified later
in Section 4.2.

Usefulness of the proposed CNC-MM strategy is for solving optimization
problems of the form (1) when the functional J (x) satisfies (5) but violates
the convexity limits in (6). Hence, in the rest of the paper we will assume
that functional J (x) in the original problem (1) satisfies the following two
hypothesis:

H1) ker
{
ATA

}
= {0} , (8)

H2) µiai = τ ρ(A,L) ∀ i ∈ {1, . . . , s} , τ ∈ ] 1 ,+∞ [ . (9)

Hypotheses H1) is necessary for allowing the proposed CNC-MM approach to
generate CNC (strictly convex) surrogate functions according to conditions 1)
and 2) in Proposition 1. Hypotheses H2) formalizes the fact that J (x) must be
beyond the convexity limits, such that the CNC-MM approach can be usefully
applied. In particular, since there is no a priori reason to impose different
degrees of nonconvexity for the s penalty terms in the regularizer of J (x), a
unique scalar coefficient τ > 1 is used which simultaneously sets the degree of
concavity of all the regularization terms.

4 The CNC-MM algorithm: Majorization by CNC surrogates

In this section, we illustrate in detail the majorization step of the proposed
CNC-MM approach. More precisely, we outline the strategy used at any it-
eration k of the CNC-MM algorithm for generating a CNC (strictly convex)



Title Suppressed Due to Excessive Length 9

surrogate function S(x, x(k)) majorizing the nonconvex nonsmooth functional
J (x) in (1) at the current iterate x(k). Provided that it is not necessary to
majorize the quadratic strictly convex (A has full column rank) fidelity term
of J (x), and that the nonconvex regularization term consists of the sum of s
occurrences of the same nonconvex φ function, majorization of J (x) reduces to
majorization of the penalty function φ. Hence, in subsection 4.1 we illustrate
how to majorize a nonconvex nonsmooth penalty function φ satisfying the
assumptions outlined in Section 2 by another nonconvex nonsmooth (surro-
gate) function having a smaller degree of concavity. Then, in Subsection 4.2 we
show how to use these results, together with the convexity conditions derived
in Section 3, in order to construct a CNC majorizer of the entire functional
J (x).

4.1 Majorization of nonconvex penalty functions

In the following Definition 1 we formally introduce the concept of tangent ma-
jorant function [27], [26]. Then, in Proposition 2 we recall some known results
about quadratic and piecewise linear majorization, respectively. In Proposition
3 we present a novel nonconvex majorization procedure for nonconvex penalty
functions satisfying assumptions A1)–A9) in Section 2.

Definition 1 Let F(x) : Rn → R be a continuous not necessarily smooth
function. Then the function M(x, v) : Rn × Rn → R is said to be a tangent
majorant for F(x) at any v ∈ Rn if and only if all the following conditions
hold:

1. M(v, v) = F(v) ∀ v ∈ Rn ,
2. ∇xM(v, v) = ∇xF(v) ∀ v ∈ Rn,
3. M(x, v) > F(x) ∀ v ∈ Rn , ∀x ∈ Rn ,

where ∇x denotes the ordinary gradient operator for majorization points v
where the functions are smooth, and the set of all possible directional deriva-
tives for singular points.

Proposition 2 Let φ ( · ; a) :R→R be a function satisfying assumptions A1)–A6)
in Section 2 with given a ∈ R∗+. Then, the function q( · , · ; a) : R × R→ R
defined by

q(t, v; a) := wq
t2

2
+ cq, with wq :=

1

v
φ′(v; a), cq := φ(v; a)− v

2
φ′(v; a),

(10)
is a (quadratic, strictly convex) tangent majorant for φ ( · ; a) at any v ∈
R \ {0}.

The function l( · , · ; a) : R× R→ R defined by

l(t, v; a) := wl |t| + cl, with wl := φ′(|v|; a), cl := φ(v; a)−v φ′(v; a), (11)
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φlog φrat φatan

wq
1

|v|(1 + a|v|)
1

|v|(1 + a|v|/2)2
1

|v|(1 + a|v|+ a2v2)

wl
1

1 + a|v|
1

(1 + a|v|/2)2
1

1 + a|v|+ a2v2

wm
1 + am|v|
1 + a|v|

(
2 + am|v|
2 + a|v|

)2 1 + am|v|+ a2mv
2

1 + a|v|+ a2v2

Table 2 Explicit expressions for the weights wq , wl, wm associated with quadratic, piece-
wise linear and nonconvex majorization, respectively, of penalty functions φlog, φrat, φatan
defined in Table 1.

is a (piecewise linear, convex, nonsmooth) tangent majorant for φ ( · ; a) at any
v ∈ R.

Proposition 3 Let φ ( · ; a) :R→R be a function satisfying assumptions A1)–A9)
in Section 2 with given a ∈ R∗+. Then, any function m( · , · ; am) : R× R→ R
belonging to the am-parameterized family defined by

m(t, v; am) := wm φ(t; am) + cm , am∈ ] 0, a ] , (12)

with wm :=
φ′(v; a)

φ′(v; am)
, cm := φ(v; a)− wm φ(v; am) , (13)

is a (nonconvex nonsmooth) tangent majorant for φ ( · ; a) at any v ∈ R, that
is:

m(v, v; am) = φ(v; a) ∀ am∈ ]0, a], ∀ v ∈ R (14)

mt(v, v; am) = φ′(v; a) ∀ am∈ ]0, a], ∀ v ∈ R \ {0} (15)

mt(0
±, 0; am) = φ′(0±; a) ∀ am∈ ]0, a], (16)

m(t, v; am) > φ(t; a) ∀ am∈ ]0, a], ∀ v ∈ R, ∀ t ∈ R (17)

The proof is provided in the Appendix.

In Table 2 we report explicit formulas for the computation of weights wq,
wl, wm associated with quadratic, piecewise linear and nonconvex majoriza-
tion, respectively, of the penalty functions φlog, φrat, φatan defined in Table
1.

In Figure 2 we depict the majorants at a given abscissa v = 0.5 of the
nonconvex function φlog(t; a) with parameter value a = 2.5. In particular, in
Figure 2(left) we show the unique convex quadratic majorant q(t, v) calculated
as in (10), the unique convex piecewise linear majorant l(t, v) defined in (11),
and one among the infinitely many nonconvex majorants m(t, v; am) given in
(12), namely the one obtained by using am = 1.0 < a. It can be noticed how
the nonconvex majorant approximates the function φlog better than both the
linear and the quadratic majorants. In Figure 2(right) we report three different
nonconvex majorants obtained by using am = 0.5, 1.0, 1.5, respectively.
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Fig. 2 Majorants at v = 0.5 of the nonconvex function φlog(t; a). Left: quadratic, piecewise
linear and nonconvex majorants. Right: three nonconvex majorants with different value of
the parameter am < a.

We end this subsection by reporting a corollary of Proposition 3 that will
be useful when formalizing CNC majorization of the entire functional J (x).

Corollary 1 Let φ ( · ; a) :R→R be a function satisfying assumptions A1)–A9)
in Section 2. Then, for any a ∈ R∗+ and v ∈ R, to be considered constant pa-
rameters, the majorization weight function wm(am; a, v) : R∗+ → R, considered
as function of the independent variable am, and defined in (13) has the follow-
ing properties:

wm(a; a, v) = 1 , wm(am; a, v) > 0 ∀ am ∈ R∗+ ,

wm(·; a, v) ∈ C1(R∗+) , w′m(am; a, v) > 0 ∀ am ∈ R∗+ .
(18)

Proof By substituting a for am in (13), it is clear that wm(a; a, v) = 1. The
second property in (18), namely wm(am; a, v) > 0, follows directly from as-
sumption A4) in Section 2. Then, we notice that the majorization weight
defined in (13), when regarded as a function wm(am; a, v) of the parameter
am, is differentiable in am due to assumption A7) and its first-order derivative
w′m(am; a, v) is as follows:

w′m(am; a, v) = − φ′(v; a)
φ′am(v; am)(
φ′(v; am)

)2 . (19)

Due to assumptions A4) and A8), the first-order derivative in (19) is positive
for any am ∈ R∗+, thus concluding the proof.

