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CONVEX IMAGE DENOISING VIA NON-CONVEX
REGULARIZATION WITH PARAMETER SELECTION

ALESSANDRO LANZA∗, SERENA MORIGI† , AND FIORELLA SGALLARI‡

Abstract. We introduce a Convex Non-Convex (CNC) denoising variational model for restoring
images corrupted by Additive White Gaussian Noise (AWGN). We propose the use of parameterized
non-convex regularizers to effectively induce sparsity of the gradient magnitudes in the solution, while
maintaining strict convexity of the total cost functional. Some widely used non-convex regularization
functions are evaluated and a new one is analyzed which allows for better restorations. An efficient
minimization algorithm based on the Alternating Directions Methods of Multipliers (ADMM) strat-
egy is proposed for simultaneously restoring the image and automatically selecting the regularization
parameter by exploiting the discrepancy principle. Theoretical convexity conditions for both the
proposed CNC variational model and the optimization sub-problems arising in the ADMM-based
procedure are provided which guarantee convergence to a unique global minimizer. Numerical exam-
ples are presented which indicate how the proposed approach is particularly effective and well suited
for images characterized by moderately sparse gradients.

Key words. image denoising; variational methods; non-convex non-smooth regularization;
alternating directions method of multipliers; discrepancy principle; additive white gaussian noise.

1. Introduction. Noise is an unavoidable component of digital image acquisi-
tion, and as such, noise removal is a fundamental task in digital image processing. The
challenge is to preserve and enhance important features during the denoising process.
The most commonly studied noise model is AWGN, where the observed noisy image
b ∈ Rn is related to the underlying true image u ∈ Rn by the degradation model

b = u+ η, (1.1)

where images are represented in vectorized row-major form and η is supposed to be at
each point in space independently and identically distributed as a zero-mean Gaussian
random variable.

In this paper, we focus on the restoration of images characterized by sparse gra-
dients, feature which, in general, characterizes piecewise constant images.

The denoised image u is computed as the solution of the minimization problem

min
u∈Rn

{
J (u) =

n∑
i=1

φ (‖(∇u)i‖2; a) +
µ

2
‖u− b‖22

}
, (1.2)

where µ > 0 is the so-called regularization parameter, φ : R→ R is the regularization
(or penalty) function parameterized by variable a, and (∇u)i ∈ R2 denotes the dis-

cretization of the gradient of image u at pixel i, so that: ‖ (∇u)i ‖2 =
√

(Dhu)
2
i + (Dvu)

2
i ,

with the linear operators Dh, Dv ∈ Rn×n representing finite difference approximations
of first-order horizontal and vertical partial derivatives, respectively. The first term
in (1.2) is commonly referred to as the regularization term and the second term as
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the fidelity term. The purpose of the regularization parameter µ is to balance the in-
fluence of the fidelity and regularization terms on the computed solution in a suitable
manner.

The purpose of the regularization term in (1.2) is to encode a prior on the image
gradients magnitude, and the function φ is intended so as to strongly promote sparsity
and consequently to better fit gradient distributions of real images.

A very popular choice for φ is the Tikhonov regularization, which involves a
smooth, convex regularization term, i.e. `2 norm, φ(t) = t2. Many methods have been
proposed, see for example [12],[4],[5], which allow for effective image restorations in
case of smooth images. However, it is well known that Tikhonov regularization does
not well preserve edges in the restoration process. Non-smooth, convex regularization
terms, e.g. Total Variation (TV) regularization [26], i.e. `1 norm, φ(t) = |t|, better
allow for discontinuities in the restored image, making them an acceptable penalty
function for images. Convex formulations benefit from convex optimization theory
which leads to robust algorithms with guaranteed convergence. On the other hand,
non-smooth, non-convex regularization has remarkable advantages over convex regu-
larization for restoring images, in particular to restore high-quality piecewise constant
images with neat edges [16],[22]. However, it may lead to challenging computation
since it requires non-convex non-smooth minimization which, involving many min-
ima, can often get stuck in shallow local minima. The non-smooth non-convex and
non-Lipschitz regularization term, `p quasi-norm, φ(t) = |t|p, with 0 < p < 1, has
recently been proposed in image processing and compressed sensing since it promotes
gradient-sparser solutions or sparser solutions, substantially improving upon the `1
norm results [29].

In (1.2) the proposed functional J (u) is given by the sum of a convex smooth
(quadratic) fidelity term and a non-convex non-smooth regularization term. The
quadratic fidelity term is strongly convex and its positive second-order derivatives
holds the potential for compensating the negative second-order derivatives in the
regularization term. Hence, J (u) is surely non-smooth but can be convex or non-
convex depending on the parameter a, strictly related to µ. We employ penalty
functions parameterized by variable a, i.e., φ(t) = φ(t; a), where a is selected so as
to ensure convexity of the total cost function J (u). Consequently, the minimizer is
unique and can be computed by using efficient convex optimization algorithms.

The idea of constructing and then optimizing convex functionals containing non-
convex (sparsity-promoting) regularization terms, referred to as Convex-NonConvex
(CNC) strategy, was first introduced by Blake and Zisserman in [2], then proposed
by Nikolova in [18] for the denoising of binary images and very recently by Selesnik
and others for different purposes, see [27], [7], [28], [23], [15] for more details. The
attractiveness of such CNC approach resides in its ability to promote sparsity more
strongly than it is possible by using convex regularization while at the same time
maintaining the convexity of the optimization problem, so that well-known reliable
convex minimization approaches can be used to compute the (unique) solution.

Concerning the regularization parameter µ, it plays a crucial role in the variational
model (1.2), and it needs to be suitably set in order to yield good results. In practice,
usually the choice of such parameter is made empirically with trial and error; this
implies (1.2) to be solved repeatedly for many different values of the parameter µ.
Assuming that an estimate ε̂ of the norm of the error η in the vector b in (1.1) is
available, a more efficient strategy for the automatic selection of µ is based on the
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discrepancy principle [12]. A vector uµ such that

‖uµ − b‖2 ≤ δ̄ := τd ε̂ , ε̂ ≈ ‖η‖2 , (1.3)

holds, is said to satisfy the discrepancy principle, where τd is a user-specified constant
independent of ε̂ and related to the estimation accuracy of it. Strategies for parameter
selection in TV-based image restoration using the discrepancy principle have been
proposed e.g. in [30] and [14]. In this paper we generalize these strategies for the
proposed CNC model.

Taking into account both the convexity aspect and the discrepancy principle, we
propose the following variational denoising model:

min
u∈Rn

J (u;µ, a) , J (u;µ, a) :=

n∑
i=1

φ (‖(∇u)i‖2; a) +
µ

2
‖u− b‖22 , (1.4)

where the parameters pair (µ, a) ∈ R∗+× R+ is such that (1.3) is satisfied and
J (u;µ, a) is strictly convex in u.

The paper is organized as follows. In Section 2 we formally define the class of
penalty functions φ to be used in the proposed model (1.4) and give some popular
examples. We also introduce a novel exponential penalty function. In Section 3 we
derive sufficient conditions on the parameters pair (µ, a) for the objective functional
J in (1.4) to be strictly convex. An efficient ADMM-based iterative algorithm for
the solution of (1.4) is presented in Section 4, where we also provide an additional
condition for convexity of the ADMM sub-problems. Numerical experiments are pre-
sented in Section 5, where the proposed convex model with non-convex non-smooth
regularization is compared with a convex regularized convex model and a non-convex
regularized non-convex model. Conclusions are drawn in Section 6.

2. Non-convex penalty functions. In this section we formally define the class
of non-convex penalty functions φ used in the regularization term of the considered
model (1.4). In the following, we denote the sets of non-negative and positive real
numbers as R+ := { t ∈ R : t ≥ 0} and R∗+ := { t ∈ R : t > 0}, respectively. We
consider parameterized penalty functions φ(t; a) : R+ → R such that for any value of
the parameter a ∈ R∗+ the following assumptions are satisfied:

A1)

{
φ(t; a) ∈ C2(R∗+) (φ twice continuously differentiable in t on R∗+)

φ(t; a) ∈ C0(R+) (φ continuous in t on R+)

A2) φ′(t; a)> 0 ∀ t ∈ R∗+ (φ strictly increasing in t on R∗+)

A3) φ′′(t; a) ≤ 0 ∀ t ∈ R∗+ (φ concave in t on R∗+)

*A4)

{
supt∈R∗+ φ

′(t; a) <+∞ (φ′ bounded from above)

inft∈R∗+ φ
′′(t; a) >−∞ (φ′′ bounded from below)

Assumptions A1)–A3) are quite standard and encompass a wide class of non-convex
sparsity-promoting penalty functions. Assumption *A4), which corresponds to im-
posing boundedness (from above/below) of first- and second-order derivatives of the
penalty function φ, is mandatory when constructing CNC functionals (see, e.g., [27],
[7], [28], [23], [15]). In fact, if the second-order derivative of the penalty function
goes to −∞ at any point in the domain, there are no chances to compensate it by
the positive but bounded second-order derivatives of the convex quadratic fidelity

3



term. In particular, we notice that the popular `p quasi-norm with 0 < p < 1,
namely φ(t; p) = tp, satisfies assumptions A1)–A3) but not assumption A4), since
supt∈R∗+ φ

′(t; p) = +∞, inft∈R∗+ φ
′′(t; p) = −∞. As a consequence, such penalty func-

tion does not allow for applying the CNC strategy.

We notice that, without loss of generality, assumption *A4) can be replaced with
the following

A4) φ(0; a) = 0, supt∈R∗+ φ
′(t; a) = 1, inft∈R∗+ φ

′′(t; a) = −a (φ, φ′, φ′′ normal-

ization) .

as demonstrated in the Proposition 2.1 below, where, at the same time, the procedure
for normalizing the penalty functions is given.

The above assumption A4) calls for a useful normalization of the penalty functions
which has been used, e.g., in [27], [7], [15]. By imposing that inft∈R+

φ′′(t; a) = −a
yields the parameter a to represent a scalar indicator of the “degree of concavity” of
the penalty function φ, thus justifying the name concavity parameter.

Finally, we notice that any penalty function satisfying assumptions A1)–A4) tends
to the identity function f(t) = t, t ≥ 0, as the concavity parameter a approaches zero
from the right (in fact, lima↘0 φ

′′(t; a) = 0 ∀ t ∈ R∗+). Hence, we complete the class
of penalty functions φ(t; a) defined by A1)–A4) for a ∈ R∗+ by imposing the following:

φ(t; a) := t for a = 0 . (2.1)

According to (2.1), the `1-norm penalty is recovered as a special case of the parame-
terized penalty function φ(·; a) when a = 0.

Proposition 2.1. Let ϕ( · ; a) be a function satisfying assumptions A1)–*A4)
and let κ0, κ1, κ2 : R∗+ → R be the functions of the concavity parameter a defined by

κ0(a) := ϕ(0; a) , κ1(a) := sup
t∈R∗+

[ϕ′(t; a) ] , κ2(a) := inf
t∈R∗+

[ϕ′′(t; a) ] . (2.2)

Then, the function φ( · ; a) defined by

φ(t; a) :=
ϕ (α(a) t; a) − κ0(a)

α(a)κ1(a)
, with α(a) := − a κ1(a)

κ2(a)
(2.3)

satisfies assumptions A1)–A3) and A4).

Proof. First we notice that, according to assumptions A2) and A3) for ϕ, we
have that κ1(a) > 0 and κ2(a) < 0 for any a > 0. Hence, in (2.3) we have α(a) > 0
and α(a)κ1(a) > 0, so that φ is always defined. By substituting t = 0 in (2.3) and
recalling the definition of κ0(a) in (2.2), we obtain:

φ(0; a) =
ϕ (0; a) − κ0(a)

α(a)κ1(a)
=

κ0(a)− κ0(a)

α(a)κ1(a)
= 0 . (2.4)

The first- and second-order derivatives with respect to t of function φ in (2.3) are as
follows:

φ′(t; a) =
ϕ′ (α(a)t; a)

κ1(a)
, φ′′(t; a) = − a ϕ

′′(α(a)t; a)

κ2(a)
. (2.5)
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Since, in general, for any given function f : R → R and any given scalars c1, c2 > 0,
it holds that inf / supt>0[ c1f(c2t) ] = c1 inf / supt>0[ f(t) ], we have:

sup
t>0

[φ′(t; a) ] =
supt>0 [ϕ′(t; a) ]

κ1(a)
=

κ1(a)

κ1(a)
= 1 , (2.6)

inf
t>0

[φ′′(t; a) ] = − a inft>0 [ϕ′′(t; a) ]

κ2(a)
= − a κ2(a)

κ2(a)
= − a , (2.7)

(2.7)

thus completing the proof.

