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Abstract— At present, battery charging operations constitute 
one of the most critical obstacles toward a large-scale uptake of 
Electric Mobility (EM), due to performance issues and 
implementation complexities. Although several solutions based 
on the utilization of Information and Communication 
Technologies (ICTs) and on mobile applications have been 
investigated to assist the Electric Vehicles (EVs) drivers and to 
coordinate the charging operations, there is still the problem of 
how to evaluate and validate such solutions on realistic 
scenarios, due to the lack of accurate simulators integrating 
vehicular mobility, wireless communication and battery 
charging/discharging models. In this paper, we attempt to fill 
this gap, by proposing a novel EV simulation platform that can 
assist the pre-deployment of charging infrastructures and 
services on realistic, large-scale EM scenarios. The simulation 
platform, realized within the ARTEMIS EU project “Internet 
of Energy for Electric Mobility“ (IoE), supports two utilization 
modes, i.e. evaluation of EM scenarios and immersive 
emulation of EM-related mobile applications, thanks to a 
semantic architecture through which virtual and real 
components can be integrated in a seamless way. We provide 
three major contributions with respect to the state of the art. 
First, we extend the existing co-simulation platform composed 
by SUMO (vehicular traffic simulator) and OMNET++ 
(network simulator) with realistic models of EVs, EVSEs and 
ontology-based communication protocols that enable the 
deployment of city-wide mobile services (e.g. charging 
reservation). Second, we validate the battery model against the 
consumptions data of target EVs, and we evaluate the 
operations of EVs on a large-scale scenario (the city of 
Bologna), by analyzing the effectiveness of the charging 
reservation process and the resulting impact to the smart grid. 
Finally, we introduce the Mobile Application Zoo (MAZ), a 
sandbox through which EM-related mobile applications can be 
seamlessly integrated within the simulation platform in order 
to be validated on virtual environments before their 
deployment on real scenarios, and we describe the 
implementation of an Android app for battery monitoring and 
charging reservation. 

Index Terms— Internet of Energy, Electric Vehicles, 
Modeling and Simulation, Mobile applications  
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I. INTRODUCTION

Nowadays, many governments of the world have 
identified Electric Vehicles (EVs) as a cornerstone toward a 
new generation of transportation systems able to reduce the 
pollution emissions while overcoming the dependence from 
fossil fuels [28]. Although such benefits are expected to 
become significant only on the long-term2, the market share 
of EVs is destined to quickly expand in the short-term, as a 
consequence of the increasing variety of vehicle models 
introduced by the car manufacturers. According to the 
analysis shown in [29], from 2010 to 2012, the overall 
number of sales of EVs has increased worldwide of more 
than 200%, in correspondence with the doubling of EVs 
models widely available to customers. However, several 
challenges must still be addressed so that a large-scale 
uptake of electric mobility might take place. Beside the 
well-known issues related to the EV performance (e.g. 
battery life and capacity), aspects on how to deploy the 
charging infrastructure, and how to manage the charging 
operations, are perceived as crucial from both the EVs 
drivers and the power companies. From the one side, given 
the duration of charging operations (in the order of tens of 
minutes), and the limited capacity of EV batteries, the 
placement of the Electric Vehicle Supply Equipments 
(EVSEs) in the current scenario has a direct influence on the 
experience of each driver (for instance, in terms of average 
trip time [24]), and might also impact the market penetration 
of EVs [30]. On the other side, several recent studies have 
demonstrated the harmful impact on the smart grid caused 
by the simultaneous charging operations of a multitude of 
EVs on an urban scenario [26][27], and have underlined the 
need of coordination between EVs and EVSEs [19][26]. In 
order to address these issues, current research investigates 
the utilization of Information and Communication 
Technology (ICT) for smart grid and electric mobility 
scenarios [2-8]. This is the case, among the others, of the 
Internet of Energy for Electric Mobility (IoE) project 
[31][34], which comprises 40 partners from 10 European 
countries, and aims at developing hardware, software and 
middleware solutions to assist and coordinate the charging 
operations by enabling reservations from the EVs drivers. 
Given the costs of building large-scale test-beds, simulation 
constitutes the reference technique to assess the 
effectiveness of the ICT-based solutions for Electric 
Mobility (EM) scenarios before a real deployment. 
Nowadays, several vehicle simulators are available [11-17], 
and provide a fine-grained model characterization of the 
components of an EV (including the electric motor, the 

2 According to [28], the impacts on fuel and electricity consumption by 
road passenger transport would be negligible until 2020-2025. 
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mechanical transmissions, etc). Similarly, battery models 
have been extensively investigated to compute the 
discharging of the battery over time, and to reproduce EV 
dynamics in an accurate way [15][16][17]. However, none 
of these tools can be used to study complex dynamics of EM 
scenarios (like the impact of EVs to the smart grid, or the 
effectiveness of charging reservation policies), where it is 
required to model several interacting entities characterized 
by different time-scale behaviors (i.e. EVs, EVSEs, the 
electrical grid, the communication network). To this aim, 
the most pioneering works are [22][23][24].  
The main contribution of this paper is the design and 
implementation of an integrated framework to perform 
large-scale simulations of Electric Mobility (EMs) 
scenarios. Differently from the existing tools, our 
framework allows reproducing –within the same 
environment- dynamic aspects of the EVs (like mobility and 
discharging), of the EVSEs  (like charging operations), and 
of communication between the EVs and the EVSEs (like the 
reservation process). To this aim, the framework relies on a 
co-simulation approach [3], which includes models 
deployed in SUMO [18], a microscopic traffic simulator, 
and OMNET++ [32], an event-based simulator, connected 
through the TRACI interface [33]. In SUMO, we model the 
characteristics of the urban environment (in our case, the 
city of Bologna), including the topology and altimetry 
information, and we generate the traffic load on the basis of 
macroscopic demographical data (i.e number of inhabitants, 
work places density, etc).  In Omnet++, we implement 
models of EVs and EVSEs and we validate them by 
comparing the simulation traces with real consumption data 
of target EVs. Together with the mobility aspects, the 
Omnet++ modules provide the modeling of the data 
communication process between each EV/EVSE and a City 
Service (CS) that coordinates the charging operations over 
the scenario. All the simulated entities produce semantic 
data according to a smart-grid ontology [34] that guarantees 
interoperability among heterogeneous stakeholders (i.e. 
different EVs models, EVSEs providers, etc). Semantic data 
are collected into a shared repository called SIB (Semantic 
Information Broker) [42]. Our simulation tool can be used 
for two different analysis of EM scenarios: 

• Mobile Services evaluation and validation. The
simulation platform supports immersive emulation
and validation of mobile applications related to the
EM scenario (e.g. battery monitoring applications
like [35][36]) which can be deployed in the near
future to assist EVs drivers’ operations. The
communication between the real and synthetic
world is bidirectional and works in real-time, i.e.
the mobile applications can access the simulation
data produced by simulated entities, and can also
generate new events to be scheduled within the
simulator (e.g. a re-route event of a vehicle). This
is realized through a software sandbox (called
Mobile Application Zoo) that implements the data
exchange between the simulator and the mobile
applications, while hiding all the details of the
simulated world. As a result, mobile applications
can be tested on a synthetic environment that
reproduces most of the characteristics of a real
scenario, with few or no changes with respect to
their future deployment.