4.2 Majorization of J (x)

At each iteration k of the MM approach formalized in (2) and applied to the
solution of the considered problem (1), the surrogate function S(x, x(k)) to be
minimized for computing the next iterate x(k+1) is generated by independently
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majorizing all the occurrences of the penalty functions φ(·; ai), i = 1, . . . , s, in
the regularization term of the original functional J (x) in (1). More precisely,
based on the results presented in the previous section, the surrogate functions
Sq(x, x

(k)), Sl(x, x
(k)), Sm(x, x(k)) obtained by using quadratic, piecewise lin-

ear and the proposed nonconvex majorization of φ(·; ai) according to (10),
(11), (12), respectively, take the forms:

Sq(x, x
(k)) =

1

2
‖Ax− b‖22 +

s∑
i=1

[
µi w

(k)
q,i

(Lx)2i
2

]
+ C(k)

q , (20)

Sl(x, x
(k)) =

1

2
‖Ax− b‖22 +

s∑
i=1

[
µi w

(k)
l,i |(Lx)i|

]
+ C

(k)
l , (21)

Sm(x, x(k)) =
1

2
‖Ax− b‖22 +

s∑
i=1

[
µi w

(k)
m,i φ

(
(Lx)i; a

(k)
m,i

) ]
+ C(k)

m ,(22)

where C
(k)
q , C

(k)
l , C

(k)
m are constants not depending on x and the majorization

weights, following (10), (11), (13), are as follows:

w
(k)
q,i =

φ′(v
(k)
i ; ai)

v
(k)
i

, w
(k)
l,i = φ′(|v(k)i |; ai) , w

(k)
m,i =

φ′(v
(k)
i ; ai)

φ′(v
(k)
i ; a

(k)
m,i)

, (23)

where v
(k)
i := (Lx(k))i . (24)

Results in Proposition 2 guarantee that the surrogate functions Sq(x, x
(k))

and Sl(x, x
(k)) in (20)–(21) are tangent majorants at x(k) of the original func-

tional J (x) in (1). By introducing the three s × s diagonal matrices M and

W
(k)
q ,W

(k)
l having on the main diagonal the regularization parameters and

the quadratic and piecewise linear majorization weights, that is

M := diag(µ1, . . . , µs) , (25)

W
(k)
q := diag(w

(k)
q,1 , . . . , w

(k)
q,s ) , W

(k)
l := diag(w

(k)
l,1 , . . . , w

(k)
l,s ) ,(26)

the surrogate functions Sq(x, x
(k)) and Sl(x, x

(k)) in (20)–(21) can be rewritten
in the following more compact and more popular forms:

Sq(x, x
(k)) =

1

2
‖Ax− b‖22 +

1

2

∥∥M1/2W (k)
q

1/2
Lx
∥∥2
2

+ C(k)
q , (27)

Sl(x, x
(k)) =

1

2
‖Ax− b‖22 +

∥∥MW
(k)
l Lx

∥∥
1

+ C
(k)
l . (28)

The surrogate function forms in (27)–(28) motivate the names iterated reweighted
least squares (or IRL2) and iterated reweighted least absolute deviations (or
IRL1), alternatively used for the MM approach with quadratic and piece-
wise linear majorization, respectively. Since the regularization parameters µi
are positive by assumption and the majorization weights in (23) are positive

by construction, the diagonal matrices M,W
(k)
q ,W

(k)
l in (25)–(26) are positive
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definite. Therefore, under the (mild) assumption that ker{ATA}∩ ker{LTL}={0},
the surrogate functions Sq(x, x

(k)) and Sl(x, x
(k)) in (27)–(28) are strictly con-

vex and can be reliably minimized at any iteration of the MM approach.

For what concerns the proposed nonconvex majorization strategy, Proposition 3
guarantees that Sm(x, x(k)) in (22) is a tangent majorant at x(k) of the original
functional J (x) in (1) provided that the penalty function φ satisfies assump-

tions A1)–A9) outlined in Section 2 and that the concavity parameters a
(k)
m,i

in (22) are chosen so as to satisfy the following constraints:

a
(k)
m,i ∈ ] 0, ai ] ∀ i ∈ {1, . . . , s} , (29)

where ai are the predefined concavity parameters in the original cost functional
J (x) in (1). However, satisfying conditions (29) does not guarantee that the
surrogate function Sm(x, x(k)) is convex. In fact, Sm(x, x(k)) in (22) has the
same form of functional J (x) in (1), for which convexity conditions are derived
in Section 3. In particular, based on Proposition 1, the surrogate function
Sm(x, x(k)) in (22) is strictly convex if the following two conditions are both
satisfied: {

ker{ATA} = {0} ,

µi w
(k)
m,i a

(k)
m,i < ρ(A,L) ∀ i ∈ {1, . . . , s} ,

(30)

where the positive scalar ρ(A,L) is defined in (7), Proposition 1. The first
condition in (30) is satisfied since it coincides with the first hypotheses H1)
in (8) on the original functional J (x). The second condition in (30) is more
complex and will be dealt with in the rest of this section.

From the second hypotheses H2) on the original functional J (x) formalized
in (9), we can derive the following expressions for the regularization parameters
µi:

µi =
τ ρ(A,L)

ai
, i ∈ {1, . . . , s} . (31)

Substituting (31) in the second condition of (30), we obtain that the surrogate
function in (22) is strictly convex if:

a
(k)
m,i w

(k)
m,i

(
a
(k)
m,i; ai, v

(k)
i

)
< γi :=

ai
τ
∀ i ∈ {1, . . . , s} . (32)

where, for clarity, we made explicit all the dependencies of the majorization

weights w
(k)
m,i according to their definition in (23)–(24). We remark that the

right-hand sides γi of inequalities (32) are positive scalar constants, while the

left-hand sides are nonlinear functions of the concavity parameters a
(k)
m,i, which

represent the free-parameters we aim to select for constructing a strictly convex
surrogate function, i.e. the unknowns of convexity conditions (32).

In order to solve inequalities in (32), we introduce the following lemma,
where for simplicity of notations we drop the subscripts i and the superscripts
(k).
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Lemma 3 Let a ∈ R∗+, v ∈ R be given constants, let φ ( · ; a) : R→ R be a
function satisfying assumptions A1)–A9) in Section 2 and let %(·; a, v) : R∗+ →
R be the function of the independent variable am defined as:

%(am; a, v) := am wm(am; a, v) , wm(am; a, v) :=
φ′(v; a)

φ′(v; am)
, am > 0 .

(33)
Then, for any a ∈ R∗+, v ∈ R and any γ ∈ R∗+, the constrained (nonlinear)
inequality in the unknown am defined by:

%(am; a, v) < γ , am > 0 , (34)

admits the solution interval

am ∈ ] 0 , %−1(γ; a, v) [ , (35)

where %−1(·; a, v) : R∗+→ R∗+, representing the inverse of function %(·; a, v) in
(33), associates any γ ∈ R∗+ with the (unique positive) solution of the following
nonlinear equation in the unknown am:

am φ
′(v; a) − γ φ′(v; am) = 0 , am > 0 . (36)

Moreover, for any a ∈ R∗+, v ∈ R the function %−1(·; a, v) has the following
property:

γ ∈ ] 0 , a [ =⇒ %−1(γ; a, v) ∈ ] 0 , a [ . (37)

Proof It follows from Corollary 1 that for any a ∈ R∗+, v ∈ R, the function
%(·; a, v) of the independent variable am defined in (33) has the following prop-
erties:

%(0+; a, v) = 0 , %(a; a, v) = a ,

%(·; a, v) ∈ C1(R∗+) , %′(am; a, v) > 0 ∀ am ∈ R∗+ .
(38)

In fact, the first three among the properties in (38) follow directly from defini-
tion (33) and from the first three properties of the majorization weight function
wm(·; a, v) outlined in (18), Corollary 1. Moreover, the first-order derivative
(with respect to am) of %(·; a, v) in (33) is %′(am; a, v)=wm(am; a, v) + amw

′
m(am; a, v).

Since wm, w
′
m > 0 for any am ∈ R∗+ by (18), the last property in (38) follows.

According to (38), the function %(·; a, v) of the independent variable am in (33)
starts from 0 and is continuously differentiable and monotonically increasing
on its entire domain am ∈ R∗+. Hence, %(·; a, v) is bijective, admits inverse
function %−1(·; a, v) : R∗+ → R∗+ and for any γ ∈ R∗+ the solutions of inequality
(34) are given by (35).

We can finally summarize in the following result the conditions for Sm to
be a strictly convex majorant.
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Proposition 4 Let J (x) : Rn → R be the functional defined in (1), with
φ : R → R a penalty function satisfying assumptions A1)–A9) in Section 2.
Then, for any x(k) ∈ Rn, the surrogate function Sm(x, x(k)) defined in (22) is
a tangent majorant of J (x) at x(k) if the following conditions hold:

a
(k)
m,i ∈ ] 0 , ai ] ∀ i ∈ {1, . . . , s} . (39)

Moreover, the surrogate function Sm(x, x(k)) in (22) is a strictly convex tan-
gent majorant of J (x) at x(k) if the following more stringent conditions hold:

a
(k)
m,i ∈ ] 0 , %−1(γi; ai, v

(k)
i ) [ ∀ i ∈ {1, . . . , s} , (40)

where %−1(γi; ai, v
(k)
i ) are given in Proposition (5), the (constant) scalars γi ∈

R∗+ and v
(k)
i ∈ R are defined in (32) and (24), respectively.