In the first three columns of Table 2.1 we report three widely used examples of
(sparsity-promoting) penalty functions, referred to as φlog, φrat and φatan, which sat-
isfy all the above assumptions A1)–A4) and have been considered, e.g., in [27], [7],
[15]. In particular, the penalty φatan has been proposed in [27] as the maximally
sparsity-inducing function among those characterized by a first-order derivative of
inverse quadratic polynomial type. For this function, the first-order derivative ap-
proaches zero more rapidly than any other function in its class.

We propose a novel penalty function of exponential type, referred to as φexp. The
expressions of φexp and of its derivatives are reported in the last column of Table 2.1.
Since the first-order derivative of φexp approaches to zero as an inverse exponential,
that is more rapidly than the other three considered penalties, the φexp penalty allows
for inducing sparsity more strongly.

In Figure 2.1 we show the plots of the penalty functions φlog, φrat, φatan, φexp

and of their first- and second-order derivatives for two different values a ∈ {2, 3} of
the concavity parameter. It can be noticed from Figures 2.1(a-b) how the proposed
penalty φexp approaches its asymptotic value more rapidly than all the other penalties.
In fact, as illustrated in Figures 2.1(c-d), the first-order derivative of φexp tends to
zero more quickly than all the other penalties. Equivalently, the shape of φexp is more
similar to the sparsity-promoting `0 quasi-norm penalty function.

The proposed penalty function φexp allows for an efficient closed-form threshold
function which will be derived in Section 4.

3. Convexity Conditions. In this section, we investigate convexity of the pro-
posed functional J ( · ;µ; a) in (1.4). More precisely, we seek for conditions on the
regularization parameter µ ∈ R∗+ and on the concavity parameter a ∈ R+ of the
non-convex penalty functions φ( · ; a) such that the functional is strictly convex.

Towards this aim, we rewrite J ( · ;µ; a) in (1.4) in explicit double-indexed form:

J (u;µ, a) =
∑

(i,j)∈Ω

φ

(
1

∆

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 ; a

)
+

∑
(i,j)∈Ω

µ

2
(ui,j − bi,j)2

, (3.1)

where Ω represents the (square) image lattice defined as

Ω :=
{

(i, j) ∈ Z2 : i = 1, . . . ,
√
n, j = 1, . . . ,

√
n
}
, (3.2)
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φlog φrat φatan φexp

φ(t; a) log(1+at)
a

t
1+at/2

atan
(

1+2at√
3

)
−π6

a
√

3/2

1−e−at
a

φ′(t; a) 1
1+at

1
(1+at/2)2

1
1+at+a2t2

1
eat

φ′′(t; a) − a
(1+at)2

− a
(1+at/2)3 − a (1+2at)

(1+at+a2t2)2
− a
eat

φ′′′(t; a) 2a2

(1+at)3
3a2

2(1+at/2)4
6a3t(1+at)

(1+at+a2t2)3
a2

eat

φ(0; a) 0 0 0 0

sup
t>0

φ′(t; a) 1 1 1 1

inf
t>0

φ′′(t; a) −a −a −a −a

lim
t→+∞

φ (t; a) +∞ 2
a

2
a
π
√

3
9

1
a

Table 2.1
Examples of penalty functions φ(t; a) : R+ → R+ satisfying assumptions A1)–A4).

and where a standard first-order forward finite difference scheme has been used for
discretization of the first-order partial derivatives, with ∆ = ∆x = ∆y denoting the
discretization step size. We notice that the convexity results obtained at the end of
this section depend on the chosen finite difference scheme. Nevertheless, the proce-
dure used below for deriving such results can be adapted for inferring the convexity
conditions associated with other discretization choices.

To the purpose of splitting (3.1) into the sum of easier functions, we define the
sets of odd and even integers

O := { i ∈ Z : i is odd } and E := { i ∈ Z : i is even } , (3.3)

and we introduce the following partition of Ω, illustrated in Figure 3.1(left):

OO := { (i, j) ∈ Ω : i ∈ O, j ∈ O} EE := { (i, j) ∈ Ω : i ∈ E, j ∈ E}

OE := { (i, j) ∈ Ω : i ∈ O, j ∈ E} EO := { (i, j) ∈ Ω : i ∈ E, j ∈ O}
. (3.4)

It is easy to show that our functional in (3.1) can be split into the following sum:

J (u;µ, a) = JOO(u;µ, a) + JEE(u;µ, a) + JOE(u;µ, a) + JEO(u;µ, a) , (3.5)

where

JA(u;µ, a) =
∑

(i,j)∈A

φ

(
1

∆

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 ; a

)

+
∑

(i,j)∈A

[
µ

6
(ui,j − bi,j)2

+
µ

6
(ui+1,j − bi+1,j)

2
+
µ

6
(ui,j+1 − bi,j+1)

2

]
, (3.6)
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(a) φ(t; a), a = 2 (b) φ(t; a), a = 3

0 +3.0 +6.0

0

+0.5

+1.0

t
0 +3.0 +6.0

0

+0.5

+1.0

t

(c) φ′(t; a), a = 2 (d) φ′(t; a), a = 3

0 +0.5 +1.0 +1.5
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−1.5

−1.0

−0.5

0

t
0 +0.5 +1.0 +1.5

−3.0

−2.0

−1.0

0

t

(e) φ′′(t; a), a = 2 (f) φ′′(t; a), a = 3

Fig. 2.1. Plots of the penalty functions φlog(t; a), φrat(t; a), φatan(t; a), φexp(t; a) defined
in Table 2.1 and of their first- and second-order derivatives for different values of the concavity
parameter a.

with A ∈ {OO,EE,OE,EO}. Since the four functions JOO, JEE, JOE and JEO

defined in (3.6) have exactly the same structure, convexity of J can be analyzed by
just considering the function JOO. In Figure 3.1(right) we illustrate the subset of the
image lattice Ω involved by function JOO.

Let us define the function f( · ;µ, a) : R3 → R as

f(x1, x2, x3;µ, a) =
µ

6

(
x2

1 + x2
2 + x2

3

)
+ φ

(
1

∆

√
(x2 − x1)2 + (x3 − x1)2; a

)
. (3.7)
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j

EE

OO

EO

OE

i

1 2 3 4 5 6 7

1

2

3

4

5

Fig. 3.1. Partition of the image lattice Ω in (3.2) into the four subsets OO, EE, OE and EO
defined in (3.4) (left); image stencil involved by function JOO (right).

Then, from (3.6) the function JOO can be rewritten as follows:

JOO(u) =
∑

(i,j)∈OO

[
f(ui,j , ui+1,j , ui,j+1) + L(ui,j , ui+1,j , ui,j+1)

]
, (3.8)

where L is an affine function which, hence, does not affect convexity of JOO.
To study convexity of functional J ( · ;µ, a) defined in (1.4), we give three propo-

sitions which allow to reduce convexity investigation from the original functional
J ( · ;µ, a) of n variables to easier functions f( · ;µ, a), g( · ;µ, a) and h( · ;µ, a) of three,
two and one variables, respectively.

Proposition 3.1. The functional J ( · ;µ, a) defined in (1.4) is strictly convex if
the function f( · ;µ, a) : R3 → R defined in (3.7) is strictly convex.

The proof is straightforward given (3.5)–(3.8) and the the above discussion.

Proposition 3.2. The function f( · ;µ, a) : R3 → R defined in (3.7) is strictly
convex if and only if the function g( · ;µ, a) : R2 → R is strictly convex, with

g(y1, y2;µ, a) =
µ

6

(
y2

1 + y2
2

)
+ φ

(
1

∆

√
y2

1 + y2
2 ; a

)
. (3.9)

The proof is postponed to the appendix.

Proposition 3.3. The function g( · ;µ, a) : R2 → R defined in (3.9) is strictly
convex if and only if the function h( · ;µ, a) : R+ → R defined as

h(t;µ, a) =
µ

6
t2 + φ

(
t

∆
; a

)
(3.10)

is monotonically increasing and strictly convex.
The proof is postponed to the appendix.

Theorem 3.4. For any parameters pair (µ, a) ∈ R∗+× R+ and any function
φ( · ; a) : R+ → R+ satisfying assumptions A1)–A4) in Section 2, the functional
J ( · ;µ, a) : Rn → R defined in (1.4) is strictly convex if the following condition holds:

a <
µ

3
∆2 . (3.11)
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Proof. Based on Propositions 3.1–3.3, the functional J ( · ;µ, a) defined in (1.4)
is strictly convex if the twice differentiable function h( · ;µ, a) defined in (3.10) is
monotonically increasing and strictly convex everywhere in its domain R+, that is if
the following two conditions hold:

h′(t;µ, a) =
µ

3
t+

1

∆
φ′
(
t

∆
; a

)
> 0

h′′(t;µ, a) =
µ

3
+

1

∆2
φ′′
(
t

∆
; a

)
> 0

≡


φ′
(
t

∆
; a

)
>− µ

3
∆ t

φ′′
(
t

∆
; a

)
>− µ

3
∆2

∀ t ≥ 0 . (3.12)

Since by hypothesis µ > 0, ∆ > 0 and for any a ≥ 0 the penalty function φ(·; a) is
monotonically increasing in R+, the first condition in (3.12) is always satisfied. Re-
calling assumption A4) in Section 2, the second condition in (3.12) can be equivalently
rewritten as in (3.11).

We introduce a scalar coefficient τc , referred to as the convexity coefficient, aimed
at setting the degree of convexity of the functional J , and we rewrite convexity
condition (3.11) in the following equivalent form:

a = τc
µ

3
∆2 , τc ∈ [0, 1[ . (3.13)

In particular, we notice that for τc approaching 1 from the left the penalty function
φ is maximally concave thus allowing for more strongly promoting sparsity.

We conclude this section by formalizing the main properties of functional J in
(1.4).

Proposition 3.5. For any parameters pair (µ, a) satisfying condition (3.13), the
functional J (u;µ, a) in (1.4) is proper, continuous (hence, lower semi-continuous),
coercive and strictly convex.

Proof. Functional J in (1.4) is clearly proper. Moreover, as the quadratic fidelity
term and the functions φ and ‖ · ‖2 in the regularization term are continuous, J is
continuous. We notice that the regularization term in J is coercive if and only if
the penalty function φ is coercive, which is not always the case (see the last row of
Table 2.1). However, J is coercive due to the strongly convex quadratic fidelity term.
Finally, J is strictly convex due to Theorem 3.4.

4. Applying ADMM to the proposed CNC model. In this section, we illus-
trate in detail the ADMM-based [3] iterative algorithm used to numerically solve the
proposed CNC model (1.4). Towards this aim, first we resort to the variable splitting
technique [1] and introduce two auxiliary variables z ∈ V and t ∈ Q, with V := Rn,
Q := R2n. In particular, the variable t is defined such that ti :=

(
(Dhu)i , (Dvu)i

)
∈ R2

represents the discrete gradient of image u at pixel i. After defining the matrix
D := (DT

h , D
T
v )T ∈ R2n×n, model (1.4) is thus rewritten in the following equivalent

form:

{u∗, z∗, t∗} ← arg min
u,z,t

{
n∑
i=1

φ (‖ti‖2; a) +
µ

2
‖z − b‖22

}
(4.1)

subject to : z = u , t = Du , (4.2)

where µ and a are such that (1.3) and (3.13) are satisfied.
We remark that the auxiliary variable t is introduced to transfer the discrete

gradient operators (∇u)i in (1.4) out of the non-convex non-smooth regularization
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term φ(‖ · ‖2; a). The variable z plays the role of the restored image u within the
discrepancy principle-based constraint (1.3), so that the constraint is now imposed on
z instead of u.