• Pre-deployment analysis. Through the modeling of
EVs operations over realistic road topologies and
vehicular traffic conditions, we are able to carry out
quantitative analysis that can help the deployment
of the charging infrastructure on a target scenario.
Moreover, we can evaluate and compare different
charging control strategies and reservation policies,
and provide useful feedbacks about the impact of
different EVs loads and drivers’ behaviors on the
charging service, and on the smart grid.

The rest of the paper is organized as follows. In Section II 
we review the existing literature about modeling and 
simulation of EVs and related scenarios. In Section III we 
present the EM scenario considered in this study. The 
components of the simulation framework are reviewed in 
Section IV. Model validation is discussed in Section V. In 
Section VI, we provide the details of the IoE architecture, 
and we describe how the simulator can be adapted to 
support immersive emulation of mobile applications for EM 
scenarios; to this aim, a charging reservation service is 
presented. In Section VII, we discuss how the simulator can 
be fed to perform pre-deployment analysis, and we provide 
results for a target scenario (i.e. the city of Bologna). 
Conclusions and open issues follow in Section VIII. 

II. RELATED WORKS

In this Section, we review the literature on simulation 
models and tools for Electric Mobility (EM) scenarios. We 
first analyze (in Section II.A) existing smart-grid simulators, 
integrating also ICT-related aspects. Then, in Section II.B 
we focus on tools to simulate the EV components, and the 
aggregate behavior of EV fleets. 

A. Models and Tools for Smart Grid Simulation
Although several definitions of smart grid have been 
proposed in the literature, all visions agree on the key role 
played by the Information and Communication 
Technologies (ICT) in improving the reliability and the 
efficiency of the electricity system [1]. At the same time, 
recent studies warn about the harmful impact produced by 
the communication delay on the smart grid dynamics [2][4]. 
In order to evaluate benefits and risks of the integration, 
novel modeling tools have been deployed to co-simulate the 
behavior of the smart grid [44] and of the communication 
network infrastructure. In [3], the authors review the 
existing co-simulation frameworks, and discuss possible 
approaches to guarantee tight synchronization among smart 
grid simulators (which are normally time-driven), and 
network simulators (which are normally event-driven). In 
[2], the authors describe how to integrate the Network 
Simulator 2 (NS2) with the Positive Sequence Load Flow 
(PSLF) grid simulator in order to test collaborative relay 
protection systems. Similar experiments are described in [4] 
and [5]. Other primary benefits provided by ICT solutions 
on smart-grid environments are the bidirectional metering 
with the possibility to control the self-production of energy 
from renewable sources (e.g. photovoltaic panels) and the 
interaction with the grid [6]. To this purpose, in [7] the 
authors describe an Omnet++/Matlab co-simulation 
framework through which they model a residential 
neighborhood scenario where some households have a 
photovoltaic panel installed, and investigate the impact on 
the distribution grid. A similar scenario is also described in 
[8] where the authors consider a dynamic price simulator
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that takes into account live (residential) renewable energy 
sources, weather forecast and energy distribution load 
profiles. In [9] the authors utilize the CLEVER simulator to 
address a “what-if” analysis of smart metering and smart-
grid systems in a large-scale urban scenario. Most of the co-
simulation approaches described so far are based on 
monolithic simulation tools (e.g. NS-2) and thus might 
suffer from scalability problems when considering complex 
city-wide smart grid environments. To address this issue, a 
distributed platform simulator framework is described in 
[11]. Here, the smart grid is partitioned into different 
clusters. Each cluster can be simulated on a separate 
process, while a centralized component (called GridSpice) 
synchronizes the boundary states of the distributed 
processes that might belong to different tools [11]. 

B. Models and Tools for Electric Vehicles Simulation
The intrinsic complexity of building large-scale EV test-
beds makes the simulation a fundamental instrument to 
evaluate the performance of the target of interest. As a 
result, several modeling and simulation tools have been 
proposed in the literature [11-27]. These works can be 
classified based on the focus of the modeling phase into: (i) 
tools to simulate EVs components [11-17], (ii) tools to 
simulate EVs scenarios [18-25] and (iii) tools to simulate 
EV services [26-27].  The first class of tools provides a fine-
grain characterization of the performance of an EV by 
considering all components (e.g. electric motors, batteries, 
etc) that are involved in the vehicle design cycle. Two 
vehicle simulation approaches [11] are possible: (i) 
backward facing and (ii) forward facing. In the first case, a 
speed trace produced by a real EV is used to compute the 
required torque, and then to derive the requirements of each 
electric motor component. No driver model is used. In the 
second case, a synthetic driver model is introduced to 
simulate the throttle and brake commands, and the resulting 
acceleration is computed on the basis of the tractive power 
produced by the electric motor, according to the vehicle 
(e.g. weight) and battery (e.g. efficiency) characteristics 
[11]. To this aim [12] reviews the existing relationships 
among the motor power, the vehicle/battery weights, and the 
maximum acceleration achievable by an EV, and proposes a 
set of MATLAB models to investigate the trade-offs among 
the design parameters of the vehicle. In [13] the authors 
describe the modeling and simulation (through 
MATLAB/Simulink) of an urban EV. A forward-facing 
model of both EVs and hybrid vehicles is proposed in [14] 
through the PSIM tool. A key component to correctly 
simulate the behavior of a EV is the battery model 
[15][16][17]. To this purpose, electrochemical [15][16] and 
electrical [17] models have been proposed. In [17] the 
authors describe Simulink models for three battery types 
(lithium-ion, nickel-metal hybrid and lead-acid), and then 
validate the predicted battery State Of Charge (SOC) against 
real traces. All the works mentioned so far provide a fine-
grained characterization of the main components of an EV, 
but do not address the aggregated effect produced by a fleet 
of EVs moving on a city scenario.  To this aim, several 
simulation tools [18-25] for EVs scenarios have been 
proposed by extending vehicular traffic simulators (e.g. 
SUMO [18]) or by integrating communication network, 
vehicular mobility and smart grid simulators. In [19], the 
authors analyze the voltage profile, the peak demand and the 
system losses caused on the grid by a varying number of 

EVs in the Danish island of Bernholm, and conclude that 
controlling the EVs charging operations (e.g. performing 
them during off-peak hours) can accommodate more 
charging requests than a completely uncontrolled mode. 
Similarly, in [20] a co-simulation platform based on the 
Omnet++ and OpenDSS tools is used to study how to 
achieve coordinated charging of plug-in EVs through a 
Fiber-wireless communication infrastructure. An agent-
based simulator of a smart-grid is described in [21], which 
models the energy production from power stations and the 
energy consumption of households (composed of different 
appliances) and EVs moving according to a random 
waypoint mobility model.  However, in order to correctly 
estimate the battery consumption of EVs and their impact on 
the smart grid, realistic vehicular mobility models are 
required. For these reasons, several recent works propose 
SUMO extensions [22][23] that address the charging and 
discharging operations of EVs in city-wide environments, 
by considering the road topologies imported from 
OpenStreetMap [37]. In [22] the authors consider a scenario 
where EV drivers move from one parking spot to another 
one as a part of their daily activities, and study the 
possibility to deploy charging stations at each parking spot. 
However, charging and consumption models appear 
oversimplified, and no charging reservation process is 
evaluated. In [23] the authors extend SUMO by modeling 
the mechanical and electrical dynamics of an EV and by 
including altitude information that allows taking into 
account the discharge of an EV uphill, and the regenerative 
breaking downhill. In [24] a similar SUMO extension is 
described to simulate the operations of EVs over a realistic 
city map scenario (Vienna): a genetic algorithm is proposed 
to deploy the charging stations in order to minimize the 
vehicle trip time. In [25] energy-aware routing strategies for 
EVs are proposed and evaluated by modeling the traffic 
dynamics through a Markovian model. Finally, the last set 
of simulation tools [26-27] allows the modeling of 
communication services required to coordinate the charging 
operations of EVs on a large-scale urban scenario. In [26] 
the authors propose a load coordination protocol that allows 
an EV to notify its charging needs to a Load Coordinator 
entity. In [27] a simulator based on the Smart Objects 
System is proposed for EV parking spots, and different 
charging control policies are compared on the basis of how 
many EVs will leave the car park with the requested amount 
of energy in their batteries.  