Proof Conditions (39) for the surrogate function Sm to be a majorant are
obtained by Proposition 4.4. as derived in (29). By applying Lemma 3 to
inequalities (32), we easily derive the conditions (40) for Sm to be strictly

convex, for any ai ∈ R∗+, v
(k)
i ∈ R, γi ∈ R∗+. Moreover, since τ > 1 by

hypotheses H2) in (9) on J (x), it follows from the definition of γi in (32) that
γi∈ ] 0 , ai [ ∀ i ∈ {1, . . . , s}. Hence, according to statement (37) in Lemma 3,
we have that:

%−1(γi; ai, v
(k)
i ) ∈ ] 0 , ai [ ∀ i ∈ {1, . . . , s} . (41)

It follows from (41) that the intervals defined in (40) are nonempty proper
subsets of the corresponding intervals in (29), that is the strict convexity con-
ditions are more stringent than the majorization conditions.

We can thus conclude that the surrogate function Sm(x, x(k)) in (22) is
a strictly convex tangent majorant at x(k) of the original functional J (x) in

(1) if the concavity parameters a
(k)
m,i are all chosen so as to satisfy conditions

(40). In practice, in order to construct the (strictly convex majorant) surrogate

Sm(x, x(k)), we need to select a specific value â
(k)
m,i inside the intervals (40) for

each concavity parameter a
(k)
m,i. Analogously to what we did in hypothesis H2)

in (9), since there is no a priori reason for imposing different degrees of convex-
ity for the s terms in the regularizer of the surrogate function Sm(x, x(k)) in
(22), we introduce a unique scalar coefficient τ ∈ ]0, 1[ aimed to simultaneously
set the degree of convexity of all the regularization terms in Sm(x, x(k)). In
particular, the specific values are selected as follows:

â
(k)
m,i = %−1( τγi; ai, v

(k)
i ) , i ∈ {1, . . . , s} . (42)
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Proposition 5 Let φlog, φrat, φatan be the penalty functions defined in Table
1. Then, for any a ∈ R∗+, v ∈ R, the function %−1(γ; a, v) in (35) admits the
following explicit expression:

%−1(γ; a, v) =

∣∣∣∣∣γ if v = 0

%−1log(γ; a, v), %−1rat(γ; a, v), %−1atan(γ; a, v) if v 6= 0 , φ = φlog, φrat, φatan
,

(43)
where:

%−1log =
1

|v|

(√
1

4
+ γ|v|(1 + a|v|)− 1

2

)
(44)

%−1rat =
1

3|v|

(
E +

4

E
− 4

)
with


E =

3
√
G+

√
G2 − 64

G = 8 +
27

2
γ|v| (2 + a|v|)2

(45)

%−1atan =
1

3|v|

(
E − 2

E
− 1

)
with


E =

3
√
G+

√
G2 + 8

G =
7

2
+

27

2
γ|v|(1 + a|v|+ a2|v|2)

(46)

Proof First, we notice that in case that v = 0 the equation in (36) leads
to the unique solution am = %−1(γ; a, v) = γ. This follows from the fact that
wm(am, a, 0) = 1 for the penalty functions considered. Replacing into equation
(36) the expression of φ′log, φ′rat, φ

′
atan given in the second row of Table 1, we

obtain, respectively:

φlog : a2m|v| + am − γ (1 + a|v|) = 0

φrat : a3mv
2 + 4 a2m|v| + 4 am − γ (2 + a|v|)2 = 0 , am > 0 .

φatan : a3mv
2 + a2m|v| + am − γ (1 + a|v|+ a2v2) = 0

By applying closed-form formulas for the zeros of quadratic and cubic equa-
tions, respectively, explicit expressions for am in (44), (45), (46) are obtained.

Finally, in case the surrogate function Sm(x, x(k)) is a strictly convex tan-
gent majorant of J (x) at x(k), then its expression in (22), by using (31), (32),
and (42), can be rewritten as follows:

Sm(x, x(k)) =
1

2
‖Ax− b‖22 + τρ(A,L)

s∑
i=1

1

â
(k)
m,i

φ
(
(Lx)i; â

(k)
m,i

)
+C(k)

m . (47)
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5 The CNC-MM algorithm: Minimization by ADMM

In this section, we illustrate the ADMM-based [7] iterative algorithm used
at each iteration k of the proposed CNC-MM approach to compute the new
iterate x(k+1) by minimizing the nonsmooth strictly convex surrogate function
Sm(x, x(k)) defined in (47). More precisely, we aim at solving the following
unconstrained minimization problem:

y∗ = arg min
y∈Rn

{
1

2 τρ
‖Ay − b‖22 +

s∑
i=1

1

ai
φ
(
(Ly)i; ai

) }
, (48)

where in (48) the constant C
(k)
m in (47) has been omitted, the objective function

has been divided by the positive constant τ ρ and, to simplify notations, the
superscripts (k) have been drop and the optimization variable y is used in
place of x.

In order to apply ADMM for the solution of (48), we first resort to the
variable splitting technique [1] and introduce the auxiliary variable d ∈ Rs,
such that problem (48) is reformulated into the following linearly constrained
equivalent form:

{ y∗, d∗} = arg min
y∈Rn

{
1

2 τρ
‖Ay − b‖22 +

s∑
i=1

1

ai
φ(di; ai)

}
s.t. d = Ly .

(49)
The auxiliary variable d is aimed to transfer the terms (Ly)i in (48) out of
the nonconvex nonsmooth penalty functions φ(·; ai). To solve (49), we define
the augmented Lagrangian functional

L(y, d;λ) =
1

2 τρ
‖Ay − b‖22+

s∑
i=1

1

ai
φ(di; ai)−〈λ , d− Ly 〉+

β

2
‖ d− Ly ‖22 ,

(50)
where β > 0 is a scalar penalty parameter and λ ∈ Rs is the vector of Lagrange
multipliers associated with the system of linear constraints d = Ly in (49).
Solving (49) is thus equivalent to seeking for the solutions of the following
saddle-point problem:

Find (y∗, d∗;λ∗) ∈ Rn× Rs× Rs

s.t. L (y∗, d∗;λ) 6 L (y∗, d∗;λ∗) 6 L (y, d;λ∗)

∀ (y, d;λ) ∈ Rn× Rs× Rs . (51)

Given the previously computed (or initialized for j = 0) vectors y(j) and
λ(j), the j-th iteration of the ADMM iterative scheme [7] applied to the so-
lution of (48) or, equivalently, to the saddle-point problem (50)–(51), reads
as:

d(j+1) ← arg min
d∈Rs

L(y(j), d;λ(j)) (52)

y(j+1) ← arg min
y∈Rn

L(y, d(j+1);λ(j)) (53)

λ(j+1) ← λ(j) − β
(
d(j+1) − Ly(j+1)

)
. (54)



18 A. Lanza et al.

In the following we show in detail how to solve the two minimization sub-
problems (52) and (53) for the primal variables d and y, respectively, then we
present the overall CNC-MM algorithm.

Solving the subproblem for d. Given y(j) and λ(j), the minimization
subproblem for the variable d in (52) can be rewritten as follows:

d(j+1) ← arg min
d∈Rs

{
s∑
i=1

[
1

ai
φ(di; ai)

]
−
〈
λ(j), d− Ly(j)

〉
+
β

2

∥∥∥ d− Ly(j) ∥∥∥2
2

}

← arg min
d∈Rs

s∑
i=1

[
1

ai
φ(di; ai) +

β

2

(
di − z(j)i

)2 ]
, (55)

where in (55) the minimized functional is written in component-wise form and
z(j) ∈ Rs denotes the constant (with respect to the variable d) vector defined
as

z(j) := Ly(j) +
1

β
λ(j) . (56)

The minimization in (55) is equivalent to the following s independent scalar
problems:

d
(j+1)
i ← arg min

di∈R

{
1

2

(
di − z(j)i

)2
+

1

aiβ
φ(di; ai)

}
, i = 1, . . . , s .(57)

Recalling that the cost function minimized in (48) is strictly convex by
construction, we would like the ADMM subproblems in (57) also to be strictly
convex. To this purpose, in the first part of Proposition 6 below we give useful
convexity conditions.

In particular, we notice that the cost functions in problems (57) have the

same form as the function f defined in (58), where the constants z
(j)
i , 1/aiβ,

ai and the optimization variables di in (57) correspond to b, µ, a and t in (58),
respectively.