To solve problem (4.1), we define the augmented Lagrangian functional

L(u, z, t;λz, λt;µ, a) =

n∑
i=1

φ (‖ti‖2; a) +
µ

2
‖z − b‖22

− 〈λz, z − u 〉 +
βz
2
‖z − u‖22

− 〈λt, t−Du 〉 +
βt
2
‖t−Du‖22 , (4.3)

where βz, βt > 0 are scalar penalty parameters and λz ∈ V , λt ∈ Q are the vectors
of Lagrange multipliers associated with the linear constraints z = u and t = Du in
(4.2), respectively. We then consider the following saddle-point problem:

Find (u∗, z∗, t∗;λ∗z, λ
∗
t ) ∈ V× V× Q× V× Q

s.t. L (u∗, z∗, t∗;λz, λt;µ, a) ≤ L (u∗, z∗, t∗;λ∗z, λ
∗
t ;µ, a) ≤ L (u, z, t;λ∗z, λ

∗
t ;µ, a)

∀ (u, z, t;λz, λt) ∈ V× V× Q× V× Q , (4.4)

with the augmented Lagrangian functional L defined in (4.3).
In the following we prove that, for any parameters pair (µ, a) satisfying (convexity)

condition (3.13), the saddle-point problem (4.3)–(4.4) has at least one solution and,
more importantly, all its solutions will provide the unique minimizer of the strictly
convex functional J (u;µ, a) in (1.4). Analogous proofs have been previously given for
the case of TV regularization with quadratic [14] and also with convex non-quadratic
[31] fidelity terms. However, in our case the regularization term, that for simplicity
we denote in the following by

Φ(u; a) :=

n∑
i=1

φ (‖(∇u)i‖2; a) , (4.5)

is a non-convex generalization of the TV which calls for a suitable adaptation of the
above mentioned proofs based on concepts from calculus for non-smooth non-convex
functions, namely the generalized (or Clarke) gradients [9].

In the following we will denote by ∂x[ f ](x∗) and by ∂̄x[ f ](x∗) the subdifferential
(in the sense of convex analysis [24],[25]) and the Clarke generalized gradient [9],
respectively, with respect to x of the function f calculated at x∗.

In Lemma 4.1 below we give some results on locally Lipschitz continuity for the
functions involved in the subsequent demonstrations, which are necessary for the gen-
eralized gradients being defined. Then, in Proposition 4.2 we give first-order optimal-
ity conditions for our functional J (u;µ, a). These conditions, together with results in
Lemma 4.3 proved in [11], will be crucial for demonstrating the equivalence (in terms
of solutions) between the minimization problem in (1.4) and the saddle-point problem
in (4.3)–(4.4), as done in the final Theorem 4.4.

Lemma 4.1. For any parameters pair (µ, a) satisfying (convexity) condition
(3.13), the functional J in (1.4) and, separately, the Φ regularization term in (4.5)
and the quadratic fidelity term, are locally Lipschitz continuous functions.
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Proof. The proof is immediate by considering that J and the quadratic fidelity
term are convex functions, hence locally Lipschitz, and that the Φ term in (4.5) is
composition of locally Lipschitz functions (note that the penalty functions φ( · ; a)
defined in Section 2 are globally 1-Lipschitz for any a ∈ R+).

Proposition 4.2. For any parameters pair (µ, a) satisfying (convexity) condition
(3.13), the functional J : Rn → R in (1.4) has a unique minimizer u∗ which satisfies

0 ∈ ∂u [J ] (u∗) , (4.6)

where 0 denotes the null vector in Rn and ∂u
[
J
]
(u∗) ⊂ Rn represents the subdif-

ferential (with respect to u, calculated at u∗) of functional J . Moreover, it follows
that

0 ∈ DT ∂̄Du [ Φ ] (Du∗) + µ (u∗ − b) , (4.7)

where ∂̄Du
[

Φ
]
(Du∗) ⊂ R2n denotes the Clarke generalized gradient (with respect to

Du, calculated at Du∗) of the non-convex non-smooth regularization term Φ in (4.5).

The proof is postponed to the appendix.

Lemma 4.3. [11] Assume that F = F1 + F2, F1 and F2 being lower semi-
continuous convex functions of Rn into R, F1 being Gâteaux-differentiable with dif-
ferential F ′1. Then, if p∗ ∈ Rn, the following two conditions are equivalent to each
other:

1. p∗ is a solution of infp F (p) ;

2. 〈F ′1(p∗), p− p∗ 〉+ F2(p)− F2(p∗) ≥ 0 ∀p ∈ Rn.

Theorem 4.4. For any parameters pair (µ, a) satisfying (convexity) condition
(3.13), the saddle-point problem (4.3)–(4.4) admits at least one solution and all the
solutions have the form (u∗, u∗, Du∗;λ∗z, λ

∗
t ), with u∗ denoting the unique global min-

imizer of functional J (u;µ, a) in (1.4).

The proof is postponed to the appendix.

In the following we present the ADMM-based iterative algorithm used to compute
a saddle-point solution of (4.3)–(4.4) which, according to Theorem 4.4, provides the
unique global minimizer of functional J (u;µ, a) in (1.4).

Given the previously computed (or initialized for k = 0) vectors u(k), λ
(k)
z and

λ
(k)
t , the k-th iteration of the proposed ADMM-based iterative scheme applied to the

solution of the saddle-point problem (4.3)–(4.4) reads as follows:

z(k+1) ← arg min
z∈V

L(u(k), z, t(k);λ(k)
z , λ

(k)
t ) (4.8)

t(k+1) ← arg min
t∈Q

L(u(k), z(k+1), t;λ(k)
z , λ

(k)
t ) (4.9)

u(k+1) ← arg min
u∈V

L(u, z(k+1), t(k+1);λ(k)
z , λ

(k)
t ) (4.10)

λ(k+1)
z ← λ(k)

z − γ βz
(
z(k+1) − u(k+1)

)
(4.11)

λ
(k+1)
t ← λ

(k)
t − γ βt

(
t(k+1) − Du(k+1)

)
(4.12)

11



where γ > 0 is a relaxation parameter. In the following we show in detail how to
solve the three minimization sub-problems (4.8)–(4.10) for the primal variables z, t
and u, respectively, then we present the overall iterative ADMM-based minimization
algorithm.

Computing z(k+1) (and setting µ(k+1)). Given u(k) and λ
(k)
z , and recalling

the definition of the augmented Lagrangian functional in (4.3), the minimization sub-
problem for z in (4.8) can be rewritten as follows:

z(k+1) ← arg min
z∈V

{
µ

2
‖z − b‖22 +

βz
2
‖z − u(k)‖22 − 〈λ(k)

z , z − u(k)〉
}

← arg min
z∈V

{
µ ‖z − b‖22 + βz ‖z − q(k+1)‖22

}
, (4.13)

with the constant (w.r.t. the optimization variable z) vector q(k+1) ∈ V given by:

q(k+1) = u(k) +
1

βz
λ(k)
z . (4.14)

The cost function in (4.13) is strictly convex in z and its (unique) global minimizer is
as follows:

z(k+1)
µ =

µ b+ βzq
(k+1)

µ+ βz
, (4.15)

where the dependency of the minimizer on the regularization parameter µ is made

explicit. We notice that, following from (4.15), the minimizer z
(k+1)
µ belongs to the

line segment between b and q(k+1). In particular, we have that z
(k+1)
µ=0 = q(k+1) and

z
(k+1)
µ→+∞ = b.

We define the discrepancy associated with the minimizer z
(k+1)
µ in (4.15) as a

function δ(k+1) : R+ → R+ of the regularization parameter µ defined as follows:

δ(k+1)(µ) :=
∥∥z(k+1)
µ − b

∥∥
2

=
βz

(µ+ βz)

∥∥ q(k+1) − b
∥∥

2
, (4.16)

where the second equality comes from substituting the explicit expression of z
(k+1)
µ

given in (4.15). Recalling that βz > 0, the discrepancy function in (4.16) has the
following properties:

δ(k+1) ∈ C∞(R+) , δ(k+1)(µ)> 0 ,
(
δ(k+1)

)′
(µ)< 0 ∀µ ∈ R+ ,

δ(k+1)(0) =
∥∥ q(k+1) − b

∥∥
2
, δ(k+1)(+∞) = 0 .

(4.17)

In order to choose a suitable value µ(k+1) of the regularization parameter µ such
that the discrepancy principle in (1.3) is satisfied here for the auxiliary variable z, we
consider two cases.

In case that ‖ q(k+1) − b‖2 ≤ δ̄, then we have:

δ(k+1)(µ) ≤ βz
(µ+ βz)

δ̄ ≤ δ̄ ∀µ ∈ R+ , (4.18)

that is the discrepancy principle is satisfied for any possible µ. We choose µ(k+1) = 0,
such that, according to (4.15), the solution of (4.13) is z(k+1) = q(k+1).
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In case that ‖ q(k+1) − b‖2 > δ̄, the discrepancy function properties in (4.17)
guarantee that there exists a unique value µ(k+1) of the regularization parameter µ
such that δ(k+1)(µ(k+1)) = δ̄ (in fact, the discrepancy function is monotonically de-
creasing). Recalling (4.16), we have:

βz(
µ(k+1) + βz

) ∥∥ q(k+1) − b
∥∥

2
= δ̄ ⇐⇒ µ(k+1) = βz

(∥∥ q(k+1) − b
∥∥

2

δ̄
− 1

)
. (4.19)

Replacing µ(k+1) given in (4.19) for µ in (4.15), we obtain that in this second case
the solution of (4.13) is as follows:

z(k+1) = b + δ̄
q(k+1) − b∥∥ q(k+1) − b

∥∥
2

. (4.20)

Summarizing, we have:

µ(k+1) =


0 if ‖ q(k+1) − b‖2 ≤ δ̄

βz

(∥∥ q(k+1) − b
∥∥

2

δ̄
− 1

)
if ‖ q(k+1) − b‖2 > δ̄ ,

(4.21)

and consequently:

z(k+1) =


q(k+1) if ‖ q(k+1) − b‖2 ≤ δ̄

b + δ̄
q(k+1) − b∥∥ q(k+1) − b

∥∥
2

if ‖ q(k+1) − b‖2 > δ̄ .
(4.22)

Computing t(k+1) (and setting a(k+1), β
(k+1)
t ). Given the new value of

the regularization parameter µ(k+1) computed by (4.21), we set the new value of the
concavity parameter a(k+1) such that our functional J (u;µ(k+1), a(k+1)) in (1.4) is
strictly convex. In particular, according to the convexity conditions in (3.13), we set:

a(k+1) = τc
µ(k+1)∆2

3
, τc ∈ [ 0 , 1 [ , (4.23)

where τc is a user-specified fixed parameter. Then, given λ
(k)
t and u(k), and recalling

the definition of the augmented Lagrangian functional in (4.3), the minimization sub-
problem for t in (4.9) can be rewritten as follows:

t(k+1) ← arg min
t∈Q

{
n∑
i=1

φ
(
‖ti‖2; a(k+1)

)
− 〈λ(k)

t , t−Du(k)〉 +
βt
2

∥∥∥ t−Du(k)
∥∥∥2

2

}

← arg min
t∈Q

{
n∑
i=1

φ
(
‖ti‖2; a(k+1)

)
+
βt
2

∥∥∥ t− r(k+1)
∥∥∥2

2

}

← arg min
t∈Q

n∑
i=1

{
φ
(
‖ti‖2; a(k+1)

)
+
βt
2

∥∥∥ ti − r(k+1)
i

∥∥∥2

2

}
, (4.24)

with the constant (w.r.t. the optimization variable t) vector r(k+1) ∈ Q given by:

r(k+1) = Du(k) +
1

βt
λ

(k)
t . (4.25)
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Note that in (4.24) the minimized functional is written in explicit component-wise

form, with r
(k+1)
i =

(
Du(k)