C. Novel contributions of our work
For the goals of our study the most similar works are 
[22][23][24].  However, our study adds the following novel 
contributions: 

• We model the operations of both EVs and of
EVSEs (the latters are not considered in [22][23]).
Leveraging the run-time information on the
availability of EVSEs, we are able to model the
EVs reservation process, and we can thus perform
quantitative analysis about the effectiveness of
existing charging infrastructures when considering
the EVs load requests generated over realistic
scenarios.

• We represent the data sharing process among the
simulated entities (EVs/EVSEs) through a semantic
ontology (defined within the IoE project).
Moreover, we provide facilities for the real-time
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immersive emulation and validation of mobile 
applications built on the same ontology, enabling 
the bi-directional communication between 
simulated and real components of an EM scenario. 

• We build a co-simulation framework composed of
Omnet++ and SUMO, through which we are able
to model both vehicular mobility and
communication between EVs and a stationary
infrastructure.

Figure 1. The EM scenario considered in this paper. 

III. THE ELECTRIC MOBILITY (EM) SCENARIO

From the previous discussion, it becomes evident that a 
smart-grid is a complex system consisting of several 
interacting agents. Developing a simulation platform 
modeling all possible scenarios and capturing all the system 
dynamics involved  (including, for instance, dynamic energy 
pricing, impact of renewable sources, etc.) is a highly 
challenging task and it is far away from being addressed by 
the existing tools [1-11]. Therefore we restrict our focus on 
Electric Mobility (EM) scenarios, and we propose here a 
tool that allows the modeling of mobility, communication 
and coordination of EVs on large-scale, realistic urban 
environments.  
Figure 1 shows the three main actors involved in our 
modeling, i.e.: 

• EVs: they move inside the scenario based on
drivers’ specific habits and needs, and arbitrarily
perform charging operations at the charging
stations (EVSEs).

• EVSEs: they are stationary stations where EVs can
stop and recharge of the requested amount of
energy; EVSEs are connected to the smart-grid.

• City Service (CS): this represents a city-wide ICT
infrastructure offering Internet services to the EVs
and to the EVSEs providers, with the goal of
coordinating the operations of vehicles’ drivers and
of the smart-grid. The ICT infrastructure is
recognized as a fundamental component for the
large-scale uptake of EM, and several architectures
have been proposed in the literature
[34][35][36][40]. In our case, without loss of
generality, we assume that a CS works as a
collector of information produced from EVs and
EVSEs, which are then processed in order to
provide Internet services to the EVs drivers by
mobile applications. An example of such

applications is the charging reservation service that 
can greatly contribute to mitigate the risks of 
uncontrolled peak demands to the smart grid, as 
discussed in [19][22]. All the communication 
between CS, EVSEs and EVs is assumed to happen 
on a cellular (3G/4G/LTE) connection, although 
other wireless access technologies (e.g. Wi-Fi) 
might be also available in an urban environment 
and possibly included into our simulation platform. 

Figure 2. The components of the IoE simulation framework. 

IV. THE INTEGRATED SIMULATION PLATFORM FOR EM
SCENARIOS 

In this Section, we provide a detailed overview of the 
simulation platform developed to evaluate EVs operations 
and services, based on the system model shown in Figure 1. 
Like previous works on co-simulation [2-9], our framework 
integrates multiple discrete-event simulators (e.g. SUMO, 
OMNET++, VEINS), each modeling a different aspect of 
the urban vehicular scenario (e.g. mobility, wireless 
communication, etc). Moreover, we extend these tools with 
new models addressing the unique characteristics of the EVs 
(e.g. battery discharging and electric motor dynamics) and 
of the EVSEs (e.g. charging operations), and enabling the 
immersive emulation and validation of mobile services. 
Figure 2 shows the main components of our simulation 
framework and the interconnections among them.  

• SUMO stands for Simulation of Urban Mobility
[18], and it is an open-source discrete event
simulator for vehicular environments that is widely
adopted by researchers working on the simulation
of EM scenarios [22][23][24]. It can reproduce
traffic dynamics on realistic road networks (e.g.
imported from OpenStreetMap [37]), by micro-
simulating the behavior of roadside components
(e.g. traffic lights) and of each vehicle. Moreover it
exposes a socket interface called TRACI [33]
through which it is possible to retrieve data about
the current simulation flow and/or modify the state
of simulated entities. In our framework SUMO
generates the vehicles routes and governs their
mobility (both EVs and not EVs).

• OMNET++ is a discrete-event simulator used to
model a large set of scenarios, ranging from
wireless networks (e.g. sensor or vehicular ad hoc
networks) to smart grid and smart metering systems
[38]. The OMNET++ inner structure is based on
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the concept of “module”. Each module models a 
different entity and can be connected to other 
modules via virtual gates, which are an abstract 
way to represent communication links. We 
extended OMNET++ by implementing the models 
of an EV and of an EVSE. Moreover OMNET++ 
offers facilities to interconnect real components 
with simulated modules, via C++ libraries or 
external sockets. We leveraged these functionalities 
to interface the simulated entities to an external 
semantic repository (called Semantic Information 
Broker - SIB [42]), which can then be accessed by 
mobile applications for immersive emulation 
purposes.  

• VEINS is a vehicular simulation framework
proposed in [39] to connect Omnet++ and TRACI.
It provides Omnet++ developers with a complete
set of APIs to query the SUMO platform and to
dynamically retrieve information about the state of
SUMO simulated entities.  Moreover, it
implements mechanisms to synchronize SUMO
and OMNET++ at the end of each time step (equal
to 0.1 seconds).

• The SIB works as information repository of the
current EM scenario. More specifically there are
two different SIBs in our simulation framework: a
City SIB (CSIB) containing city level information
collected by the CS to provide aggregated mobile
services, and a Dash SIB (DSIB), working as local
repository of each EV (e.g. to store mobility and
battery-related information).  Information is
represented through the smart-grid ontology
developed within the IoE project [34] to facilitate
interoperable communication between different
stakeholders.

• The XML Scenario Files characterize the target
EM scenario and include: (i) the road network
which can be imported directly from
OpenStreetMap, (ii) the altimetry data which are
useful to correctly estimate the battery SOC
changes uphill and downhill (iii) the demographical
data which provide statistical information about the
drivers’ population and are used to generate
realistic synthetic traffic loads and (iv) the EVSE
network, which provides information about each
EVSE (location, maximum power delivered,
number of connectors).