Proposition 6 Let φ ( · ; a) :R→R be a function satisfying assumptions A1)–A6)
in Section 2 and a, µ ∈ R∗+, b ∈ R be given generic constants. Then, the func-
tion f : R→ R defined as

f(t) :=
1

2
(t− b)2 + µφ(t; a) (58)

is strictly convex in the variable t if and only if the following condition holds:

µa < 1 . (59)

In case that (59) holds, the proximity map proxµφ : R→ R of function φ defined
as:

proxµφ(b) := arg min
t∈R

f(t) , b ∈ R , (60)
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is given by

proxµφ(b) =

{
0 if |b| 6 µ

sign(b) t∗ if |b| > µ ,
(61)

where t∗ is the unique solution of the following constrained nonlinear equation:

t + µφ′(t; a) − |b| = 0 , 0< t < |b| . (62)

The proof of convexity condition (59) can be found in [12], whereas the
proximity operator can be found in [47].

According to (59), problems (57) are strictly convex if and only if the
following conditions hold:

1

aiβ
ai < 1 ∀ i ∈ {1, . . . , s} ⇐⇒ β > 1 . (63)

It follows from (63) that all the s problems in (57) are strictly convex if
and only if the ADMM scalar penalty parameter β is greater than one. We
remark that the value of the parameter β only affects the speed of convergence
of the ADMM iterative scheme toward the global minimizer y∗ of (48).

In case that (63) is satisfied, the unique solutions of the strictly convex
problems in (57) can be computed based on the proximity maps introduced in
the second part of Proposition 6. In Proposition 7 below, we report some useful
results which allow for the efficient solution of (62) under suitable assumptions
on the penalty function φ. In particular, according to the result in (66), in case
that φ∈C3(R∗+), φ′′′(t; a) > 0 ∀ t∈ R∗+, the solution t∗i of (62) can be obtained
as the limit point of a (quadratically convergent) Newton-Raphson iteration.

We notice that the previously introduced penalty functions φlog, φrat and
φatan all satisfy the above condition on the third-order derivative, as can be
seen in the fourth row of Table 1, hence the Newton-Raphson procedure can
be applied. However, for these penalty functions the solutions of problems
(57) can be computed even more efficiently by using the closed-form formulas
reported in the second part of Proposition 7. For instance, in case that φ is the
φlog penalty function (which will be considered in the experimental section),
the solutions t∗i of the nonlinear equations in (62) can be determined by means
of the following closed-form formula

t∗i =
1

ai

Ei − 1

2
+

√(
Ei +

1

2

)2

− 1

β

 with Ei =
ai
2
|z(j)i | . (64)

Proposition 7 Let φ ( · ; a) :R→R be a function satisfying assumptions A1)–A6)
in Section 2, let a, µ ∈ R∗+, b ∈ R be given constants satisfying:

µa < 1 , µ < |b| , (65)

and let t∗ denote the unique solution of the nonlinear equation in (62). Then:
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• In case that φ ∈ C3(R∗+), φ′′′(t; a) > 0 ∀ t ∈ R∗+, t∗ can be obtained as
the limit point of the following (quadratically convergent) Newton-Raphson
iterative scheme:

t(0) = |b| , t(k+1) =
t(k)φ′′

(
t(k); a

)
− φ′

(
t(k); a

)
+ |b|/µ

φ′′
(
t(k); a

)
+ 1/µ

. (66)

• In case that φ is one among the penalty functions φlog, φrat, φatan
defined in Table 1, t∗ can be obtained as the unique solution of the following
nonlinear polynomial equations:

φlog : a t2 +(1− a |b|) t +µ− |b| = 0

φrat :
a2

4
t3 +a (1− a

4
|b|) t2 +(1− a |b|) t +µ− |b| = 0

φatan : a2t3 +a (1− a|b|) t2 +(1− a |b|) t +µ− |b| = 0

(67)

under the constraint 0< t < |b| .

Proof Let us define the function g : R∗+ → R as

g(t) := t + µφ′(t; a) − |b| , t > 0 , (68)

such that (62) can be rewritten as follows: g(t) = 0, 0 < t < |b|. It is easy to
demonstrate that the function g in (68) has the following properties:

g ∈ C2(R∗+), g(0+) = µ− |b| < 0, g(|b|) = µφ′(|b|; a) > 0,

g′(t) = 1 + µφ′′(t; a) > 0 ∀ t > 0, g′′(t) = µφ′′′(t; a) > 0 ∀ t > 0 .

Hence, since g(t) is monotonically increasing and convex the Newton-Raphson
iterative scheme applied to the solution of g(t) = 0, with initial guess t(0) = |b|
is guaranteed to converge with quadratic rate toward the unique root t∗ of
g(t) in the interval ] 0, |b| [. The scheme reads as follows:

t(k+1) = t(k) −
g
(
t(k)
)

g′
(
t(k)
) = t(k) −

t(k) + µφ′
(
t(k); a

)
− |b|

1 + µφ′′
(
t(k); a

) , (69)

thus proving (66).
To derive (67), it is sufficient to substitute in the nonlinear equation (62)

the expressions of φ′log, φ′rat, φ
′
atan given in Table 1, thus obtaining, respec-

tively:

φlog : t − |b| + µ
1+a t = 0

φrat : t − |b| + µ
1+a t+a2t2/4 = 0 , 0< t < |b| .

φatan : t − |b| + µ
1+a t+a2t2 = 0

We notice that the denominators of the above fractional terms are positive
numbers. Hence, simple algebraic manipulations yield (67).
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Solving the subproblem for y. Given λ(j) and d(j+1), and recalling the
definition of the augmented Lagrangian functional in (50), the minimization
subproblem for y in (53) can be rewritten as follows:

y(j+1) ← arg min
y∈Rn

{
1

2 τρ
‖Ay − b‖22 +

〈
λ(j), Ly

〉
+
β

2

∥∥∥ d(j+1) − Ly
∥∥∥2
2

}
,

(70)
where constant terms have been omitted. We notice that (70) is a quadratic
minimization problem whose first-order optimality conditions lead to:(

1

τρ β
ATA+ LTL

)
y =

1

τρ β
AT b+ LT

(
d(j+1) − 1

β
λ(j)

)
. (71)

The n × n linear system in (71) is solvable if the coefficient matrix has full
rank, that is if the following condition holds:

ker{ATA} ∩ ker{LTL} = {0} . (72)

Since we are assuming that ker{ATA} = {0} – see hypothesis H1) in (8) – it
follows that (72) holds for any matrix L. Hence, the quadratic cost functional
in (70) is strictly convex and its global minimizer y(j+1) can be obtained by
computing the unique solution of (71).

Provided that the penalty parameter β > 0 is kept fixed during itera-
tions, the coefficient matrix in (71) is symmetric positive definite and does not
change with iterations (neither the inner ADMM iterations, nor the outer MM
iterations). Hence, the linear system in (71) can be solved quite efficiently by
the iterative (preconditioned) Conjugate Gradient method or by computing
the Cholesky factorization once for all, depending on the size of the problem.

Moreover, in case the matrices A and L have a particular structured form,
the linear system can be solved even more efficiently. For example, when ATA
and LTL are circulant matrices, the coefficient matrix in (71) can be diago-
nalized by the discrete Fourier transform (FFT implementation).

The CNC-MM algorithm. To summarize previous results, in Algorithm 1
we report the main computational steps of the overall proposed CNC-MM it-
erative approach.

To compare the performance of our proposal with the popular Q-MM and
L-MM alternative approaches based on the construction of the quadratic and
piecewise linear surrogate functions Sq(x, x

(k)) and Sl(x, x
(k)) defined in (27)–

(28), respectively, we report here some information about their minimization.
For what concerns the minimization of Sq(x, x

(k)) in (27), it reduces to the
solution of the following linear system of normal equations:(

ATA+ LTW (k)
q

1/2
MW (k)

q

1/2
L
)
x = AT b . (73)

Analogously to the linear system in (71), (73) is solvable thanks to hypotheses
H1) in (8) and the coefficient matrix in (73) is symmetric positive definite

due to diagonal matrices M and W
(k)
q being positive definite. However, unlike
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Algorithm 1 CNC-MM approach applied to the solution of problem (1)

inputs: φ : R→ R satisfying A1)–A9) in Section 2

A ∈ Rm×n satisfying H1) in (8) and L ∈ Rs×n ⇒ ρ(A,L) > 0 by (7)

µi, ai > 0 satisfying H2) in (9) with τ > 1

b ∈ Rm (observed data), x(0) ∈ Rn (initial guess)

parameters: 0 < τ < 1 (majorization step, suggested value τ = 0.99)

β > 1 (minimization step, suggested value β = 10)

1: for k = 0, 1, 2, . . . until convergence do

• Majorization step: generate the surrogate Sm(x, x(k)) defined in (47):

2: v(k) ← Lx(k)

3: â
(k)
m,i ← %−1

(
τ ai/ τ ; ai, v

(k)
i

)
, i = 1, . . . , s, with %−1 defined in (43)–(46)

• Minimization step: compute x(k+1) = arg min
x∈Rn

Sm(x, x(k)) by ADMM:

4: y(0) ← x(k), λ(0) ← λ(j+1) if k > 0 (0 if k = 0)

5: for j = 0, 1, 2, . . . until convergence do

6: given y(j), λ(j), compute d(j+1) by (56), (61), (60)

7: given d(j+1), λ(j), compute y(j+1) by solving (71)

8: given y(j+1), d(j+1), λ(j), compute λ(j+1) by (54)

9: end for j

10: x(k+1) ← y(j+1)

11: end for k

output: x(k+1) ∈ Rn (approximate local/global minimizer of J (x))

(71), the coefficient matrix in (73) varies during the MM iterations due to the

majorization weights matrix W
(k)
q and is not diagonalizable by fast transforms

such as Fourier, sine and cosine transforms. Hence, (73) is typically solved by
the iterative CG method.