)
i

+
(
λ

(k)
t

)
i
/ βt and where

(
Du(k)

)
i
,
(
λ

(k)
t

)
i
∈ R2 denote

the discrete gradient and the Lagrange multipliers at pixel i, respectively. The mini-
mization problem in (4.24) is equivalent to the following n independent 2-dimensional
problems:

t
(k+1)
i ← arg min

ti∈R2

{
φ
(
‖ti‖2; a(k+1)

)
+
βt
2

∥∥∥ ti − r(k+1)
i

∥∥∥2

2

}
, i = 1, . . . , n . (4.26)

Since by (4.23) we have imposed that the functional J (u;µ(k+1), a(k+1)) mini-
mized at iteration k is strictly convex, we clearly aim at avoiding non-convexity of
the ADMM sub-problems (4.26). In the first part of Proposition 4.5 below, we give a
necessary and sufficient condition for strict convexity of the cost functions in (4.26).
In particular, based on (4.31)-(4.32) in Proposition 4.5, we can state that all the
problems in (4.26) are strictly convex if and only if the following condition holds:

βt > a(k+1) . (4.27)

Since we can not further constraint the sequence {a(k)} without damaging its crucial
role (together with sequence {µ(k)}) in driving the solution towards the convexity
and discrepancy constraints, in order to satisfy condition (4.27) we have to act on the
ADMM penalty parameter βt by thus resorting to an iteration-dependent version of
it. In particular, we set:

β
(k+1)
t = max

{
βt , 1.05 · a(k+1)

}
, (4.28)

where βt, similarly to βz, represents a fixed user-specified parameter.
In case that (4.27) is satisfied, the unique solutions of the strictly convex problems

(4.26) can be obtained as reported in the second part of Proposition 4.5, that is:

t
(k+1)
i = ξ

(k+1)
i r

(k+1)
i , i = 1, . . . , n , (4.29)

where the shrinkage coefficients ξ
(k+1)
i ∈ [0, 1[ are computed according to (4.35), that

is:

ξ
(k+1)
i =

 0 if ‖r(k+1)
i ‖2 ≤ 1 / β

(k+1)
t

ξ∗∈ ]0, 1[ s.t. φ′
(
‖r(k+1)
i ‖2ξ∗; a

)
+ β

(k+1)
t ‖r(k+1)

i ‖2 (ξ∗ − 1) = 0 otherwise .

(4.30)
The nonlinear equation in (4.30) can be solved by very few steps of the iterative
Newton-Raphson method. In particular, it can be demonstrated that for all the
considered penalty functions φlog, φrat, φatan and φexp reported in Table 2.1, by
choosing ξ∗ = 1 as the initial guess, the Newton-Raphson algorithm is guaranteed to
converge (with quadratic rate) to the unique root of the nonlinear equation. This is
due to the third-order derivative φ′′′( · ; a) being positive (see Table 2.1).

Proposition 4.5. Let β > 0, a ≥ 0 and r ∈ R2 be given constants, and let
φ(·; a) : R+ → R+ be a function satisfying assumptions A1)–A4) in Section 2. Then,
the function

θ(x) := φ (‖x‖2; a) +
β

2
‖x− r‖22 , x ∈ R2 , (4.31)
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is strictly convex if and only if the following condition holds:

a < β . (4.32)

Moreover, in case that (4.32) holds, the strictly convex minimization problem

arg min
x∈R2

θ(x) (4.33)

admits the unique solution x∗ given by the following shrinkage operator:

x∗ = ξ∗r , with ξ∗ ∈ [0, 1[ (4.34)

equal to

a) ξ∗ = 0 if ‖r‖2 ≤
1

β

b) ξ∗ ∈ ]0, 1[ unique solution of :

φ′ (‖r‖2 ξ; a) + β‖r‖2 (ξ − 1) = 0 otherwise.

(4.35)

The proof is postponed to the appendix.

For the proposed penalty function φexp, the nonlinear equation in (4.30) admits
a closed-form solution given in Proposition 4.6 below.

Proposition 4.6. Let φexp( · ; a) : R+ → R+ be the penalty function defined in
Table 2.1. Then, the unique solution ξ∗ ∈ ]0, 1[ of the nonlinear equation in (4.35) is
as follows:

ξ∗ = 1 +
1

a ‖r‖2
W0

(
− a

β ea‖r‖2

)
, (4.36)

where W0(·) denotes the principal branch of the Lambert W function [10].

The proof is postponed to the appendix.

Computing u(k+1). Given z(k+1), t(k+1), λ
(k)
z and λ

(k)
t , and recalling the defini-

tion of the augmented Lagrangian functional in (4.3), the minimization sub-problem
for u in (4.10) can be rewritten as follows:

u(k+1) ← arg min
u∈V

{
βz
2
‖z(k+1) − u‖22 +

β
(k+1)
t

2
‖t(k+1) −Du‖22

+ 〈λ(k)
z , u〉 + 〈λ(k)

t , Du〉
}
, (4.37)

where constant terms have been omitted. The quadratic minimization problem (4.37)
has first-order optimality conditions which lead to the following linear system:

(
βzI + β

(k+1)
t DTD

)
u = β

(k+1)
t DT

(
t(k+1) − 1

β
(k+1)
t

λ
(k)
t

)
+βzz

(k+1)−λ(k)
z . (4.38)
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The coefficient matrix of the linear system (4.38) is symmetric positive definite and
highly sparse. Hence, (4.38) can be solved very efficiently by the iterative (precondi-
tioned) Conjugate Gradient method. Moreover, under appropriate assumptions about
the solution u near the image boundary, the linear system can be solved even more
efficiently. For example, under periodic boundary conditions the matrix DTD is block
circulant with circulant blocks, so that the coefficient matrix in (4.38) can be diago-
nalized by the 2D discrete Fourier transform (FFT implementation). However, it is
well known that imposing periodic boundary conditions can lead to artifacts in the
solution due to artificially introduced image discontinuities. By using more natural
reflective or anti-reflective boundary conditions, no artificial discontinuities near the
image boundary are introduced, hence higher quality solutions can be obtained. As
illustrated in [17] and [8], under reflective and anti-reflective boundary conditions
the coefficient matrix in (4.38) can be diagonalized by the 2D discrete cosine and sine
transforms (FCT and FST implementations), respectively. Therefore, at each ADMM
iteration the linear system (4.38) can be solved by two forward and one inverse 2D
FFT/FCT/FST, each at a cost of O(n log n).

ADMM-based minimization algorithm. To summarize previous results, in
Algorithm 1 we report the main steps of the ADMM-based iterative scheme used to
solve the proposed CNC model (1.4). We point out that by model parameters we
mean all the initial choices that define the functional J in our model (1.4).

For what concern convergence of the ADMM-based algorithm, we point out that
the key issues are the usage of two different penalty parameters βz, βt, the variability
of the regularization parameter µ(k) (and, accordingly, of the concavity parameter
a(k)) during the ADMM iterations, and the non-convexity of the regularization term
in our objective functional J in (1.4). Analysis of convergence of the ADMM subject
to the first two issues has been provided in [33], [14]. In particular, the proof in [14]
can be adapted to cope with non-convexity of our regularization term.

5. Numerical Examples. In this section, we evaluate experimentally the per-
formance of the proposed CNC variational model (1.4), solved by the ADMM-based
scheme in Algorithm 1, when applied to the four 256 × 256 test images satellite,
phantom, checkboard and qrcode synthetically corrupted by zero-mean AWGN. The
uncorrupted test images, shown in Figure 5.1, are mainly characterized by constant
regions and sharp edges so as to better highlight the properties of our CNC model.

In the first example we evaluate the performance of the proposed CNC model
when using different penalty functions φ(t; a) and different values of the convexity co-
efficient τc and of the discrepancy coefficient τd. In the second example we investigate
the advantages of using convex models with non-convex instead of convex regular-
ization terms, particularly for images characterized by sparse gradients. Finally, in
order to evaluate the performance of purely non-convex denoising methods, in the
third example we consider the proposed model (1.4) with convexity coefficient τc > 1,
that is beyond the limit of convexity for the objective functional J , and we compare
it with a state-of-the-art non-convex approach for the denoising of piecewise constant
images. We remark that convergence of Algorithm 1 is not theoretically guaranteed
when applied to model (1.4) with τc > 1.

More precisely, in the second and third examples we compare the proposed CNC
model with the well-known convex Rudin-Osher-Fatemi (ROF) model [26], based on
the minimization of the so-called TV-`2 functional, with the convex non-local TV
(referred to as NLTV) model [32], and with the state-of-the-art non-convex model
proposed in [22], whose software is made available by the authors [20].
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Algorithm 1 ADMM-based iterative scheme for the solution of problem (1.4)

inputs: noisy image b ∈ Rn, noise standard deviation estimate σ̂

output: approximate solution u∗ ∈ Rn of (1.4)

parameters: MODEL: · penalty function φ( · ; a) : R+→R+ satisfying A1)–A4)

· discrepancy coefficient τd > 0

· convexity coefficient τc, 0 < τc < 1

ADMM: · βz, βt, γ > 0

1. initialization: u(0) = b, λ
(0)
z = 0, λ

(0)
t = 0, δ̄ = τd

√
n σ̂

2. for k = 0, 1, 2, . . . until convergence do:

3. · update parameters:

4. · set µ(k+1) by (4.14), (4.21)

5. · set a(k+1) by (4.23)

6. · set β
(k+1)
t by (4.28)

7. · update primal variables:

8. · compute z(k+1) by (4.14), (4.22)

9. · compute t(k+1) by (4.25), (4.29) and (4.30)

10. · compute u(k+1) by solving (4.38)

11. · update dual variables:

12. · compute λ
(k+1)
z by (4.11)

13. · compute λ
(k+1)
t by (4.12) with βt = β

(k+1)
t

14. end for

15. u∗ = u(k+1)

For the minimization of the proposed CNC model we used the ADMM-based
procedure reported in Algorithm 1, which requires the relaxation parameter γ and
the penalty parameters βt and βz to be set. We used γ = 1 (no relaxation), which is
a pretty standard choice, while we set βt = βz = 50 such that for all the experiments
the condition (4.27) for convexity of the ADMM sub-problem for t is always satisfied.
Finally, we set the space step ∆ = 1, which corresponds to the standard choice of the
pixel size.

Since the ROF model is a particular instance of our CNC model (1.4) where
φ(t) = t, we used the same ADMM-based scheme as in Algorithm 1 with suitably
chosen shrinkage coefficients as described in [6], and with the same parameters γ = 1,
βt = βz = 50.

In all the experiments and for all the algorithms, we used the observed noise-
corrupted image as the initial iterate, i.e. u(0) = b, and we terminated the iterations
as soon as the relative change between two successive iterates satisfies

‖u(k) − u(k−1)‖2 / ‖u(k−1)‖2 < 10−4.

The quality of the obtained restorations is evaluated by the Signal-to-Noise Ratio
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Fig. 5.1. Test images: satellite, phantom, checkboard and qrcode.

(SNR) defined as

SNR(u∗, ū) := 10 log10

(
‖ū− E(ū)‖22 / ‖u∗ − ū‖22

)
,

where u∗ ∈Rn is the computed estimate of the uncorrupted image ū ∈Rn and E(ū)
denotes the mean value of ū. More precisely, the Improved Signal-to-Noise Ratio
(ISNR), defined as

ISNR(u∗, ū, b) := SNR(u∗, ū)− SNR(b, ū) ,

provides a quantitative measure of the improvement in the quality of the denoised
image: a high ISNR value indicates that u∗ is an accurate approximation of ū.

In all the experiments, the noise-corrupted image b has been synthetically gener-
ated by first choosing its associated SNR value, denoted by SNRb, and then computing
the standard deviation σ of the zero-mean AWGN corruption yielding such SNR value
by the following formula:

σ =
‖ū− E(ū)‖2
√
n 10

SNRb
20

.

The corrupted image b is thus obtained as follows:

b = ū+ σ ∗ randn(
√
n) ,

and σ is passed as the noise standard deviation estimate to the CNC algorithm.