• The XML Configuration Files specify the
simulation parameters, like the EV penetration rate,
the battery characteristics of each EV (e.g. initial
SOC), and the SOC threshold3 under which an EV
must go to recharge (!"#!"#).

The simulation workflow proceeds as follows. At simulation 
startup, the XML Scenario and Configuration files are 
loaded into SUMO and the routes of the simulated vehicles 
(both EVs and non EVs) are generated on the basis of the 
demographical data by using the ActivityGen utility of 
SUMO. At each simulation step SUMO determines the 
mobility features (location, speed, acceleration) of each 
vehicle. This information is read by OMNET++ to update 
the current SOC of each EV, according to the battery model 

3 This parameter models the “driver’s range anxiety” behavior described 
in [30]. 

described in Section IV.B. If a vehicle has a SOC value 
below the pre-defined threshold (!"#!"#) then it must 
recharge at an EVSE. In our simulator recharging operations 
can be modeled in two ways:  

• coordinated mode: in this case the EV issues a
charging request to the City Service (CS) through a
cellular connection, indicating the amount of
energy required, the reservation time, and the
driver’s preference (e.g. the nearest  station or the
less expensive  one). The CS will then reply with
the location of the EVSE that meets the driver’s
requirements.

• uncoordinated mode: in this case the EV moves to
the nearest EVSE and recharges based on FIFO
rule. No reservation is issued.

In both cases the vehicle is re-routed to the EVSE location 
by modifying its destination in SUMO through the TRACI 
change- target command. Also, at each time-step, 
OMNET++ updates the SOC of the EVs that are currently 
charging, and manages the state of the EVSEs. The battery 
and mobility information of each EV are periodically 
updated to the DSIB, while the EVSEs and the charging 
information are inserted into the CSIB, in both cases by 
using the SIB Communication Module (SIBC-M) developed 
in OMNET++. When doing emulation, external applications 
can access the simulation data structures contained into the 
SIBs, and eventually schedule new simulation events.  
In the following the operations of the EV, EVSE and SIBC-
M modules developed in OMNET++ are detailed. 

A. The OMNET++ Module of an EV
The EV module models the aspects related to mobility, 
charging/discharging and routing of an EV. To this purpose, 
each EV is associated with a state variable, which describes 
its operating mode with respect to the current SOC value. In 
uncoordinated charging mode, at each simulated time-step 
an EV can be in one of the three states: Full (F), Discharged 
(D), and Charging (C). In F the EV has a current SOC value 
(i.e. !"#!"#) higher than the threshold !"#!"#, and thus 
moves inside the urban scenario according to the pre-
defined routes computed at simulation startup time. When 
!"#!"#! drops below the !"#!"# (state D) the vehicle needs 
to recharge, and thus modifies its current path by 
approaching the nearest EVSE. Once at the EVSE, the 
vehicle stops and enters the C state until the battery is fully 
charged. At this point, the vehicle re-starts moving in F 
State according to its pre-defined route. Figure 3 shows the 
transitions among the EV states for both the uncoordinated 
and coordinated charging modes. In this latter case (shown 
through dotted lines), the Reservation (R) state is added. 
When a vehicle is discharged (D), it must contact the CS to 
reserve a charging slot, and then it can move to the selected 
EVSE. If no available EVSE is found, the vehicle performs 
a new reservation with modified preferences (e.g. 
reservation slot time).  As shown in Figure 2, the 
OMNET++ module of an EV includes three sub-modules, 
respectively the Mobility, the Controller and the Battery 
modules. The Mobility module is responsible for querying 
periodically the VEINS framework, in order to obtain the 
current mobility parameters (location, speed, acceleration) 
of the simulated EV directly from SUMO. The Controller 
module manages the states’ updates of the EV, and thus its 
resulting behavior, on the basis of the current EV control 
mode. Two control modes are defined: (i) Simulated and (ii)  
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Figure 3. The state diagram of an EV 
(in simulated mode). 

Figure 4. The macroscopic physical model of an EV (in 
simulated mode). 

User-Controlled. In the first case the Controller simply 
follows the state transitions defined in Figure 3. In the 
second case the behavior of the simulated EV is under the 
control of the end-user, through an external mobile 
application interacting with the Simulator in emulation 
mode. In this case, the user can arbitrary govern the 
transitions to the next states, i.e. a vehicle can decide to re-
charge even if !"#!"#> !"#!"#, thus jumping from state F 
to state C. 

The Battery module is the main EV component and it is 
responsible for modeling the charging/discharging 
operations of the EV. More specifically, the consumption 
model governs the state transitions between the Full (F) and 
Discharged (D) state when the vehicle is moving. In Section 
II we mentioned the main techniques of EV battery 
modeling, based on electrochemical [15][16] and electrical 
[17] approaches. Despite their accuracy, these approaches
might not to be suitable for large-scale simulation, due to
the high computational load involved. Generally speaking,
there exists a trade-off between system scalability and
complexity of the consumption model, which must be
considered with respect to the expected simulation output.
In our scenario, we aim at obtaining city level statistics of a
potentially high number of vehicles. For this reason, we
attempted to limit the complexity of the consumption model
while preserving as much as possible its accuracy for the
sake of statistics reliability. The resulting model is based on
macroscopic physical equations that derive the average
power provided by the electric motor, and thus the battery
consumption, based on the current vehicle dynamics. A
similar approach is also followed in [13] and [23]. We
assume that at each time step, the traction force ! applied to
each EV is the resultant of four components:

! = !!" + !!" + !!"#$ + !!"## (1) 
where !!"!represents the inertia of the vehicle, !!"!!is the 
weight component along the x-axis, !!"#$!is the air friction 
and !!"## !is the rolling friction. According to the laws of 
classical mechanics, these components can be expressed as 
follows: 

!!" = ! ⋅ !! − !!!!!!"#$
(2) 

!!" = ! ⋅ ! ⋅ sin!(!) (3) 
!!"## = ! ⋅ ! ⋅ cos!(!) ⋅ !!"## (4) 

!!"#$ = 0.5 ⋅ !!"# ⋅ !!"#$ ⋅ !!"#$$ ⋅ !!! (5) 

Here, !! and !!!! represents respectively the vehicle speed 
at time instant ! and ! − 1, ! is the mass of the EV, !!"#$ is 
the simulation time-step, ϕ is the current slop of the road, 
and !!"##, !!"#$ , !!"# and !!"#$$!are parameters of the 
friction models (respectively equal to 0.015, 0.31, 1.21 and 
0.16 in our experiments). We highlight the fact that –using 
the inclination angle (e.g. ϕ)- our model is able to capture 
the impact of sloped roads on the energy consumption of an 
EV. Figure 4 shows the components and the resulting force 
F acting on a target EV.   
Based on the resulting force !, and on the current speed !!, 
the average power provided by the electric motor for each 
simulation step (!!"#$  ) can be computed as follows: 

!!"#$ =
!! + !!!!