As far as the piecewise linear surrogate Sl(x, x
(k)) in (28) is concerned,

its minimization can be easily carried out by suitably adapting the ADMM
procedure illustrated above for the minimization of Sm(x, x(k)). In particular,
the minimization of Sl(x, x

(k)) can be rewritten in a form similar to (48) where
the function φ is replaced by the absolute value function. The only significant
difference in the ADMM scheme is in the subproblem for the variable d, which
becomes inherently convex and allows a closed form solution [49] based on a
well known soft thresholding operator.

We finally remark that the suggested values of the input parameters τ and
β are derived from numerical experiments.
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6 Convergence Analysis

In this section we analyze convergence of the proposed CNC-MM approach,
whose main computational steps are given in Algorithm 1, when applied to
the solution of nonsmooth nonconvex optimization problems of the form (1)
under hypothesis H1)–H2) in (8)–(9).

First, we characterize the objective function J (x) in (1) and the surrogate
function Sm(x, x(k)) defined in (47).

Definition 2 A convex (not necessarily differentiable) function f(x) is said
to be δ-strongly convex if and only if there exists a constant δ > 0, called the
modulus of strong convexity of f(x), such that the function f(x) − δ

2 ‖x‖
2
2 is

convex.

Proposition 8 Under hypothesis H1)–H2) in (8)–(9), the objective function
J (x) in (1) and the surrogate function Sm(x, x(k)) in (47) are proper, contin-
uous (hence, lower semi-continuous), bounded from below and coercive func-
tions. Moreover, Sm(x, x(k)) is δ-strongly convex with modulus of strong con-
vexity

δ = σ2
A,min (1− τ ) . (74)

Proof Both J and Sm are clearly proper functions. Moreover, since the penalty
function φ is continuous and bounded from below by zero and the quadratic
fidelity term is coercive, J and Sm are continuous, bounded from below (by
zero) and coercive functions. The proof that Sm is δ-strongly convex with δ
given in (74) is omitted since it can be derived in a very similar way as proof
of Proposition 1.

The following important result on strongly convex functions is shown in
[34,36].

Lemma 4 Let f(x) : Rn → R be a δ-strongly convex function, and x∗ ∈ Rn
be a minimizer of function f(x). Then, the following inequality holds:

δ

2
‖x− x∗‖22 6 f(x) − f(x∗) ∀x ∈ Rn . (75)

Finally, in the following proposition we give convergence results for the
proposed CNC-MM algorithm.

Proposition 9 Let {x(k)}∞k=1 denote the sequence of iterates generated by
the CNC-MM approach in Algorithm 1 applied to the solution of nonconvex
nonsmooth optimization problems of the form (1) under hypothesis H1)–H2)
in (8)–(9). Then, for any initial guess x(0) ∈ Rn the following two statements
both hold:

s1) the sequence
{
J (x(k))

}∞
k=0

is monotonically non-increasing and conver-
gent;
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s2) the sequence {x(k)}∞k=0 has the property

+∞∑
k=0

∥∥x(k+1) − x(k)
∥∥2
2
< +∞ , hence lim

k−→∞

∥∥x(k+1) − x(k)
∥∥2
2

= 0 .

Proof We recall that, at any iteration k > 0 of the CNC-MM algorithm, the
surrogate function Sm(x, x(k)) is a strongly convex tangent majorant of J (x)
at x(k) and the new iterate x(k+1) is the global minimizer of Sm(x, x(k)). Hence,
we can write:

J (x(k+1)) 6 Sm(x(k+1), x(k)) 6 Sm(x(k), x(k)) = J (x(k)) ∀ k > 0 ,

so that the sequence {J (x(k))}∞k=0 is monotonically non-increasing. Proof of
s1) is completed by noting that {J (x(k))}∞k=0 is bounded from below by zero,
hence convergent.

Since Sm(x, x(k)) is δ-strongly convex – see Proposition 8 – we use Lemma
4: inequality (75) with Sm(x, x(k)) in place of f(x) and x(k+1) in place of x∗

reads as:

δ

2

∥∥x− x(k+1)
∥∥2
2
6 Sm(x, x(k)) − Sm(x(k+1), x(k)) ∀x ∈ Rn , ∀ k > 0 .

(76)
Substituting the iterate x(k) for x in (76), we obtain:

δ

2

∥∥x(k) − x(k+1)
∥∥2
2

6 Sm(x(k), x(k)) − Sm(x(k+1), x(k)) (77)

6 J (x(k))− J (x(k+1)) ∀k > 0 , (78)

where (78) comes from Sm(x(k), x(k)) = J (x(k)) and Sm(x(k+1), x(k)) > J (x(k+1)).
Summing the inequalities (77)–(78) over k yields

∞∑
k=0

∥∥x(k+1) − x(k)
∥∥2
2
6

2

δ

∞∑
k=0

[
J (x(k)) − J (x(k+1))

]
(79)

=
2

δ

(
J (x(0)) −����J (x(1))︸ ︷︷ ︸

k=0

+ ����J (x(1)) −����J (x(2))︸ ︷︷ ︸
k=1

+ . . .
)

=
2

δ

(
J (x(0)) − J ∗

)
,(80)

where J ∗ denotes the (finite) limit of the convergent sequence
{
J (x(k))

}∞
k=0

.

Since 0 < δ < +∞ and the sequence
{
J (x(k))

}∞
k=0

is monotonically non-
increasing, then the right-hand side of (80) is a finite non-negative number
and the series on the left-hand side of (79) is convergent. Therefore statement
s2) is proved.



Title Suppressed Due to Excessive Length 25

7 Numerical Examples

In this section we evaluate experimentally the performance of the proposed
CNC-MM approach applied to the solution of nonsmooth nonconvex mini-
mization problems of the form (1) both in terms of speed of convergence and
in terms of quality of the approached limit points. In particular, we are in-
terested in comparing our CNC-MM proposal with the popular Q-MM and
L-MM methods, which represent the more natural competitors.

In the first numerical example we will consider a simple scalar model prob-
lem which allows for a complete control over the cost functional form and
for a closed-form solution of the minimization steps, such that the attention
can be focused on the speed of convergence of the MM outer iterations. In
the second example a less trivial bivariate problem will be considered which
allows to evaluate / compare also the quality of the solutions obtained by the
Q-MM, L-MM and CNC-MM algorithms. Finally, in Example 3 we investi-
gate the benefit of using nonconvex instead of convex variational models for
the restoration of a 1D corrupted signal.

7.1 Example 1

We consider the following simple scalar model problem:

min
x∈R
J (x) , J (x) =

1

2
(x− b)2 + µφlog(x; a) , (81)

with b ∈ R, µ, a ∈ R∗+. Problem (81) is a scalar instance of the n-dimensional
problem (1) with scalar matrices A,L = 1 such that, according to definition
(7), ρ(A,L) = 1. The cost function J (x) in (81) is nonsmooth at x = 0 and,
since condition (5) in Proposition 1 is satisfied, can be convex or nonconvex
depending on the parameters µ and a. In particular, according to condition (6)
in Proposition 1, J (x) is strictly convex (or simply convex) if µa < ρ(A,L) =
1 (or µa 6 1), whereas it is nonconvex for µa > 1.

We consider the parameters setting: b = 1, a = 4, µ = 1.4 ( τ= 5.6),
such that µa = 5.6 > 1 and, hence, J (x) is nonconvex. The function J (x),
depicted in solid red in Figure 3, has the three critical points:

x∗1= 0, x∗2,3 = sign(b)
1

a

a
2
|b| − 1

2
∓

√(
a

2
|b|+ 1

2

)2

− aµ

= { 0.173 . . . , 0.576 . . .} ,

where the closed-form formulas for x∗2,3 derive easily from a suitable adaptation
of (64). We notice that x∗1 is a nonsmooth (global) minimizer of J (x), whereas
x∗2 and x∗3 are a smooth (local) maximizer and a smooth (local) minimizer,
respectively.