Example 1. In this example we analyze the performance of the proposed CNC
approach when varying the penalty function among those introduced in Table 2.1,
the convexity coefficient τc in the range [ 0 , 1 [ such that the minimized functional
is convex according to condition (3.13), and the discrepancy coefficient τd in a range
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Fig. 5.2. Example 1: Accuracy evaluation (ISNR) of the proposed CNC model in (1.4) with
varying penalty function φ ∈ {φlog, φrat, φatan, φexp}, convexity coefficient τc ∈ {0, 1/3, 2/3, 0.99}
and discrepancy coefficient τd ∈ [0.89, 1.01].

around 1. Evaluation is performed on the test image qrcode shown in Figure 5.1
corrupted by zero-mean AWGN yielding SNRb = 15.

The restoration accuracies in terms of ISNR values obtained by using the four
considered penalty function φ are illustrated in the four subplots of Figure 5.2. In
each subplot, three curves are associated with three different values of the convexity
coefficient τc ∈ {1/3, 2/3, 0.99} whereas the fourth curve corresponds to the setting
(2.1) in Section 2 yielding the penalty function φ(t) = t, i.e. the ROF model.

It is evident from Figure 5.2 that for all the considered penalty functions the
quality of the restored images increases with an increasing τc until the convexity limit
(τc = 0.99) is reached. This best choice corresponds to a maximally non-convex
regularization preserving the convexity of the total functional J .

Hence, in the next numerical experiment we fix τc = 0.99 and we compare the
performance of the different penalty functions in terms of achieved ISNR values as
well as in terms of number of performed ADMM iterations, as illustrated in Figures
5.3(left) and 5.3(right), respectively. From the accuracy point of view, the proposed
exponential penalty (see Table 2.1) provides the best performance as shown in Figure
5.3(left), whereas for what concerns the number of required iterations the difference
among the penalties is negligible. These observations motivated us to use the penalty
function φexp and τc = 0.99 in the remaining numerical experiments.
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Fig. 5.3. Example 1: Accuracy (ISNR, to the right) and efficiency (iterations, to the left)
evaluation of the proposed CNC model in (1.4) with fixed convexity coefficient τc = 0.99 and varying
penalty function φ ∈ {φlog, φrat, φatan, φexp} and discrepancy coefficient τd ∈ [0.89, 1.01].

We conclude this example by presenting an empirical investigation on the numer-
ical convergence of the proposed ADMM-based minimization scheme with automatic
selection of the regularization parameter reported in Algorithm 1. Towards this aim,
in Figure 5.4 we report some convergence plots concerning the case SNRb = 15 for
the qrcode test image. In particular, the first five double-logarithmic plots of Fig-
ure 5.4 represent the absolute changes of the three primal variables u, t, z and of the
two dual variables λt, λz involved along the iterations k in the ADMM procedure in
Algorithm 1. The empirical behavior suggests numerical convergence of the proposed
scheme.

In the sixth plot (third row, to the right) of Figure 5.4 we report the ISNR values
associated with the iterate u(k), whereas in the fourth row we show the iterates µk

computed by Algorithm 1 according to the discrepancy principle and the associated
discrepancy δ(k). It can be noticed that both µk and δ(k) converge; in particular, the
discrepancy converges towards the prescribed value δ̄, represented by a dashed (red)
horizontal line.

Example 2. In this example we carry out a broader evaluation of the proposed
CNC model by considering the four test images satellite, phantom, checkboard

and qrcode shown in Figure 5.1 corrupted by zero-mean AWGN yielding different
SNRb values. In particular, based on the results presented in the previous example,
we use the penalty function φexp and parameter pairs (µ, a) satisfying the convexity
condition (3.13) with convexity coefficient τc = 0.99.

To demonstrate the advantages of using non-smooth non-convex versus non-
smooth but convex regularization in a convex variational model, we compare the
performance of our CNC model with the popular ROF or TV-`2 model [26] and with
its non-local extension NLTV-`2 [32]. In all the experiments, the discrepancy coeffi-
cient τd for the TV-`2 model and for the CNC model has been hand-tuned so as to get
the highest possible ISNR value of the denoised image. Similarly, in order to obtain
the best possible results for the NLTV-`2 model we hand-tuned the regularization
parameter µ.

In Table 5.1 we report the results of the comparison, with SNRb denoting the SNR
of the noise-corrupted image b and with the best ISNR results marked in boldface.
First, we notice that the proposed CNC model outperforms TV-`2 and NLTV-`2 in all
the examples. In particular, the ISNR improvements obtained by CNC with respect

20



0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log
10

 k

lo
g 10

 ||
 u

(k
)  −

 u
(k

−
1)

 ||
2

0 0.5 1 1.5 2

−3

−2

−1

0

1

2

log
10

 k

lo
g 10

 ||
 t(k

)  −
 t(k

−
1)

 ||
2

0 0.5 1 1.5 2

−3

−2

−1

0

1

2

log
10

 k

lo
g 10

 ||
 z

(k
)  −

 z
(k

−
1)

 ||
2

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

log
10

 k

lo
g 10

 ||
 λ

t(k
)  −

 λ
t(k

−
1)

 ||
2

0 0.5 1 1.5 2

−2

−1

0

1

2

log
10

 k

lo
g 10

 ||
 λ

z(k
)  −

 λ
z(k

−
1)

 ||
2

0 50 100 150 200 250
0

5

10

15

k

IS
N

R
 (

k)

50 100 150 200 250
0

2

4

6

8

10

12

14

k

µ(k
)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

k

δ (
k)

Fig. 5.4. Example 1: plots providing empirical evidence of numerical convergence of the pro-
posed CNC approach.
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(a) noisy image (SNRb = 15)

TV-`2 NLTV-`2 CNC

(b) restored images (from left to right, ISNR = 8.61, 10.51, 15.96)

(c) absolute error images

Fig. 5.5. Example 2: Denoising results for test image qrcode corrupted by zero-mean AWGN
yielding SNRb = 15.

to the convexly regularized TV-`2 and NLTV-`2 models are greater for phantom,
checkboard and qrcode images. This is not surprising, since these three images
are characterized by very sparse gradients (sparser than satellite) and it is well-
known that non-convex regularization holds the potential for inducing sparsity more
effectively than convex regularization.

To allow for a visual inspection of the performance, in Figures 5.5 and 5.6 we re-
port some denoising results for the qrcode and phantom images corrupted by AWGN
yielding SNRb equal to 15 and 10, respectively. In particular, in the first row of Fig-
ures 5.5 and 5.6 we show the noise-corrupted images whereas in the second row we
report the denoised images obtained by the three compared models. In order to better
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(a) noisy image (SNRb = 10)

TV-`2 NLTV-`2 CNC

(b) restored images (from left to right, ISNR = 11.86, 13.53, 17.41)

(c) absolute error images

Fig. 5.6. Example 2: Denoising results for test image phantom corrupted by zero-mean AWGN
yielding SNRb = 10.

highlight the differences in the restored images, in the third row of Figures 5.5 and
5.6 we also show the absolute error images given by |ū− u∗|, with ū and u∗ denoting
the uncorrupted and the restored images, respectively. In particular, the darker are
the pixels in the absolute error images, the greater is the error at that pixels in the
restored images. It is evident from these error images how the proposed nonconvexly
regularized CNC model allows for better restoring edges and details with respect to
the convexly-regularized considered models, thus yielding higher ISNR values.

Example 3. In the previous example we have seen how the beneficial effect
of using a non-convex versus a convex regularizer is to push the solution closer to
the considered uncorrupted test images, which are substantially piecewise constant
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satellite phantom

SNRb 10 15 20 10 15 20

ISNR

TV-`2 8.31 7.09 6.35 11.86 11.50 11.28

NLTV-`2 8.45 7.55 6.88 13.53 13.49 13.32

CNC 9.12 8.69 8.68 17.41 19.64 21.71

checkboard qrcode

SNRb 10 15 20 10 15 20

ISNR

TV-`2 7.09 6.82 6.67 8.89 8.61 8.46

NLTV-`2 7.37 9.53 10.33 9.42 10.51 11.18

CNC 12.28 14.94 16.94 13.90 15.95 17.99

Table 5.1
Example 2: ISNR values obtained by denoising the test images satellite and phantom (top),

checkboard and qrcode(bottom), corrupted by zero-mean AWGN yielding increasing SNRb values
for the TV-`2, NLTV-`2 and CNC approaches.

satellite phantom

SNRb 10 15 20 10 15 20

ISNR

FNNMM 8.38 7.35 6.71 12.76 12.87 12.84

CNC (τc = 1.1) 9.13 8.71 8.72 17.74 19.93 22.04

CNC (τc = 5.0) 8.59 8.41 8.63 19.47 22.17 24.37

checkboard qrcode

SNRb 10 15 20 10 15 20

ISNR

FNNMM 8.59 9.23 9.79 10.09 10.70 11.15

CNC (τc = 1.1) 12.59 15.34 17.15 14.24 16.26 18.11

CNC (τc = 5.0) 16.31 17.61 17.75 17.33 18.73 18.87

Table 5.2
Example 3: ISNR values obtained by denoising the images satellite and phantom (top),

checkboard and qrcode(bottom), corrupted by zero-mean AWGN yielding increasing SNRb values
for the FNNMM and CNC approaches.

images. These effect is quite well known and comes from the ability of non-convex
regularizers to induce with more strength the sparsity of gradient magnitudes in the
restored image, as theoretically analyzed in [19]. Moreover, the results in Example
1 indicate that for images characterized by a degree of sparsity (of gradient magni-
tudes) similar to the considered test images, more accurate restorations are obtained
by pushing the functional towards its convexity limit, i.e. by letting the convexity
coefficient τc tend to 1 from the left.

In this example, we investigate the potential of our model when τc > 1 which,
according to results in Section 3, becomes non-convex. In particular, to better evalu-
ate the performance of our model we compare it with the state-of-the-art non-convex
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non-smooth variational model proposed in [22], minimized by a non-smooth Grad-
uated Non-convexity Continuation (GNC) approach. The model will be referred to
as FNNMM. In particular, the non-convex rational prior used in [22] depends on a
parameter α analogous to our parameter a. Since the authors did not provide any
procedure to automatically estimate α, we used the suggested value α = 0.5 for all
the experiments.

In Table 5.2 we report the results of the comparison, where, analogously to Table
5.1, SNRb denotes the SNR of the noise-corrupted image b and the best ISNR results
are marked in boldface. From Table 5.2 we can observe that for τc > 1 the restoration
results obtained by our model outperform both the results achieved by our model in
the convex regime (τc = 0.99) reported in Table 5.1 and the ISNR values of FNNMM
restorations. More precisely, in Table 5.2 we show the ISNR values achieved by our
model for two different values of τc, namely τc ∈ {1.1, 5.0}. We notice that the ISNR
values for τc = 5 turn out to be higher than for τc = 1.1 except for the satellite

image, as expected due to its previously outlined characteristics.

The conclusion of the experimental investigation carried out above is that pure
non-convex models hold the potential for obtaining higher quality restorations than
convex (or CNC) models for images characterized by very sparse gradients, such as the
considered test images phantom, checkboard and qrcode. In this case, the proposed
model (1.4) with τc > 1 compares successively with other non-convex state-of-the-art
approaches. However, as well known, these models need to be used carefully due to
numerical and computational issues arising as a consequence of their non-convexity. It
is worth recalling that no minimization algorithm guarantees the finding of the global
minimum of a general non-convex cost-function and thus the obtained solutions are
in general only local minimizers.