2 ⋅ ! (6) 

Finally, the current SOC is estimated by removing from the 
residual battery charge the percentage of the total battery 
capacity !!"#"!$%& consumed in one time step (i.e. 
!!"#$ ∙ !!"#$), further divided by the efficiency (!) of the 
transformation from electric energy to mechanical energy. 
Therefore:  

!"#! = !"#!!! −
!!"#$ ∙ !!"#$
!!"#"!$%&

∙ 1!
(7) 

The battery charging model governs the transition between 
C and F states. Differently from existing works that assume 
a linear increase of SOC while charging [24], for the 
computation of the new SOC our model takes into account 
the specific battery charger profile at each time step. The 
battery charging profile is modeled through a coefficients 
lookup table that alters the SOC increase based on the 
current charging phase: 

!"#! = !"#!!! +
(!"#(!) ∙ !!"#$) ∙ !(!"#!!!)

!!"#"!$%&
(8) 

Here !"#(!)!is the power that can be delivered by the 
EVSE to the EV at time t and w(!"#!!!) is the coefficient 
assumed at the current state (!"!!!!). The coefficient 
values can be determined according to the charging 
characteristics of the battery (e.g. Li-ion) [26]. 

B. The OMNET++ Module of an EVSE
The EVSE module models the operations of a charging 
station in the addressed EM scenario. Each EVSE is 
characterized by the following set of parameters (written  
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(a) (b) 

Figure 5. Model validation (a) and parameter characterization (b). 

into an XML scenario file): (i) the location, specified by 3D 
coordinates in SUMO, (ii) the maximum power (!"#!") 
that can be delivered and (iii) the number of connectors 
(!"#!"##) i.e. the maximum number of vehicles that can 
recharge in parallel at the same EVSE.  Furthermore each 
EVSE has an internal state !"#!"## that accounts for the 
number of vehicles currently charging (!"#!"##  ≤
!"#!"##).. Each EVSE is also associated with a queue of 
vehicles that are waiting to access the charging service, in 
case this number is higher than the current availability 
indicated by !"#!"##. As already mentioned, in 
uncoordinated mode the vehicles are served according to a 
FIFO policy. In this case whenever a vehicle completes its 
charging process the EVSE sends a message to the EV 
module on top of the queue, which thus enters the C state. 
Vice versa, in coordinated mode, upon the arrival of an EV 
asking for a recharge, the EVSE goes  through the following 
steps: 

1. It checks if the vehicle has a scheduled recharging
request.

2. If this is true, it acknowledges the request and starts
the recharging session.

3. if the vehicle has not a scheduled recharging
request and the EVSE is free, the EVSE asks the
vehicle to make a quick reservation and then starts
the recharging process.

4. Eventually, if there is a pending reservation made
by another vehicle, the EVSE immediately tells the
just arrived vehicle to vacate its current spot.

We highlight the fact that in our implementation the 
communication process between the EVSE and the EV is 
defined by the OMNET++ gate between the two modules, 
and here our reference model is the ISO 15118 protocol 
[41].    

C. The OMNET++ Module of the SIBC-M
The SIBC-M module enables the bi-directional exchange of 
information between the OMNET++ modules and the SIBs. 
This information is conforming with the EM ontology 
defined within the IoE project [34]. The data exchange with 
the CSIB models the communication between the EVs, the 
EVSEs and the CS according to the EM scenario described 
in Section III (Figure 1). As communication is expected to 
happen on a cellular connection we model the transmission 

delay at each end point through the !"!"# parameter. Vice 
versa, no communication delay is considered for the data 
exchange involving the DSIB as this models the 
communication inside each EV (e.g. to retrieve the battery 
SOC). 

V. MODEL VALIDATION

Correctness and reliability of output results produced by our 
simulation framework rely on sufficiently accurate models 
for car batteries and EVSEs, immersed in well-defined and 
plausible scenarios. Here, we discuss the model validation 
step, which in our case cycles between two phases: tuning of 
the models and comparison with real data. About the first 
aspect, we highlight the fact that EV models were not 
initially present in SUMO, and that using the generic vehicle 
profile provided by SUMO might lead to inconsistencies 
(for instance, about the weight, the maximum acceleration 
or the maximum torque of the electrical motor) that may 
affect considerably the realism of the simulation. For this 
reason, we created an extensible set of EVs with verisimilar 
mixture of parameters, from which the initial population of 
vehicles can be generated with the wanted proportion 
between the different profiles. About the second aspect, our 
issue was to investigate the accuracy of consumption results 
produced by the EV simulation model described in Section 
IV.A, when compared with consumption datasheet of real
EVs. Generally speaking, energy consumption can be
affected by several factors, including the traffic conditions
and the specific driving style. For these reasons, the
validation between simulation and real data can be
performed only on average, when considering a sufficient
number of EM scenarios and driving conditions.
In Figure 5(a), we depict the energy consumption
experienced by a simulated EV, which moves within the
Bologna scenario (further described in Section VII). The EV
profile (weight: 2,587 ton, length: 5,0 meter,  !!"#"!$%&: 40
kWh, !: 0,8) is based on the characteristics of a real EV
prototype used for tests within the IoE project. A 24 hours
simulation is considered. Each point of Figure 5(a) is the
result of a single simulation, and represents the energy
consumed by a vehicle on its random trip within Bologna;
the energy values are normalized per ton and per Km, i.e.
the energy consumed is divided over the weight of the
vehicle and over the length of the path and is expressed in
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Table 1. Average consumption of real and simulated EVs. 
EV Class Weigth 

(ton) 

Length 

(meter) 

Battery 
Capacity 

(kWh) 

Avg consumption 
(simulation) 

(kWh/(ton*Km))  

Avg consumption 
(real) 

(kWh/(ton*Km)) 
Small 0.89 2.7 17 0.12 0.13 

Medium 1.54 4.6 22 0.13 0.14 
Large 2.58 5 40 0.15 0.15 

in kWh/(km*ton). The simulation is long enough to test 
different road traffic conditions, and different altimetry 
profiles of the paths chosen by the EV. In Table 1, we report 
the normalized average consumption of a simulated EVs4 
and real EVs5, for three different models of vehicles, whose 
characteristics (weight, battery, length) have also been 
reported in the Table. We can easily see that values in the 
two columns are quite close, thus validating the accuracy of 
the consumption model described in Section IV.A and of the 
car following model used by SUMO.  In Figures 5(b) we 
provide further results that show how the proposed 
simulation model is able to characterize the consumption of 
an EV, on the basis of different driving style, path 
characteristics and vehicle profile. More specifically, Figure 
5(b) shows the average consumption as a function of the 
slope of the road (a single straight road of 200 Km and 
variable density of vehicles are considered), for two 
different values of the EV speed (45 Km/h and 100 Km/h). 
It is easy to see that the path altimetry might have a 
significant impact on the consumption of the EV, thus 
justifying the deployment of mobile applications that take 
into account the altimetry of the path for residual SOC 
prediction [43].  

VI. FIRST USE CASE: TESTING AND VALIDATING THE IOE
MOBILE SERVICE PLATFORM ON EM SCENARIOS

In this Section, we provide insights on how the proposed 
simulation framework can be used to test and validate 
Internet mobile applications related to the EM scenario. 
More specifically, our validation focuses on the IoE 
platform for mobile services, whose main characteristics are 
detailed in Section VI.A. In Section VI.B, we describe how 
it is possible to embed mobile Android applications into the 
simulation platform of Section IV, using the sandbox 
offered by the Mobile Application Zoo (MAZ). Finally, in 
Section VI.C, we provide an example of an Android 
application we developed to assist EV drivers with charging 
operations. 