We solve problem (81) by applying the Q-MM, L-MM and CNC-MM al-
gorithms, based on the construction/minimization of the surrogate functions
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Fig. 3 Surrogate functions Sq(x, x0), Sl(x, x0), Sm(x, x0) defined in (82)–(84), majorizing
J (x) in (81) at the two different initial guesses x0 = 0.15 (left) and x0 = 0.18 (right).

Sq, Sl and Sm in (20), (21) and (47), respectively, which in this specific scalar
case read as follows:

Sq(x, x
(k)
q ) =

1

2
(x− b)2 + µw(k)

q

x2

2
+ C(k)

q , (82)

Sl(x, x
(k)
l ) =

1

2
(x− b)2 + µw

(k)
l |x| + C

(k)
l , (83)

Sm(x, x(k)m ) =
1

2
(x− b)2 + τρ

1

â
(k)
m

φlog(x; â(k)m ) + C(k)
m , (84)

where the majorization weights w
(k)
q , w

(k)
l in (82)–(83), are given according

to the formulas reported in Table 2 for the penalty function φlog and where

x
(k)
q , x

(k)
l , x

(k)
m denote the kth iterates obtained by the three methods start-

ing from a common initial guess x
(0)
q = x

(0)
l = x

(0)
m = x0. For the CNC-MM

approach, we used a value τ = 0.99.
In this simple scalar example, the global minimizers of the strictly convex

surrogates Sq(x, x
(k)
q ), Sl(x, x

(k)
l ) and Sm(x, x

(k)
m ) defined in (82)–(84) can be

computed by means of simple closed-form formulas.
We applied the three considered approaches starting from two different ini-

tial guesses x0 = 0.15 and x0 = 0.18, since these two choices yield convergence
of the methods toward the two different local minimizers x∗1 and x∗3 of the
function J .

In Figure 3 we show the surrogate functions Sq(x, x0), Sl(x, x0), Sm(x, x0)
constructed and then minimized by the three approaches at their first iteration
for the two initial guesses x0 = 0.15 (on the left) and x0 = 0.18 (on the
right). We notice how in both cases the proposed CNC majorant Sm better
fits the nonconvex nonsmooth objective function J ; this, in principle, holds
the potential for a faster convergence towards the local or global minimizers.

In Figure 4 we show the iterates
(
x
(k)
q ,J (x

(k)
q )
)
,
(
x
(k)
l ,J (x

(k)
l )
)
,
(
x
(k)
m ,J (x

(k)
m )
)

obtained by the three approaches starting from the two initial guesses x0 =
0.15 (top row) and x0 = 0.18 (bottom row). As expected, the different initial
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Fig. 4 Iterates
(
x
(k)
q ,J (x

(k)
q )

)
,
(
x
(k)
l ,J (x

(k)
l )

)
,
(
x
(k)
m ,J (x

(k)
m )

)
obtained by applying MM

to the minimization of the function J (x) in (81) with quadratic, piecewise linear and CNC
majorization, starting from the initial guesses x0 = 0.15 (top row) and x0 = 0.18 (bottom
row).

guesses lead to different minimizers, but we notice that none of all the three
surrogate majorants used in the MM algorithm has the ability to avoid local
minima. However, as expected, by using CNC majorization less iterations are
required to reach the minimums.

To evaluate quantitatively the speed of convergence of the considered meth-
ods, we define the two error sequences:

e(k)x :=
∣∣x(k) − x∗∣∣ , e

(k)
J :=

∣∣J (k) − J ∗
∣∣ , k = 0, 1, 2 . . . , (85)

where x(k) and J (k) := J
(
x(k)

)
denote the iterates and the associated func-

tion values generated by the algorithms, x∗ and J ∗ := J
(
x∗
)

are the limits

of the two sequences x(k) and J (k), which are known thanks to the available
closed-form expressions for the minimizers x∗1 and x∗3 given above. In Figure

5 we show the sequences of error quotients e
(k+1)
x /e

(k)
x and e

(k+1)
J /e

(k)
J ob-

tained by the three algorithms Q-MM, L-MM and CNC-MM when starting
from the two initial guesses x0 = 0.15 (left column) and x0 = 0.18 (right
column), and thus converging towards the minimum points

(
x∗1,J

(
x∗1
))

and(
x∗3,J

(
x∗3
))

. For all the reported plots we stopped the iterations as soon as
the error sequences in (85) drop below a prescribed threshold equal to 10−13.
From the plots shown in the right-most column of Figure 5, we notice that all
the methods converge linearly towards the smooth (local) minimum. However,
CNC-MM exhibits a smaller convergence factor than L-MM and Q-MM, so
that fewer iterations are required to achieve the prescribed error bounds. For
what concerns the nonsmooth (global) minimum, the plots shown in the left-
most column of Figure 5 suggest that Q-MM again converges linearly, whereas
L-MM and CNC-MM converge super-linearly. Actually, in this scalar example
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Fig. 5 Empirical analysis of the asymptotic convergence of Q-MM, L-MM and CNC-MM
approaches applied to the solution of problem (81) starting from the initial guesses x0 = 0.15
(left column) and x0 = 0.18 (right column).

the L-MM and CNC-MM methods achieve the nonsmooth minimizer x∗1 = 0
(up to machine precision) in a finite number of iterations, namely 3 iterations
for L-MM and a unique iteration for CNC-MM.

7.2 Example 2

This example illustrates the minimization of a nonconvex objective function
J : R2 → R. The minimization problem is

min
x∈R2

J (x), J (x) =
1

2
‖Ax− b‖22 + 4φlog(x1; a) + 4φlog(x2; a) , (86)

where x = (x1, x2)T , b = (2.5, 1)T , A = (2, 2; 1,−1), and the concavity param-
eter is a = 2. We identify P (x) = 4φ(x1; a) + 4φ(x2; a) as the penalty function
(which is nonconvex). For this value of a, the objective function J is also
nonconvex. Figure 6 illustrates J in the positive quadrant. The function has a
local minimum at x = (0, 0.622...) and a global minimum at x = (0.679..., 0).

We investigate the minimization of J using the iterative MM process,
which approximates J at each iteration by a surrogate function. In this exam-
ple, we compare the MM process using the piecewise linear surrogate function
Sl and the proposed CNC surrogate function Sm. The surrogate function Sl is
obtained by majorizing the penalty function P by the `1 norm. On the other
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Fig. 6 Example 2. Iterations 5 and 12 of the L-MM and CNC-MM algorithms. In both case,
the nonconvex objective function J (in gray) is majorized by a convex surrogate function.

hand, the surrogate function Sm is obtained by majorizing P by a nonconvex
function. In both cases, the surrogate function is always convex. We initialize
the MM process in both cases with the starting point x(0) = (0.35, 0.7).

Figure 6 illustrates the surrogate functions Sl and Sm at iterations 5 and
12. The CNC surrogate function Sm more closely approximates the objective
function J ; hence, it yields a different sequence of iterates x(k). As shown in
Fig. 6, the MM process using `1 norm majorization leads to a local minimum.
However, MM process using the proposed CNC majorization method leads
to the global minimum. For each case, the history of the iterates is shown in
Fig. 7.

We note that the convergence of the CNC approach to the global minimum
does depend on the starting point x(0). For starting points that are too close
to a local minimum, the CNC approach will converge to it as will the `1 norm
majorization method. However, this examples demonstrates that, due to its
better approximation of the objective function, the CNC approach is more
likely to avoid local minima.
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Iteration history
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Fig. 7 Example 2. History of iterates.
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Fig. 8 Example 3. Original uncorrupted piecewise constant signal (solid black line), noise-
corrupted signal (dotted blue line), restored signals (solid red line) by model (87) with τ̄ = 0,
i.e. by ROF (left: ISNR = 3.30) and with τ̄ = 50 (right: ISNR=7.61).

7.3 Example 3

In this last example we consider a more realistic, higher dimensional applica-
tion of our method, namely the restoration of piecewise constant 1D signals
corrupted by additive white Gaussian noise. The restored signals are obtained
as the minimizers of the following variational model:

min
x∈Rn

J (x) , J (x) =
1

2
‖x− b‖22 + µ

n−1∑
i=1

φlog
(
(Lx)i; a

)
, (87)

with L representing the (forward) finite difference approximation of the first-
order derivative operator with Neumann boundary conditions. Hence, we have
σA,min = 1, σL,max = 2 and, according to (7), ρ = 1/4. We notice that model
(87) represents a generalization of the popular ROF model for signal denoising
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τ̄ 0 0.5 0.99 2.0 25 50 100 200 500 5000
µ · 103 80 120 147 184 456 529 589 631 664 688
ISNR 3.30 4.59 5.08 5.59 7.40 7.61 7.73 7.79 7.81 7.82

Table 3 Example 3. Quality of the restored signals (ISNR) obtained by using the variational
model in (87) with increasing values of the parameter τ̄ .