In the following, we present a final experimental test aimed at demonstrating that
for certain types of images our CNC proposal can be an optimal choice in terms of
achieved restoration accuracy with respect not only to pure convex models but also
to pure non-convex models. At this aim, we consider the two test images satellite

and qrcode and a new test image cameraman, shown in the first row of Figure 5.7.
In the second and third row of Figure 5.7 we report the normalized histograms of the
gradient magnitudes of the images and zoomed details of such histograms, respectively.
In the last row, we show plots representing the restoration quality (ISNR) achieved by
the proposed model (1.4) applied to the three considered images for different values
of the convexity coefficient τc, both in the pure convex (τc = 0, i.e. ROF model)
or CNC (0 < τc ≤ 1) and in the pure non-convex (τc > 1) regimes. It can be
observed that for the qrcode image, as previously pointed out, the best restorations
are obtained by pushing the model into the pure non-convex regime. In fact, qrcode
is a representative for the class of piecewise constant image characterized by very
sparse gradients histograms. The satellite test image can be considered as less
piecewise constant than qrcode, with a much more spread out histogram. In this
case, the most accurate restorations are obtained near the convexity limit τc = 1,
as visible in the ISNR plot in the last row of Figure 5.7. Finally, cameraman can
be representative for photographic images which present a wide gradients histogram
with significative homogeneous regions which benefit of the non-convex regularization
term in the model. For this image, the best restorations are achieved for τc in the
range [0.3, 0.5], that is by using the proposed model (1.4) in the CNC regime.

Our CNC model has adavantages for the class of images which are no longer
purely piecewise constant, but present several homogeneous regions, for which the
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restoration would be penalized by both using a pure non-convex model and also by
using a pure convex model. This would suggest a future direction of investigation to
adapt the convexity of the model to the content of the images.

0 0.5 1
0

5

10

15

20

0 0.5 1
0

10

20

30

40

0 0.5 1
0

10

20

30

40

50

0 0.2 0.4 0.6
0

2

4

6

8

10

12

0 0.2 0.4 0.6
0

2

4

6

8

10

12

0 0.2 0.4 0.6
0

2

4

6

8

10

12

0 0.5 1 1.5 2
4.4

4.5

4.6

4.7

4.8

4.9

τ
c

IS
N

R
 (

dB
)

0 1 2 3 4 5

7.5

8

8.5

τ
c

IS
N

R
 (

dB
)

0 1 2 3 4 5

10

12

14

16

18

τ
c

IS
N

R
 (

dB
)

Fig. 5.7. Example 3. First row: the three images cameraman (left), satellite (center) and
qrcode (right). Second row: the associated normalized histograms of gradient magnitudes. Third
row: zoomed details of the histograms. Last row: restoration quality (in terms of ISNR values)
achieved by the proposed variational model (1.4) applied to the three considered images for different
values of the convexity coefficient τc, both in the convex (0 ≤ τc ≤ 1) and in the non-convex (τc > 1)
regime.

6. Conclusions. We presented a CNC variational model for image denoising
which includes a parameterized non-convex non-smooth regularization term aimed at
forcing sparsity of gradients in the restored image. An automatic strategy for the
selection of the regularization parameter based on the discrepancy principle has been
integrated into an efficient ADMM-based minimization algorithm. Theoretical con-
vexity conditions for the considered objective functional as well as for the optimization
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sub-problems arising in the ADMM-based iterative scheme have been derived, which
guarantee the existence of a unique global minimizer. A novel non-convex exponen-
tial penalty function has been proposed which allows for improved restorations and
for a closed-form threshold function. Numerical results on sparse-gradient images
strongly indicate that the proposed CNC model outperforms classical convex models
with non-smooth but convex regularizers, such as TV-`2 and NLTV-`2. The proposed
model has been tested also in the non-convex regime and successfully compared with
a state-of-the-art non-convex method. In conclusion, the introduced model can be
flexibly deployed with high quality results both in the convex and non-convex setting.
Moreover, the proposed approach is not limited to the image denoising application,
but it is general enough to be used in other important fields. This will be matter of
future work.

REFERENCES

[1] J. Bioucas-Dias, and M. Figueredo, Fast image Recovery Using Variable Splitting and Con-
strained Optimization, IEEE Transaction on Image Processing, 19(9), pp. 2345–2356, 2010.

[2] A. Blake, A. Zisserman, Visual Reconstruction, Cambridge, MA, USA: MIT Press, 1987.
[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in
Machine Learning, vol. 3(1), pp. 1122, 2011.

[4] D. Calvetti and L. Reichel, Tikhonov regularization of large linear problems, BIT Numer. Math.,
43 (2003), pp. 263–283.

[5] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Tikhonov regularization and the L-curve for
large, discrete ill-posed problems, J. Comput. Appl. Math., 123 (2000), pp. 423–446.

[6] R.H. Chan, M. Tao and X.M. Yuan, Constrained Total Variational Deblurring Models and Fast
Algorithms Based on Alternating Direction Method of Multipliers, SIAM J. Imag. Sci., 6,
pp. 680–697, (2013)

[7] P.Y. Chen, I.W. Selesnick, Group-Sparse Signal Denoising: Non-Convex Regularization, Convex
Optimization, IEEE Trans. on Sign. Proc., 62 (2014) pp. 3464–3478.

[8] M. Christiansen and M. Hanke, Deblurring Methods Using Antireflective Boundary Conditions,
SIAM Journal on Scientific Computing, 30, pp. 855–872, 2008.

[9] F. H. Clarke, Optimizatiom and Nonsmooth Analysis, Wiley, 1983.
[10] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W

Function, Advances in Computational Mathematics, vol.5, pp. 329–359, 1996.
[11] I. Ekeland and R. Temam, Convex Analysis and Variational Problems (Classics in Applied

Mathematics). Philadelphia, PA, USA: SIAM, 1999.
[12] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dor-

drecht, The Netherlands, 1996.
[13] R. Glowinski, and P. Le Tallec, Augmented Lagrangians and Operator-Splitting Methods in

Nonlinear Mechanics, SIAM, Philadelphia, 1989.
[14] C. He, C. Hu, W. Zhang, B. Shi, A Fast Adaptive Parameter Estimation for Total Variation

Image Restoration, Image Processing, IEEE Transactions on , 23(21), pp. 4954-4967, 2014.
[15] A. Lanza, S. Morigi, F. Sgallari, Convex Image Denoising via Non-Convex Regularization, Scale

Space and Variational Methods in Computer Vision, 9087, pp. 666–677, 2015.
[16] C. W. Lu, Image restoration and decomposition using nonconvex nonsmooth regularisation and

negative Hilbert-Sobolev norm, IET Image Processing, 6(6), pp. 706-716, (2012)
[17] M. K. Ng, R. H. Chan, and W. C. Tang, A Fast Algorithm for Deblurring Models with Neumann

Boundary Conditions, SIAM Journal on Scientific Computing, 21, pp. 851–866, 1999.
[18] M. Nikolova, Estimation of Binary Images by Minimizing Convex Criteria, in Proc. IEEE Int.

Conf. Image Process., 2, pp. 108–112, 1998.
[19] M. Nikolova, Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex

Regularized Least-Squares, Multiscale Modeling and Simulation, pp. 960–991, 4(3), 2005.
[20] M. Nikolova, M. Ng, and C. Tam, Software is available at

http://www.math.hkbu.edu.hk/∼mng/imaging-software.html
[21] M. Nikolova, Ng, M., Tam,C.P., On `1 Data Fitting and Concave Regularization for Image

Recovery, SIAM J. on Scientific Computing, 35/1, pp. A397–A430 (2013)
[22] M. Nikolova, M. K. Ng and C. P. Tam, Fast Non-convex Non-smooth Minimization Methods

27



for Image Restoration and Reconstruction, IEEE Trans. Image Processing, 19(12), pp. 3073-
3088, (2010)

[23] A. Parekh, I.W. Selesnick, Convex Denoising using Non-Convex Tight Frame Regularization
arXiv preprint arXiv:1504.00976, 2015

[24] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1970.
[25] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, vol. 317 of Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer,
Berlin, Germany, 1998.

[26] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physics D, 60(1-4), pp. 259–268, 1992.

[27] I. W. Selesnick, I. Bayram, Sparse Signal Estimation by Maximally Sparse Convex Optimization,
IEEE Trans. on Signal Proc., 62(5) (2014) pp. 1078–1092.

[28] I. W. Selesnick, A. Parekh, and I. Bayram, Convex 1-D total variation denoising with non-convex
regularization, IEEE Signal Proc. Letters, 22(2) (2015) pp. 141–144.

[29] E. Y. Sidky, R. Chartrand, J. M. Boone, X. Pan, Constrained TpV–Minimization for Enhanced
Exploitation of Gradient Sparsity: Application to CT Image Reconstruction, IEEE Journal
of Translational Engineering in Health and Medicine, 2, pp. 1–18, 2014.

[30] Y.W. Wen, R.H. Chan, Parameter selection for total-variation-based image restoration using
discrepancy principle, IEEE Transactions on Image Processing, 21(4), pp. 1770-1781, 2012.

[31] C. Wu and X.C. Tai, Augmented Lagrangian Method, Dual Methods, and Split Bregman Iter-
ation for ROF, Vectorial TV, and High Order Models, SIAM Journal on Imaging Sciences,
3(3), pp. 300–339, 2010.

[32] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized Nonlocal Regularization for
Deconvolution and Sparse Reconstruction, SIAM Journal on Imaging Sciences, 3(3), pp.
253-276, 2010

[33] C. Wu, J. Zhang and X.C. Tai, Augmented Lagrangian Method for Total Variation Restoration
with Non-Quadratic Fidelity, Inverse Problems and Imaging, 5(1), pp. 237–261, 2011.

APPENDIX. Proof of Proposition 3.2.
Proof. Recalling that convexity of a function is invariant to non singular linear

transformations of the domain, we search for a non singular linear transformation
T : R3 → R3 of the domain of function f defined in (3.7), that is x = Ty, with
x = (x1, x2, x3)T , y = (y1, y2, y3)T , T = (Ti,j)i,j:=1,2,3 such that convexity conditions
for the function fT := f ◦ T are easier to identify than for f . We obtain the explicit
expression of function fT , depending on y and on the nine entries of the transformation
matrix T , by replacing x = Ty in (3.7):

fT (y;T ) := f(Ty) = µQ1(y;T ) + φ

(
1

∆

√
Q2(y;T ) ; a

)
, (6.1)

where Q1 and Q2 are quadratic functions. We impose that both Q1 and Q2 do not
contain mixed products, that Q2 does not depend on y3 and that the coefficients of
both y2

1 and y2
2 in Q2 are equal to one; we obtain that the transformation matrix

T = (0,
√

2/3,
√

3/3;
√

2/2,−
√

2/6,
√

3/3;−
√

2/2,−
√

2/6,
√

3/3) yields:

fT (y1, y2, y3) =
µ

6

(
y2

1 + y2
2 + y2

3

)
+ φ

(
1

∆

√
y2

1 + y2
2

)
. (6.2)

It follows that the function fT (y1, y2, y3) above, hence also f in (3.7), are strictly
convex if and only if the function g(y1, y2) defined in (3.9) is strictly convex.
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Proof of Proposition 3.3.
Proof. The function g : R2 → R in (3.9) can be rewritten in composite form as

follows:

g(y1, y2) = h (ρ(y1, y2)) , (6.3)

with the function ρ : R2 → R+ defined by

ρ(y1, y2) =
√
y2

1 + y2
2 , (6.4)

and the function h : R+ → R defined in (3.10).
We notice that, due to definition of function ρ in (6.4) and due to Assumption 1)

in Section 2 on the penalty function φ, we have:

ρ ∈ C0
(
R2
)
∩ C2

(
R2 \ {(0, 0)}

)
, h ∈ C0(R+) ∩ C2(R∗+) . (6.5)

It follows from (6.3)–(6.5) that the function g is such that

g ∈ C0
(
R2
)
∩ C2

(
R2 \ {(0, 0)}

)
. (6.6)

Hence, condition for g to be strictly convex is that its Hessian matrix Hg(y1, y2) is
positive definite for any (y1, y2) ∈ R2 \ {(0, 0)}. In the following, we investigate such
condition.