A. The IoE platform of Internet services for EM scenarios
One of the key challenges of EM scenarios is the intrinsic 
heterogeneity of domains, platforms and stakeholders, 
which might pose several issues to the provisioning of city-
wide Internet services for EV drivers. In order to tackle such 
heterogeneity, and to guarantee data interoperability among  
different producers and consumers, the IoE architecture 
relies on the Smart-M3 technology, the main characteristics 
of which are briefly reported below. 

4 The value for the EV (Large) is obtained by averaging the points of 
Figure 5(a). 

5 For the Large class, the value is derived by measurements we obtained 
on repeated driving scenarios with the same target vehicle. For 
small/medium class, the value is obtained from technical datasheets 
released by the cars’ manufacturers. 

In the Smart-M3 platform, information is represented as a 
set of semantic triples corresponding to a directed labeled 
graph, whose nodes and arcs are univocally identified by 
URIs. The semantic graph is based on ontologies i.e. 
machine interpretable domain descriptions, hosted by a 
Semantic Information Broker (SIB). The SIB stores an RDF 
(Resource Description Framework) graph exposing 
primitives to modify or query it through the mostly known 
standards i.e. SPARQL query language or RDF/XML 
information format. The SIB also supports the subscribe-
notify mechanism to reduce traffic by eliminating polling 
queries and to improve the user experience on mobile 
services through reactivity to complex events. SIB 
performance and features have been described in literature 
[34][42] and are improving in time since it is an active open 
source project. Finally, the Smart-M3 foresees the 
deployment of Knowledge Processors (KPs), which are 
third-party software agents able to access the SIB and 
manipulate the semantic information. By referring to the
EM scenario depicted in Figure 1, the CS repository is 
managed through a SIB instantiation (called C-SIB), while 
the mobile services are implemented through KPs 
performing data mining over the C-SIB. Relevant vehicle 
data are collected and sent to the C-SIB by the user 
smartphone. This may occur with or without the addition of 
a software component to the EV’s on-board telematics unit. 
In the architecture considered in this study, we assume a 
local SIB (called D-SIB) being integrated into the EV on-
board unit, although this element is not fundamental on a 
real deployment, as also discussed in [34]. Similarly, the 
EVSE can access the C-SIB by using adapter KPs that 
translate legacy information into RDF sub-graphs (this 
might allow, for instance, providing information about 
current availability and energy prices at each EVSE, 
although the latters are managed by different providers). 
The mutual understanding between all actors is enabled by a 
domain ontology [45], which is designed to capture most of 
EM concepts and of EM-related application requirements.  

Figure 6. The ontology class tree for the EM domain. 
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The class taxonomy used by the IoE ontology is shown in 
Figure 6. It is divided into 3 areas depending on the nature 
of the concept:  (i) physical entities (e.g. Vehicle, EVSE, 
Connector),  (ii) abstract entities  (e.g. Data, ChargeProfile) 
and (iii) service specific terminology (e.g. ChargeRequest, 
ChargeResponse, Reservation, and so on). The service 
specific classes are modular extensions of the core ontology 
and introduce concepts relevant to the EM applications. 
Besides the class taxonomy, the ontology includes 
properties to specify relationships between individuals and 
to describe their features in a machine interpretable way. 
When the information of the real world is mapped according 
to the ontology, the resulting RDF graph can be then 
explored by KPs using the SPARQL query language.  

B. Mobile Application Zoo (MAZ): Embedding real
components into simulated entities
In a real deployment of the IoE service platform, the C-SIB 
receives data from EVs through a wireless Internet 
connection, while the mobile applications running on users’ 
smartphones invoke the KPs offered by the CS. Validation 
and testing of such architecture might be difficult to be 
performed due to the costs of setting up large-scale test-
beds, and the current limited penetration of EVs in our city 
scenarios. The simulation platform described in Section V 
provides an ideal environment to test the scalability of the 
IoE service platform under synthetic loads of EVs, and to 
evaluate the impact of reproducible scenario characteristics 
(e.g. drivers’ anxiety) on the system performance. To this 
purpose, we highlight that the simulation platform of Figure 
2 integrates the C-SIB and D-SIB components without any 
implementation changes with respect to a real EM 
deployment. The only difference relies on the data 
population process, since in our case the SIBs are fed with 
data from simulated EM entities, rather than from real EVs 
or EVSEs. More specifically, the D-SIB is connected to 
each simulated EV, and stores its current position and 
battery related information (e.g. current SOC). The C-SIB is 
fed with EVSE status information, and keeps track of 
charging reservations requested by EVs. The 
communication between the simulation entities and the SIBs 
is managed through the SIBC-M Module previously 
introduced in Section IV.C.  Another distinctive feature of 
our simulation framework is the possibility to embed mobile 
applications deployed over the IoE service platform into 
simulated EM environments. As a result, developers can test 
their applications over realistic EM scenarios in a seam-less 
way, and with no changes with respect to the deployment on 
a real scenario. We call this sandbox the Mobile Application 
Zoo (MAZ), in order to stress its generality with respect to 
the EM applications it is possible to validate. The 
operational behavior of the MAZ component is based on 
three design choices:  

• Adoption of a common ontology. Both real and
simulated components utilize the EM ontology
previously described. As a result, the smartphone
can communicate directly with the SIBs through its
KP, and retrieve the information produced by the
simulation. No direct communication is involved
between the simulators (Omnet++/SUMO) and the
smartphone. As a consequence, no changes are
required to the simulation models and to the mobile
applications, since they are unaware of the
presence of each other.

• Real-time synchronization. In order to accomplish
realistic emulation, we use a specific feature of
OMNET++ that allows the synchronization of
simulation execution with real wall clock time
(class cRealTimeScheduler). The clock
synchronization is then extended from OMNET++
to SUMO through the VEINS component.

• Geo-coordinates synchronization. Nowadays, most
of mobile applications include geo-localization
capabilities, the relevance of which is even higher
when considering the EM domain [35][36][40].
The MAZ sandbox allows to test geo-localization
and route navigation functionalities, thanks to the
facts that: (i) simulated EVs can move into realistic
road map topologies imported from
OpenStreetMap and (ii) the SIB-C Module is in
charge of converting the position of each simulated
entity from the internal coordinates (used by
SUMO/OMNET++) to the latitude/longitude
coordinates system used by Google Maps. In the
SIBs, the localization coordinates are always
represented in this latter format, so they can be
directly displayed on the map of the smartphone.

The MAZ supports bi-directional exchange of information 
with the SIBs, corresponding to two different interaction 
modes between real and simulated components: 

1) Data retrieval. The mobile application accesses the
SIBs in read mode, and retrieves data produced by
simulated entities, in order to consume them locally
on the smartphone. This is the case of mobile
applications that display EV vehicle data (e.g.
battery-related information), or context-related
information (e.g. closest EVSE).

2) Data insert. The mobile application accesses the
SIBs in write mode, and can thus insert new RDF
triples generated at run-time as a consequence of
some actions performed by the user interacting
with the smartphone. Such data might then cause
the schedule of new simulation events, which are
dynamically added to the event queue used by
OMNET++, and can thus modify in real-time the
execution flow of the simulation. As an example, a
user might issue a charging reservation though the
mobile application, which in turn causes a state
change of the controlled simulated EV in
OMNET++, which in turn fires a re-routing event
in SUMO.