[45]. In fact, according to property (3) of the penalty function φ( · ; a), (87)
coincides with the ROF model when a = 0. Moreover, according to (9), for
a fixed µ, when a increases τ̄ increases, and the model passes from convex
(0 < τ̄ 6 1) to nonconvex (τ̄ > 1).

We consider the restoration of a piecewise constant binary (0/1) signal of
dimension n = 252 representing a bar-code (of type USS-39) that has been
corrupted by additive zero-mean white Gaussian noise with standard deviation
σ = 0.078. Figure 8 shows the noise-free signal (solid line) and the degraded
signal (dotted-blue line).

The quality of the restored signals is evaluated by the Signal-to-Noise Ratio
(SNR) defined as SNR(x∗, x̄) := 10 log10

(
‖x̄ − E[x̄]‖22 / ‖x∗ − x̄‖22

)
, where

x∗ ∈Rn is the computed estimate of the uncorrupted signal x̄ ∈Rn and E[x̄]
denotes the mean value of x̄. More precisely, the Improved Signal-to-Noise
Ratio (ISNR), defined as ISNR(x∗, x̄, b) := SNR(x∗, x̄)− SNR(b, x̄) , provides
a quantitative measure of the improvement in the quality of the denoised
image: a high ISNR value indicates that x∗ is an accurate approximation of x̄.

For both the ROF and CNC-MM algorithms, we used as initial iterate
x(0) ∈Rn the constant signal with value equal to the mean of the observed
noisy signal b and the iterations are stopped as soon as the two successive
iterates satisfies

‖x(k) − x(k−1)‖2 / ‖x(k−1)‖2 < ε , (88)

where ε > 0 is a user-specified threshold. We used ε = 10−5.

We used a parameter value τ = 0.99 for the CNC-MM majorization step,
such that at any iteration the constructed CNC surrogate is (almost) maxi-
mally tight to the objective functional J (x) in (87). For what concerns the
CNC-MM minimization step by ADMM, we used the parameter values β = 10.
We notice that the chosen value of the penalty parameter β satisfies condition
(63) for convexity of the ADMM subproblems in (57). In particular, experi-
ments demonstrated that faster convergence of the ADMM-based minimiza-
tion step is always obtained for β in the range [5, 40], such that constraint (63)
does not limit the efficiency of the CNC-MM algorithm.

In Table 3 we report the ISNR values associated with the obtained restored
signals for different values of the parameter τ̄ , ranging from the convex case
(τ̄ = 0) to the CNC (0 < τ̄ 6 1) and the nonconvex (τ̄ > 1) cases. We notice
that, according to the definition of τ̄ , there exists an infinite number of pairs
(µ, a = τ̄ ρ/µ) yielding a given τ̄ . Hence, in Table 3 for each considered τ̄ we
report the highest ISNR value achieved by letting µ (and, accordingly, a) vary
and the associated µ.
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We remark that beyond the greatest considered value τ̄ = 5000 the ISNR
improvement is negligible. Results in Table 3 strongly indicate that higher
quality restorations can be achieved by pushing model (87) beyond its convex-
ity limits. This confirms the usefulness of the proposed CNC-MM minimization
approach.

In Figure 8 we show the restoration results obtained for the cases τ̄ = 0, i.e.
ROF (left), and τ̄ = 50 (right) of Table 3. It is well visible how the restored
signal obtained by using the nonconvex model minimized by the proposed
CNC-MM algorithm is a much better approximation of the original piecewise
constant signal.

In the above nonconvex regime, the efficacy of the proposed MM procedure
with CNC surrogate Sm(x, x(k)) (CNC-MM Algorithm 1) is then finally com-
pared with the MM procedure using Sl(x, x

(k)) (L-MM) and Sq(x, x
(k)) (Q-

MM) surrogates. In particular, the ISNR values and the number of outer/inner
iterations for a fixed µ = 0.529 are: ISNR=7.43 for L-MM, with 94/3663
outer/inner iterations, ISNR=7.44 for Q-MM, with 78/16758 outer/inner it-
erations, ISNR=7.61 for CNC-MM, with 8/519 outer/inner iterations.
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Fig. 9 Example 3. Plots providing empirical evidence of numerical convergence of the
proposed CNC-MM minimization algorithm for the case τ̄ = 50 in Table 3.

We conclude this example by presenting a short empirical investigation on
numerical convergence of the proposed CNC-MM minimization algorithm. In
Figure 9 we report two convergence plots obtained by applying the CNC-MM
method to the (nonconvex) case τ̄ = 50 in Table 3. In particular, to better
highlight the convergence behavior, both the outer and the inner (ADMM)
iterations of the CNC-MM algorithm have been stopped according to (88)
with a very small tolerance ε = 10−15. The plots in Figure 9 provide strong
evidence in favor of convergence of the generated iterates sequence as well as
of monotonicity of the sequence of associated function values.

8 Conclusions

We proposed a novel MM strategy for the solution of a certain class of non-
smooth nonconvex optimization problems: the objective function is the sum
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of a strongly convex quadratic (fidelity) term and a nonconvex nonsmooth
sparsity-promoting regularization term. Majorizing the nonconvex regularizer
with a nonconvex surrogate function, designed so that the total surrogate
function is strongly convex, allows for a tight approximation of the objective
function and, hence, for fast convergence and robustness to local minimizers.
A suitable ADMM-based algorithm has been presented for the efficient solu-
tion of the minimization step. In particular, the solution of the linear system,
which represents the most computationally expensive step of Algorithm 1, is
carried out in an efficient way due to the fact that the coefficient matrix does
not change during inner/outer iterations. A preliminary convergence analysis
for the CNC-MM proposal has been provided. Numerical experiments demon-
strate the effectiveness of the proposed approach, when compared with the
IRL2 and IRL1 algorithms.
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Appendix

Proof of Proposition 3.3.

Proof By applying formula (4) in Lemma 2, namely φ(t; a) = u(t; a)+ |t|, after
simple algebraic manipulations the functional J (x) in (1) can be equivalently
rewritten as follows:

J (x) =
1

2
‖Ax‖22 +

s∑
i=1

µiu ((Lx)i; ai)︸ ︷︷ ︸
J1(x)

+
1

2
‖b‖22 − bTAx +

s∑
i=1

µi|(Lx)i|︸ ︷︷ ︸
J2(x)

.

(89)
Since functional J2(x) in (89) is convex, convexity of J (x) follows from con-
vexity of J1(x), which is twice continuously differentiable due to statement
1) of Lemma 2. Hence, a sufficient condition for J (x) being strictly convex is
that the Hessian matrix H(x) of functional J1(x) in (89) is positive definite
for all x ∈ Rn, that is:

H(x) = ATA︸ ︷︷ ︸
HA

− LT Γ (x) L︸ ︷︷ ︸
HL(x)

� 0 ∀x ∈ Rn , (90)

where Γ (x) is the s× s diagonal matrix depending on x defined as:

Γ (x) = diag
(
γ1(x), . . . , γs(x)

)
, γi(x) = − µi u′′((Lx)i; ai) . (91)
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Since µi > 0 by assumption, from statement 2) of Lemma 2 it follows that:

γi(x) ∈ [ 0 , µiai ] ∀x ∈ Rn, ∀ i ∈ {1, . . . , s} . (92)

Hence, the two n × n matrices HA and HL(x) in (90) are both at least pos-
itive semi-definite, if not positive definite, for any x ∈ Rn. We notice that if
matrix HA is only positive semi-definite, that is ker{ATA} 6= {0}, there is no
possibility for the Hessian matrix H(x) in (90) to be positive definite for all
x ∈ Rn. This justifies condition (5) for strict convexity of J (x).

To further investigate positive-definiteness of matrix H(x) in (90), we in-
troduce the Singular Value Decomposition (SVD) of matrices A ∈ Rm×n and
L ∈ Rs×n:

A = UAΣAV
T
A , UA ∈ Rm×n,ΣA ∈ Rn×n,VA ∈ Rn×n,

L = UL ΣL V
T
L , UL ∈ Rs×p, ΣL ∈ Rp×p,VL ∈ Rn×p, p := min{s, n},

(93)

where in the SVD of matrix A ∈ Rm×n we are implicitly assuming that m>n,
since otherwise condition (5) can not be satisfied. We recall that ΣA and ΣL
in (93) are diagonal matrices containing the singular values of matrices A and
L, respectively, while UA, VA and UL, VL are orthogonal matrices containing
the left and right singular vectors of matrices A and L, respectively, and are
such that UTAUA = V TA VA = VAV

T
A = In and UTLUL = V TL VL = Ip.