By applying the chain rule of differentiation twice to the function g in composite
form (6.3), we get:

Hg = Hρ h
′ + ∇ρ∇ρTh′′ =

 ρ1,1h
′ + ρ2

1h
′′ ρ1,2h

′ + ρ1ρ2h
′′

ρ1,2h
′ + ρ1ρ2h

′′ ρ2,2h
′ + ρ2

2h
′′

 , (6.7)

where Hρ and ∇ρ denote the Hessian matrix and the gradient of function ρ in (6.4),
respectively, and where, for simplicity of notations, dependencies on independent
variables are dropped and a concise notation for ordinary and partial derivatives is
adopted, namely h′ := dh/dρ, h′′ := d2h/dρ2, ρi := ∂ρ/∂yi, ρi,j := ∂2ρ/∂yi∂yj ,
i, j ∈ {1, 2}. We remark that, since we are considering the case (y1, y2) 6= (0, 0), all
the differential quantities in (6.7) are well defined and, in particular, no one-sided
derivative is involved.

According to the Sylvester’s criterion, the Hessian matrix Hg in (6.7) is positive
definite if and only if its two leading principal minors are positive, that is if the
following two conditions hold: ρ1,1h

′ + ρ2
1h
′′ > 0(

ρ1,1ρ2,2 − ρ2
1,2

)
(h′)

2
+
(
ρ2,2ρ

2
1 + ρ1,1ρ

2
2 − 2ρ1ρ2ρ1,2

)
h′h′′ > 0

. (6.8)

The first and second order partial derivatives of ρ in (6.4) are as follows:

ρ1 =
y1

ρ
, ρ2 =

y2

ρ
, ρ1,1 =

y2
2

ρ3
, ρ2,2 =

y2
1

ρ3
, ρ1,2 = − y1y2

ρ3
. (6.9)
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Replacing expressions (6.9) into Hg positive definiteness conditions (6.8) and recalling
that ρ is a positive quantity for every (y1, y2) 6= (0, 0), we obtain:

y2
2

ρ3
h′ +

y2
1

ρ2
h′′ > 0

���
���

���
�(

y2
1y

2
2

ρ6
− y2

1y
2
2

ρ6

)
(h′)2 +

(
y4

1

ρ5
+
y4

2

ρ5
+ 2

y2
1y

2
2

ρ5

)
h′h′′ > 0

≡

≡


y2

2h
′ + ρ y2

1h
′′ > 0

��
��
�(

y2
1 + y2

2

)2
ρ5

h′h′′ > 0
≡

 y2
2h
′ + ρ y2

1h
′′ > 0

h′h′′ > 0
≡

 h′ > 0

h′′ > 0
. (6.10)

Hence, the function g defined in (3.9) is strictly convex if and only if the function h
in (3.10) is monotonically increasing and strictly convex.

Proof of Proposition 4.2.
Proof. According to Proposition (3.5), in case that the parameters pair (µ, a)

satisfies (3.13), the functional J (u;µ, a) in (1.4) is strictly convex, thus admitting a
unique minimizer u∗. Then, the first-order optimality condition for J at u∗ given
in (4.6) follows immediately from the generalized Fermat’s rule (see Theorem 10.1 in
[25]).

To prove (4.7), we need to write in a more explicit form the subdifferential ∂u [J ].
However, we can not apply the additive rule of subdifferentials to the functional J
since the regularization term Φ in (4.5) is non-convex in u due to concavity of the
penalty function φ. Hence, we resort to notions from calculus for non-smooth non-
convex functions, in particular the Clarke generalized gradient [9], which extends the
concept of subdifferential for non-smooth convex functions to the case of non-smooth
non-convex but locally Lipschitz functions. Indeed, the rest of the proof relies on
the fact that, according to Lemma 4.1, both the total functional J in (1.4) and,
separately, the Φ regularization term in (4.5) and the quadratic fidelity term, are
locally Lipschitz functions, such that their generalized gradient is defined.

First, we recall that for non-smooth but convex functions the Clarke generalized
gradient is equal to the subdifferential [9], that is, in our case:

∂u [J ] (u∗) = ∂̄u [J ] (u∗) . (6.11)

After recalling the definition of functional J in (1.4), we can now apply the additive
rule of generalized gradients [9] to the right-hand side of (6.11):

∂̄u [J ] (u∗) ⊂ ∂̄u[ Φ ] (u∗) + ∂̄u

[ µ
2

∥∥u− b∥∥2

2

]
(u∗)

= ∂̄u[ Φ ] (u∗) + µ (u∗ − b) , (6.12)

where in (6.12) we applied the property that the generalized gradient reduces to the
usual gradient in case of continuously differentiable functions.

Recalling the definition of the Φ regularization term in (4.5) and applying to the
first term of (6.12) the chain rule for generalized gradients [9], we obtain:

∂̄u[ Φ ] (u∗) = DT ∂̄Du [ Φ ] (Du∗) . (6.13)
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From (6.13), (6.12), (6.11) and statement (4.6), statement (4.7) follows immediately.

Proof of Theorem 4.4.
Proof. Based on the definition of the augmented Lagrangian functional in (4.3),

we rewrite in explicit form the first inequality of the saddle-point condition in (4.4):

��
��

�
��n∑

i=1

φ (‖t∗i ‖2; a) +��
���

�µ

2
‖z∗ − b‖22 +���

���
�βz

2
‖z∗ − u∗‖22 +

���
���

�βt
2
‖t∗ −Du∗‖22

−〈λz, z∗ − u∗ 〉 − 〈λt, t∗ −Du∗ 〉

≤
��
�
��

��n∑
i=1

φ (‖t∗i ‖2; a) +���
���µ

2
‖z∗ − b‖22 +���

���
�βz

2
‖z∗ − u∗‖22 +

���
���

�βt
2
‖t∗ −Du∗‖22

−〈λ∗z, z∗ − u∗ 〉 − 〈λ∗t , t∗ −Du∗ 〉 ∀ (λz, λt) ∈ V×Q

≡ 〈λ∗z − λz, z∗ − u∗ 〉+ 〈λ∗t − λt, t∗ −Du∗ 〉 ≤ 0 ∀ (λz, λt) ∈ V×Q ,(6.14)

and, similarly, the second inequality:

n∑
i=1

φ (‖t∗i ‖2; a) +
µ

2
‖z∗ − b‖22 +

βz
2
‖z∗ − u∗‖22 +

βt
2
‖t∗ −Du∗‖22

−(((((
((〈λ∗z, z∗ − u∗ 〉 −(((((

((〈λ∗t , t∗ −Du∗ 〉

≤
n∑
i=1

φ (‖ti‖2; a) +
µ

2
‖z − b‖22 +

βz
2
‖z − u‖22 +

βt
2
‖t−Du‖22

−(((((
((〈λ∗z, z∗ − u∗ 〉 −(((((

((〈λ∗t , t∗ −Du∗ 〉 ∀ (u, z, t) ∈ V× V×Q . (6.15)

In the first part of the proof, we demonstrate that if (u∗, z∗, t∗;λ∗z, λ
∗
t ) is a solution

of the saddle-point problem (4.3)–(4.4), that is it satisfies the two inequalities (6.14)
and (6.15), then u∗ is the unique minimizer of the functional J (u;µ, a) in (1.4).

Since (6.14) must be satisfied for any (λz, λt) ∈ V× Q, by taking λz = λ∗z we
obtain:

〈λ∗t − λt, t∗ −Du∗ 〉 ≤ 0 ∀ λt ∈ Q =⇒ t∗ = Du∗ . (6.16)

Similarly, by taking λt = λ∗t in (6.14) we have:

〈λ∗z − λz, z∗ − u∗ 〉 ≤ 0 ∀ λz ∈ V =⇒ z∗ = u∗ . (6.17)

The second inequality (6.15) must be satisfied for any (u, z, t) ∈ V×V×Q. Hence, by
taking simultaneously z = u and t = Du in (6.15) and, at the same time, substituting
in (6.15) the two previously derived conditions (6.16) and (6.17), we obtain:

n∑
i=1

φ (‖(Du∗)i‖2; a) +
µ

2
‖u∗ − b‖22

≤
n∑
i=1

φ (‖(Du)i‖2; a) +
µ

2
‖u− b‖22 ∀ u ∈ V . (6.18)

Inequality (6.18) indicates that u∗ is a global minimizer of the functional J (u;µ, a) in
(1.4). Hence, we have demonstrated that all the saddle-point solutions, if there exists
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one, of problem (4.3)–(4.4) are of the form (u∗, u∗, Du∗;λ∗z, λ
∗
t ) , with u∗ denoting the

unique global minimizer of J (u;µ, a).
In the second part of the proof, we demonstrate that at least one solution of

the saddle-point problem exists. In particular, we prove that if u∗ is a minimizer
of J (u;µ, a) in (1.4), then there exist (z∗, t∗) ∈ V× Q and (λ∗z, λ

∗
t ) ∈ V× Q such

that (u∗, z∗, t∗;λ∗z, λ
∗
t ) is a solution of the saddle-point problem (4.3)–(4.4), that is it

satisfies the two inequalities (6.14) and (6.15). The demonstration relies on an initial
suitable choice of the vectors z∗, t∗, λ∗z and λ∗t . Analogously to the proofs in [31],
[14], we take:

z∗ = u∗ , t∗ = Du∗ , (6.19)

λ∗z = µ (u∗ − b) , λ∗t ∈ ∂̄Du [ Φ ] (Du∗) s.t. : λ∗z + DTλ∗t = 0 , (6.20)

where the term ∂̄Du [ Φ ] (Du∗) indicates the Clarke generalized gradient (with respect
to Du, calculated at Du∗) of the non-convex regularization term Φ in (4.5). We notice
that a vector λ∗t satisfying (6.20) is guaranteed to exist thanks to Proposition 4.2. In
fact, since here we are assuming that u∗ is a minimizer of functional J (u;µ, a), the
first-order optimality condition in (4.7) holds true.

Due to the first two settings in (6.19), the first saddle-point condition in (6.14) is
clearly satisfied. Proving the second condition, that we rewrite in compact form as

L (u∗, z∗, t∗;λ∗z, λ
∗
t ;µ, a) ≤ L (u, z, t;λ∗z, λ

∗
t ;µ, a) ∀ (u, z, t) ∈ V× V× Q , (6.21)

is less straightforward: we need to investigate the optimality conditions of functional
L (u, z, t;λ∗z, λ

∗
t ;µ, a) in (6.21). To this aim, we introduce below the three functions

Lu(u, z, t;λ∗z, λ
∗
t ;µ, a), Lz(u, z, t;λ∗z, λ∗t ;µ, a) and Lt(u, z, t;λ∗z, λ∗t ;µ, a) representing

the restriction of L (u, z, t;λ∗z, λ
∗
t ;µ, a) to only the terms depending on the primal

variables u, z and t, respectively:

Lu(u, z, t;λ∗z, λ
∗
t ;µ, a) =

βz
2
‖z − u‖22 +

βt
2
‖t−Du‖22 + 〈λ∗z, u〉+ 〈λ∗t , Du〉︸ ︷︷ ︸

F1(u)

(6.22)

Lz(u, z, t;λ∗z, λ∗t ;µ, a) =
βz
2
‖z − u‖22 − 〈λ∗z, z 〉︸ ︷︷ ︸

F1(z)

+
µ

2
‖z − b‖22︸ ︷︷ ︸
F2(z)

(6.23)

Lt(u, z, t;λ∗z, λ∗t ;µ, a) = − 〈λ∗t , t 〉︸ ︷︷ ︸
F1(t)

+

n∑
i=1

φ (‖ti‖2; a) +
βt
2
‖t−Du‖22︸ ︷︷ ︸

F2(t)

(6.24)

We notice that the functions Lu, Lz and Lt above are proper, continuous and coercive
with respect to the variables u, z and t, respectively. Moreover, the three selected
functions F1 and the function F2 in (6.23) are convex, hence Lu and Lz are convex.
For what concerns the function F2 in (6.24), it follows from the results that are given in
Proposition 4.5 that it is strictly convex if and only if the condition βt > a is satisfied.
Since in the ADMM-based scheme that we will present for solving the saddle-point
problem (4.3)–(4.4) such condition will be taken as a constraint, we can assume here
that it is satisfied, such that F2 in (6.24) is convex and, hence, Lt is convex as well.
By finally noticing that the three functions F1 are Gâteaux-differentiable, we can
apply Lemma 4.3 separately to (6.22), (6.23) and (6.24) thus obtaining the following
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optimality conditions for a generic point (ū, z̄, t̄):〈
−βz(z̄ − ū) − βtDT (t̄−Dū) + λ∗z + DTλ∗t , u− ū