In the following, we provide an example of IoE mobile 
applications that have been tested through immersive 
emulation in our simulation framework. 

C. An example of mobile application embedding
As proof of concept of the MAZ system, we developed a 
mobile Android application that offers multi-level assistance 
to EV drivers, and we tested it on a synthetic EM scenario 
modeled through our simulator. More specifically, our 
application was designed to support these three main 
functionalities: 

1) Visualization of battery-related information, e.g.
the current SOC (screenshot in Figure 7(a)).

2) Dynamic reservation of charging slots at available
EVSE (screenshot in Figure 7(b)).
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(a) (b) (c) (d) 
Figure 7. Screenshots of the mobile application for SOC monitoring and on-line charging reservation. 

3) Visualization of path-related information, e.g.
current altimetry profile, and available EVSE
(screenshot in Figure 7(c)).

In a real deployment, the mobile application can access the 
battery-related information stored in the on-board D-SIB of 
the EV through a Bluetooth connection. Information about 
the path and about the EVSEs is provided by  
the C-SIB, which in turn is accessed through a cellular 
Internet connection. The reservation process follows the 
communication protocol previously described in [34]. First, 
the user requests a recharge operation to the CS attaching 
additional information like its current position and recharge 
preferences (i.e. closest EVSE, EVSE with minimum 
queuing time, EVSE with lowest energy price). The CS 
analyzes the user request, computes the best available 
options over the whole city context based on the current 
status of the EVSE (this data are available on the C-SIB) 
and provides the processed alternatives. Once the user has 
received the list of EVSEs, s/he can decide the most suitable 
one and waits for the final confirmation, which is mandatory 
in order to avoid synchronization issues due to the 
concurrency of user requests. In order to connect the 
application to the simulation framework through the MAZ, 
we introduced only a slight change to the mobile 
application, i.e. we added a new Android activity, which is 
displayed only when the simulation is running. Through this 
activity (shown in Figure 7(d)), the user can decide which 
EV to control, among the list of currently simulated EVs. 
From that moment, the selected EV enters in Controlled 
mode, and the user is immersed in the simulation as s/he 
was driving that vehicle. For instance, s/he can see the 
update of battery-related information in his virtual on-board 
unit (Figure 7(a)), and track its position displayed on the 
Google Maps. Also, the user can arbitrarily change the 
current state of the vehicle by issuing a reservation request. 
In that case, s/he can see on the map that the vehicle will 
change its route and stop to the selected EVSE, in order to 
recharge the desired amount of energy. Through the 
embedding described so far, we validated the correctness of  

applications described in [47,48] before their real 
deployment.  

VII. SECOND USE CASE: PRE-DEPLOYMENT ANALYSIS OF
EM SCENARIOS 

In this Section, we provide results that demonstrate the 
potential of our simulation framework to provide 
quantitative analysis of charging infrastructures and services 
over realistic large-scale EM environments. To this purpose, 
in Section VII.A we first introduce the modeling of the 
scenario (i.e. Bologna), by using realistic data about EVSE 
positions, power characteristics and vehicular traffic flows. 
Then, in Section VII.B we present a subset of results which 
can be extracted from the simulation platform, and which 
shows the impact of the charging reservation service on the 
efficiency and occupancy of the charging infrastructures.  
Finally, in Section VII.C, we discuss a methodology to 
estimate the impact of charging operations performed by 
EVs on the target scenario, by using the output of our 
simulator (i.e. the EVSE load history) as input of a grid 
planning tool (e.g the Siemens PSS Sincal software [46]).  

A. Modeling of the EM scenario
To model the electrical mobility scenario, we focused on
three different aspects: the vehicular road topology, the
vehicular traffic flow, and the EVSE network. About the
first aspect, we imported the road topology map of Bologna
directly from OpenStreetMap [37], and we fixed the main
imprecisions regarding the traffic lights network and, the
directions allowed on each road (e.g. one-way or two-way).
Regarding the traffic flows, we utilized real data statistics
about the vehicles flows on the major roads of the Bologna
city area, based on a measurement campaign performed by
the Bologna municipality. We considered two classes of
vehicles in our simulations: (i) EVs, modeled according to
the methodology described in Section IV.A, and (ii) normal
(fossil-fueled) vehicles, modeled according to the basic
vehicle model provided by SUMO. Normal vehicles are
added to the scenario in order to produce a synthetic
background traffic, although the focus of the analysis is on
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(a) (b) 

Figure 8. The SUMO screenshot of the simulated scenario (a) and a detail with three different vehicles (b). 

the operations of the EVs. During each simulation, we kept 
constant the overall number of vehicles moving within the 
scenario, and the ratio between EVs and normal vehicles. 
Regarding the EVSE network, we considered the real map 
positions of the EVSEs, also available on the EnelDrive 
website [40]. At present, a total of 20 EVSE are present in 
the city of Bologna, and 13 of them are located in the city 
center, which are also the ones used in our simulations. 
Figure 8(a) and 8(b) depict two screenshots of the simulated 
scenario within SUMO. More specifically, Figure 8(a) 
shows the complete area, while Figure 8(b) shows a detail 
with three vehicles: the green one is a simulated EV, the 
yellow one is an EV doing charging operations, and the red 
one is a normal (fossil-fueled) vehicles.  

The area, simulation, EVs and EVSEs parameters are 
collected in Table 2. Although we present here the results 
about the Bologna scenario, we also highlight that the IoE 
simulator can be easily tailored to evaluate and model any 
other EM scenario, once the correct tuning of the modeling 
parameters is performed. At present, this is being performed 
out for the German city of Erlangen, for which a 
comprehensive set of data from a measurement campaign is 
available, beside the all the details of the traffic 
infrastructure.  

Table 2. Simulation parameters 
Simulation Area size 7.2km x 8.6km 
Number of EVs 20,40,100,200,400 
EV weight 2572 kg 
EV Battery capacity 20 kWh 
Number of EVSEs 14 
!"#!" 20 kW 
!"#!"## 1 
!"#!"# 10%, 20%, 30% 
Simulation length 80000 seconds 
!!"#$ 0.1 seconds 

B. Simulation results
In this Section we present the results obtained through 
extensive simulations of the target scenario. More 
specifically, Figures 9-12 show the benefits provided by the 
IoE architecture in terms of EVSE scheduling and  

management, in comparison to the uncoordinated charging 
scenario, where reservation based on mobile services is not 
utilized. In Figures 13-15 we provide insights about the 
ability of the charging infrastructure of the target scenario to 
accommodate the load requests of a varying population of 
EVs. 
Figure 9 shows the percentage of time in which the EVSEs 
are occupied, while varying the number of EVs in the 
scenario. Three different configurations are considered: 

• The red bar refers to the case in which the IoE
architecture is fully deployed, and vehicles can
reserve for a charging spot, according to their SOC
values. The reservation look-ahead is fixed to 24
hours, i.e. an EV will check for a reservation
available in the next 24 hours, starting from the
three closest EVSEs.