By substituting (93) into the positive-definiteness condition (90), we ob-
tain:

H(x) = VAΣ
2
AV

T
A︸ ︷︷ ︸

HA

− VLΣLU
T
L Γ (x) ULΣLV

T
L︸ ︷︷ ︸

HL(x)

� 0 ∀x ∈ Rn . (94)

In order to obtain sufficient conditions for (94) being satisfied, we introduce a
lower bound (in terms of positive-definiteness) HA for HA:

HA := VA Σ2
A V

T
A = VA σ

2
A,minIn V

T
A = σ2

A,minIn 4 HA , (95)

and an upper bound HL for HL(x):

HL := VLΣLU
T
L Γ ULΣLV

T
L

= VL σL,maxIp U
T
L diag(µ1a1, . . . , µsas) UL σL,maxIp V

T
L

= σ2
L,max VLU

T
L diag(µ1a1, . . . , µsas) ULV

T
L < HL(x) ∀x ∈ Rn ,(96)

where σA,min and σL,max denote the minimum and maximum among the sin-

gular values of matrices A and L, respectively, and where the upper bound Γ
comes from properties (92) of the diagonal matrix Γ (x) defined in (91). By

substituting the lower bound HA in (95) for HA and the upper bound HL in
(96) for HL(x) into the definition of matrix H(x) in (94), and introducing the
matrix

X := ULV
T
L ∈ Rs×n , (97)
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we obtain a lower bound H for H(x):

H := HA − HL

= σ2
A,minIn − σ2

L,maxX
Tdiag(µ1a1, . . . , µsas)X 4H(x) ∀x ∈ Rn(98)

We notice that, since UL and VL are orthogonal matrices, the matrix X ∈
Rs×n defined in (97) has full (column and/or row) rank, that is rank{X} =
min{s, n} = p. To conclude the proof, we consider separately the two cases
s > n (square or tall matrix) and s < n (wide matrix) for the linear operator
L ∈ Rs×n.

Case s > n. In this case, since p := min{s, n}= n, the SVD in (93) of the
square or tall matrix L ∈ Rs×n reads as follows: L = UL ΣL V

T
L , UL ∈ Rs×n,

ΣL ∈ Rn×n, VL ∈ Rn×n, where the orthogonal matrices UL and VL are such
that UTLUL = V TL VL = VLV

T
L = In , and the matrix X ∈ Rs×n defined in (97)

satisfies:
XTX = VLU

T
LULV

T
L = In , (99)

that is the n (6 s) columns of X are s-dimensional orthonormal vectors. By
substituting the expression (99) for In in (98), the lower bound matrix H can
be equivalently rewritten as follows:

H = σ2
A,minX

TX − σ2
L,maxX

Tdiag(µ1a1, . . . , µsas)X

= XTdiag
(
σ2
A,min− σ2

L,max µ1a1, . . . , σ
2
A,min− σ2

L,max µsas
)
X .(100)

Recalling that H in (100) is a lower bound of H(x) in (90) for any x ∈ Rn
and that the matrix X ∈ Rs×n in (100) has full column rank, it follows from
Lemma 1 that:

H(x) < H � 0 ∀x ∈ Rn if σ2
A,min− σ2

L,max µiai > 0 ∀ i ∈ {1, . . . , s} ,
(101)

thus proving the second condition for strict convexity of J (x) in (6).
Case s < n. In this case, p := min{s, n}= s and the SVD in (93) of the

wide matrix L ∈ Rs×n is L = ULΣL V
T
L , UL ∈ Rs×s, ΣL ∈ Rs×s, VL ∈ Rn×s,

where the orthogonal matrices UL and VL are such that UTLUL = ULU
T
L = V TL VL = Is

, and the matrix X ∈ Rs×n defined in (97) satisfies: XXT = ULV
T
L VLU

T
L = Is

, that is the s (< n) rows of X are n-dimensional orthonormal vectors. Hence,

it is always possible to build a square orthogonal matrix X̃ ∈ Rn×n defined as
follows:

X̃ :=
(
X ṽ1 . . . ṽn−s

)T
, ṽi ∈ Rn such that X̃X̃T = X̃TX̃ = In . (102)

Based on (102), the lower bound matrix H defined in (98) is rewritten as
follows:

H = σ2
A,minX̃

TX̃ − σ2
L,max X̃

Tdiag(µ1a1, . . . , µsas, 0, . . . , 0︸ ︷︷ ︸
n−s entries

) X̃

= X̃Tdiag
(
σ2
A,min− σ2

L,max µ1a1 , . . . , σ
2
A,min− σ2

L,max µsas ,

σ2
A,min , . . . , σ

2
A,min︸ ︷︷ ︸

n−s entries

)
X̃ . (103)
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Since H in (103) is a lower bound of H(x) in (90) for any x ∈ Rn and

X̃ ∈ Rn×n in (103) has full (column and row) rank, from Lemma 1 it follows
that:

H(x) < H � 0 ∀x ∈ Rn if

{
σ2
A,min− σ2

L,max µiai > 0 ∀ i ∈ {1, . . . , s}

σ2
A,min > 0

.

(104)
Since ker{ATA} = {0}, the second condition σ2

A,min > 0 in (104) is always
satisfied, while the first condition is equivalent to the convexity condition in
(6).

Proof of Proposition 3.

Proof By substituting v for t in (12), and cm given in (13), we obtain (14).

Recalling the definition of wm in (13), the first-order partial derivative mt

of the majorant function m in (12) with respect to t, for t, v ∈ R\{0}, is given
by:

mt(t, v; am) =
φ′(v; a)

φ′(v; am)
φ′(t; am) . (105)

Substituting v for t in (105) we have (15). In the case v = 0, the majorant
function in (12) reduces to m(t, 0; am) = φ(t; am). Since both the majorized
and the majorant functions belong to the family of penalty functions φ defined
in Section 2, it follows from assumption A6) thatmt(0

±, 0; am) = φ′(0±; a) =
±1, hence (16).

Since both the majorized function φ(t; a) and the majorizing function
m(t, v; am) are continuous and even in t for any v ∈ R due to assumptions
A1) and A2), it is sufficient to prove (17) for v > 0 and t > 0. Noting that
φ(t; a) and m(t, v; am) are both continuously differentiable in t for t > 0 thanks
to assumption A3), we have:

m(t, v; am) = m(v, v; am) +

∫ t

v

mt(ξ, v; am) dξ , (106)

φ(t; a) = φ(v; a) +

∫ t

v

φ′(ξ; a) dξ , (107)

Hence, by subtracting (107) from (106) and recalling (14), we obtain:

m(t, v; am)− φ(t; a) =

∫ t

v

(
mt(ξ, v; am)− φ′(ξ; a)

)
dξ . (108)
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Given the definition of mt in (105), we can thus write:

m(t, v; am)− φ(t; a) =

∫ t

v

(
φ′(v; a)

φ′(v; am)
φ′(ξ; am) − φ′(ξ; a)

)
dξ

=

∫ t

v

(
φ′(v; a)

φ′(v; am)
− φ′(ξ; a)

φ′(ξ; am)

)
φ′(ξ; am) dξ

=

∫ t

v

(
h(v) − h(ξ)

)
φ′(ξ; am) dξ

=

∫ t

v

h′(ϑ)(v − ξ) φ′(ξ; am) dξ , (109)

where in the third equality we introduced the function h : R∗+ → R∗+ defined
as:

h(z) =
φ′(z; a)

φ′(z; am)
, z > 0 , (110)

and in the last equality (109), which is valid for some ϑ between v and ξ,
we replaced the first-order Taylor’s expansion of h around ξ. The first-order
derivative of function h in (110) is guaranteed to exist for any z > 0 due to
assumption A3) and is as follows:

h′(z) =
φ′′(z; a)φ′(z; am)− φ′(z; a)φ′′(z; am)

(φ′(z; am))
2

=
φ′(z; a)

φ′(z; am)

(
φ′′(z; a)

φ′(z; a)
− φ′′(z; am)

φ′(z; am)

)
6 0 ∀ z > 0, 0 < am< a , (111)

where the last inequality (111) follows from assumption A4) and assumption
A7) with a1 = am, a2 = a.

We finally rewrite (109) taking into consideration the integration extremes:

m(t, v; am)− φ(t; a) =



∫ t

v

(ξ − v) (−h′(ϑ)) φ′(ξ; am) dξ if t > v

0 if t = v∫ v

t

(v − ξ) (−h′(ϑ)) φ′(ξ; am) dξ if t < v

. (112)

Recalling (111) and assumption A4), we can conclude that the two integrand
functions in (112) are both non negative for any ξ in their associated integra-
tion domain, for any possible integration domain defined by t, v > 0, for any
0 < am< a, hence (17).
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