〉
≥ 0 ∀ u ∈ V , (6.25)

µ

2
‖z − b‖22 −

µ

2
‖z̄ − b‖22 +

〈
βz(z̄ − ū)− λ∗z , z − z̄

〉
≥ 0 ∀ z ∈ V , (6.26)

n∑
i=1

φ (‖ti‖2; a) +
βt
2
‖t−Dū‖22 −

n∑
i=1

φ (‖t̄i‖2; a) − βt
2
‖t̄−Dū‖22

− 〈λ∗t , t− t̄ 〉 ≥ 0 ∀ t ∈ Q . (6.27)

We now verify that the triplet (z∗, t∗, u∗) satisfies the optimality conditions above, so
that the second saddle-point condition (6.21) holds true. By substituting (z∗, t∗, u∗)
for (z̄, t̄, ū) in (6.25), (6.26) and (6.27), we obtain:〈

−βz (z∗ − u∗)︸ ︷︷ ︸
0

− βtDT (t∗ −Du∗)︸ ︷︷ ︸
0

+ λ∗z + DTλ∗t︸ ︷︷ ︸
0

, u− u∗
〉
≥ 0 ∀ u ∈ V ,(6.28)

µ

2
‖z − b‖22 −

µ

2
‖z∗ − b‖22 +

〈
βz (z∗ − u∗)︸ ︷︷ ︸

0

−λ∗z , z − z∗
〉
≥ 0 ∀ z ∈ V , (6.29)

n∑
i=1

φ (‖ti‖2; a) +
βt
2
‖t−Du∗‖22 −

n∑
i=1

φ (‖t∗i ‖2; a) − βt
2
‖t∗ −Du∗‖22︸ ︷︷ ︸

0

− 〈λ∗t , t− t∗ 〉 ≥ 0 ∀ t ∈ Q , (6.30)

where the underlined terms are null due to some of the settings in (6.19)–(6.20). The
first condition (6.28) is clearly satisfied. We rewrite the second and third condition
by substituting also the settings on λ∗z and λ∗t in (6.20):

µ

2
‖z − b‖22 −

µ

2
‖z∗ − b‖22 − 〈µ (z∗ − b), z − z∗ 〉 ≥ 0 ∀ z ∈ V , (6.31)

n∑
i=1

φ (‖ti‖2; a) +
βt
2
‖t−Du∗‖22 −

n∑
i=1

φ (‖t∗i ‖2; a) − βt
2
‖t∗ −Du∗‖22

−
〈
∂̄t

[ n∑
i=1

φ (‖ti‖2; a)

]
(t∗) + µ (t∗ −Du∗) , t− t∗

〉
≥ 0 ∀ t ∈ Q , (6.32)

where in (6.32) we added the null term µ (t∗ −Du∗). The two optimality conditions
(6.31) and (6.32) can be proved based on the concept of Bregman distance, that we
thus recall here briefly: given a convex not necessarily smooth function G and two
points x, x∗ in its domain, the Bregman distance (or divergence) associated with
function G for points x, x∗ is defined as

BG(x, x∗) := G(x)−G(x∗)− 〈 ∂G(x∗) , x− x∗ 〉 , (6.33)

where ∂G denotes the subdifferential of G. The Bregman distance is not a distance in
strict sense, but it is always non-negative for convex functions G. Inequalities (6.31)
and (6.32) can be equivalently rewritten in terms of Bregman distances as follows:

BZ(z, z∗) ≥ 0 ∀ z ∈ V , Z(z) :=
µ

2
‖z − b‖22 , (6.34)

BT (t, t∗) ≥ 0 ∀ t ∈ Q , T (t) :=

n∑
i=1

φ (‖ti‖2; a) +
βt
2
‖t−Du∗‖22 . (6.35)
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In particular, (6.34) follows immediately from (6.31) and (6.33) whereas (6.35) follows
from (6.32) and (6.33) and from two further observations. First, the function T in
(6.35) is convex for the same reasons for which the function F2 in (6.24) is convex.
Second, the first term of the scalar product in (6.35) represents the subdifferential of
the convex function T . Since the Bregman distance is always non-negative, (6.34) and
(6.35) hold true, the second saddle-point condition in (6.21) is satisfied and, finally,
the second part of the Theorem proof is completed.

Proof of Proposition 4.5.
Proof. Condition (4.32) for convexity of function θ in (4.31) can be easily demon-

strated based on Proposition 3.3 in Section 3. In fact, after rewriting θ as follows:

θ(x) = φ (‖x‖2; a) +
β

2
‖x‖22 + L(x) , x ∈ R2 , (6.36)

with L an affine function which, hence, does not affect convexity, we notice that the
non-affine part of θ in (6.36) can be written in composite form as

h(ρ(x)) , with ρ(x) := ‖x‖2 , x ∈ R2 and h(t) := φ(t; a) +
β

2
t2 , t ≥ 0 . (6.37)

Hence, recalling demonstration of Proposition 3.3, the function θ is convex if and only
if the following two conditions both hold:{

h′(t) > 0

h′′(t) > 0
≡

{
φ′(t; a) + β t > 0

φ′′(t; a) + β > 0
≡

{
β t > − φ′(t; a)

β > − φ′′(t; a)
∀ t ≥ 0 . (6.38)

Since by hypothesis β > 0 and the function φ satisfies assumption A2) in Section 2,
namely φ′(t; a) > 0 for any t ≥ 0, the first condition in (6.38) is always satisfied.
The second condition in (6.38) is equivalent to the convexity condition in statement
(4.32).

We now prove statement (4.34), according to which the unique solution x∗ of the
strictly convex problem (4.33) is obtained by a shrinkage of vector r. To allow for a
clearer understanding of the proof, in Figure 6.1 we give a geometric representation
of problem (4.33). First, we prove that the solution x∗ of (4.33) lies on the closed
half-line Or with origin at the 2-dimensional null vector O and passing through r,
represented in solid red in Figure 6.1(a). To this purpose, we demonstrate that for
any point z not lying on Or there always exists a point z∗ on Or providing a lower
value of the objective function in (4.33), that is a point z∗ such that θ(z)− θ(z∗) > 0.
In particular, we define z∗ as the intersection point between the half-line Or and the
sphere with center in O and passing through z, depicted in solid blue in Figure 6.1(a).
Recalling the definition of θ in (4.31) and noting that ‖z∗‖2 = ‖z‖2 by construction,
we can thus write:

θ(z)− θ(z∗) = φ (‖z‖2; a)− φ (‖z∗‖2; a) +
β

2

(
‖z − r‖22 − ‖z∗ − r‖22

)
=
β

2

(
‖z‖22 + ‖r‖22 − 2 〈 z , r〉 − ‖z∗‖22 − ‖r‖22 + 2 〈 z∗ , r〉

)
= β 〈z∗ − z, r〉

= β ‖z∗ − z‖2 ‖r‖2 cos
(
Ô z∗z

)
. (6.39)
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Fig. 6.1. Geometric representation of problem (4.33).

Since β > 0 by hypothesis, z∗ 6= z and r 6= O by construction, and noting that the

angle Ô z∗z is always acute, we can conclude that the expression in (6.39) is positive.
Hence, the solution x∗ of (4.33) lies on the closed half-line Or.

We now prove that the solution x∗ of (4.33) lies inside the segment [Or], repre-
sented in solid red in Figure 6.1(b). To this purpose, we demonstrate that for any
point z lying on the half-line Or but outside the segment [Or] there always exists a
point z∗ on [Or] such that θ(z)− θ(z∗) > 0. In particular, it suffices to choose z∗ = r,
as illustrated in Figure 6.1(b). We obtain:

θ(z)− θ(z∗) = θ(z)− θ(r) = φ (‖z‖2; a)− φ (‖r‖2; a) +
β

2
‖z − r‖22 . (6.40)

Since ‖z‖2 > ‖r‖2 by construction and the function φ is monotonically increasing by
hypothesis, the expression in (6.40) is positive, hence the solution x∗ of (4.33) lies on
the segment [Or].

To conclude the proof of statement (4.34), we notice that the directional derivative
of the objective function θ in (4.31) at r in the direction of r is as follows:

∂θ

∂r
(r) = φ′(‖r‖2; a) > 0 , (6.41)

where the inequality follows from assumption A2) in Section 2. It follows from (6.41)
that the solution x∗ of (4.33) never coincides with vector r.

Based on (4.34), by setting x = ξr, 0 ≤ ξ < 1, the original unconstrained
2-dimensional problem in (4.33) can be reduced to the following equivalent constrained
1-dimensional problem:

ξ∗← arg min
0≤ξ<1

{
φ (‖ξr‖2 ; a) +

β

2
‖ξr − r‖22

}
← arg min

0≤ξ<1

{
f(ξ) = φ (‖r‖2 ξ; a) +

β

2
‖r‖22 ξ(ξ − 2)

}
, (6.42)

where in (6.42) we omitted the constant terms and introduced the objective function
f for future reference. Since we are assuming that the function φ is twice continuously
differentiable in R+, so it is the cost function f in (6.42) in the optimization domain
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0 ≤ ξ ≤ 1. Moreover, f is strictly convex since it represents the restriction of the
strictly convex function θ in (4.31) to the segment ξ r, 0 ≤ ξ ≤ 1. Hence, the necessary
and sufficient condition for an inner point 0 < ξ < 1 to be the global minimizer of f
is as follows:

f ′(ξ) = 0 ≡ ��
�‖r‖2
[
φ′ (‖r‖2ξ; a) + β ‖r‖2(ξ − 1)

]
= 0 . (6.43)

Since f is strictly convex, the first derivative f ′(ξ) is strictly increasing in the entire
domain 0 ≤ ξ ≤ 1 and at the extremes we have:

f ′(0+) = ‖r‖2
[
φ′(0+; a)− β ‖r‖2

]
, f ′(1) = ‖r‖2 φ′(‖r‖2; a) . (6.44)

Since ‖r‖2 > 0 and φ′(t; a) > 0 for any t ≥ 0 by hypothesis, f ′(1) in (6.44) is positive.
Hence, we have two cases. If f ′(0+) ≥ 0, that is ‖r‖ ≤ φ′(0+; a)/β, f ′(t) is positive
in 0 < t ≤ 1, hence the function f has its minimum at ξ∗ = 0; if f ′(0+) < 0, then f
has the minimum at its unique stationary point 0 < ξ∗ < 1, which can be obtained
by solving the nonlinear equation in (6.43).

Proof of Proposition 4.6.
Proof. After setting α := ‖r‖2 for simplicity of notations, we have to solve the

following constrained nonlinear equation:

φ′ (αx; a) + β α(x− 1) = 0 , 0 < x < 1 , α β > 1 , β > a . (6.45)

Substituting in (6.45) the expression of the first-order derivative of the exponential
penalty function reported in the second row of Table 2.1, we obtain:

1

eaαx
+ β α (x−1) = 0 ≡ 1 + β α (x−1) eaαx = 0 ≡ β α (x−1) eaαx = −1 (6.46)

We notice that:

eaαx = eaαeaα(x−1) , (6.47)

such that (6.46) can be written as:

β α (x− 1) eaαeaα(x−1) = − 1 . (6.48)

After multiplying both sides of (6.48) by a / (β eaα), we obtain:

aα (x− 1) eaα(x−1) = − a

β eaα
. (6.49)

After the following change of variable:

y = aα (x− 1) , (6.50)

we obtain:

y ey = − a

β eaα
, y ∈ ]− aα , 0 [ , (6.51)

Hence, the unique solution y∗ of (6.51) is given by:

y∗ = W0

(
− a

β eaα

)
, (6.52)

and, following from (6.50), the unique solution x∗ of (6.46) is:

x∗ = 1 +
1

aα
W0

(
− a

β eaα

)
, (6.53)

where W0(·) represents the principal branch of the Lambert W function [10].
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