• The green bar refers to the case in which no
reservation is performed, and thus an EV that needs
to recharge goes and checks to the closest EVSE.
In case this latter is not available, the EV moves to
the second closest EVSE, then eventually to the
third, then again to the first, and keeps polling in
this way till an available EVSE is found.

• The blue bar refers again to the IoE architecture
with mobile reservation enabled, however a short
look-ahead of 3 hours is used.

Figure 9 demonstrates that a short charging look-ahead 
translates into suboptimal utilization of the EVSEs. This 
happens because EVs can not schedule charging spots too 
much in advance, and thus lots of “charging holes” might 
appear between consecutive reservations, leading to a poor 
overall utilization. This effect might also be seen as a 
special instance of the well-known knapsack problem. On 
the opposite, in the other two configurations, the EVSEs are 
occupied according to the load requests, although utilizing 
reservation provides slightly lower utilization than the 
uncoordinated case. The explanation of this fact is that in 
our simulation model, EVs park themselves while waiting 
for their reserved charging spot. As a result, the EVSEs 
might not be fully utilized in low-density scenarios due to 
the impact of the traveling delay (i.e. the time required from  
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Figure 9. Percentage of EVSE occupation time. Figure 10. Unsatisfied charging request per hour. 

Figure 11. Ratio of time among EVs driving states. Figure 12.  Unsatisfied request vs !"#!"# values. 

a parked EV to reach the EVSE where it performed the 
reservation). Such a delay is negligible when reservation is 
not used, since vehicles continuously move from an EVSE 
to another, till an available one is found. Thus, the 
probability of having empty slots among consecutive 
charging operations is reduced. From the considerations so 
far, a question might arise whether the reservation service 
provides a constructive, real benefit for the deployment of a 
charging infrastructure. In Figures 10 and 11 we add more 
results to address this issue. 
More specifically, in Figure 10 we depict the number of 
unsatisfied requests per hour, both for the reservation case 
(look-ahead of 24h) and without reservation. An unsatisfied 
request is defined as the event in which an EV runs out of 
battery since all the EVSEs are busy, and no charging can be 
performed. Figure 10 shows clearly the benefits of the 
reservation service, mainly due to the intelligent scheduling 
and planning ahead. Of course, increasing the number of 
EVs still produces an increase of unsatisfied requests also 
for the reservation case, but in any case this value remains 
much lower than the uncoordinated case. From these results, 
two considerations can be argued. First, when the 
reservation service is used, accommodating the EVs load 
request translates directly into providing a sufficient number 
of EVSEs and into placing them in favorable spots, while 
these actions might not be enough when reservation is not  

used. Second, since the reservation can guarantee the 
availability of the charging service from the perspective of 
the EV driver, the anxiety problem as mentioned in [30] 
might be mitigated, and the overall market of EVs could 
take benefit. In Figure 11, we further analyze these last 
issues, by analyzing the average ratio of time spent on 
different states from each EV. More specifically, we depict 
the ratio between the amount of time in which the EV is 
going to the EVSE and the amount of time in which the EV 
is doing its normal activity, like driving and moving toward 
to a Point of Interest (i.e. !"#$% = !"#$%_!"_!"#!!"#$

!"#$#%& ). 
Clearly, the reservation service provides the best results, 
since the EV reaches the EVSE only after a charging slot 
has been guaranteed by the CS. A direct consequence is that 
EVs drivers can have more time to perform their daily 
activities when compared to the case without reservation, 
when additional time and battery capacity might be required 
to discover an available EVSE. In Figure 12, we depict the 
unsatisfied request metric, for the two configurations (i.e. 
with and without reservation), while varying the !"#!"# 
parameter, i.e. the threshold percentage of SOC below 
which an EV driver decides to perform a recharge. Varying 
the !"#!"# parameter corresponds to model different 
anxiety levels from the EVs drivers, and thus different 
driving behaviors. Increasing the !"#!"# value produces a  
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Figure 13. EVSE occupation time for different !"#!"# 
values. 

Figure 14. EVSE occupation time for varying number of 
EVSEs. 

higher number of recharging operations performed in the 
scenario. However, Figure 12 shows an apparently counter-
intuitive behavior, i.e. the number of unsatisfied requests is 
higher for lower anxiety values. This can be justified by 
considering that when the !"#!"# threshold is low, the EVs 
might not have enough battery charge to reach the EVSE, in 
both the configurations. However, it is still evident that 
enabling the reservation might accommodate a higher 
number of requests from EVSEs, whatever the value 
!"#!"# is. 

The presented results shown so far demonstrate that with the 
IoE architecture more charging requests can be 
accommodated, while also saving more time to the users for 
their daily activities. In the Figures below, we investigate 
the ability of the charging infrastructure to accommodate the 
load requests from a varying number of EVs, upon varying 
drivers’ behavior and upon varying availability of the 
EVSEs. Reservation is always enabled, with look-ahead 
equal to 24 hours. More specifically, Figure 13 depicts the 
percentage of EVSE occupation time, when we vary the 
number of EVs and the values of !"#!"#. Intuitively, the 
EVSE occupation time increases when more EVs move 
within the scenario, or when they need to recharge more 
frequently (i.e. for higher values of !"#!"#).  Regardless of 
!"#!"#, the saturation is achieved with 200 EVs, which 
points to the fact that for higher penetration rates of EVs the 
current charging infrastructure might not be enough to 
accommodate the load.  In Figure 14 we further itemize this 
issue, in that we show the EVSE occupation rate by fixing 
the number of EVs (40), and varying the number of EVSEs 
active in the scenario, i.e. by assuming that only a fraction 
of the available ones for the Bologna scenario are actively 
working. In our experiments, EVSEs are progressively 
added to the scenario by considering their distance from the 
city center (closest ones first).   As expected, the average 
occupation decreases while increasing the number of 
charging stations available in the scenario.  
In Figure 15, we conclude the analysis, by showing the 
number of unsatisfied requests per hour when we vary the 
number of EVSEs available in the scenario, according to the 
methodology of infrastructure deployment previously 
introduced.  Referring to the load produced by the 40 EVs, it 
is easy to see that a number of EVSEs lower than 10 might 
not be enough to accommodate all the requests originated by 
the EVs. Of course, the location of the EVSEs is also 
fundamental to compute the unsatisfied request ratio. In our 
analysis, we utilize the real locations of EVSEs, however we 

highlight that our simulation framework might be also 
utilized as a planning tool to decide the optimal locations of 
charging stations [23].  

Figure 15.  Unsatisfied requests for varying number of 
EVSEs. 

C. Methodology to evaluate the impact on the smart grid
Beyond the simulation of EV/EVSE/mobile services that we 
have presented in depth in this paper, there is another 
valuable outcome of our simulation framework that is 
related to its integration with production-level grid planning 
tools in order to realistically estimate the grid impact of EVs 
moving on large-scale scenarios such as for example the city 
of Bologna. More specifically, in the proposed methodology 
the integrated SUMO/OMNET++ simulation platform can 
deliver EVSE load history data as input to the feeders of 
local distribution grids. To this purpose it is worth to 
highlight that being able to calculate the load of an EVSE is 
crucial for the planning of future decentralized grids because 
there is no significant history of EV recharging patterns so 
far. In fact, although several smart grid simulators have been 
proposed in the literature (reviewed in Section II), they 
might likely fail for not being able to generate realistic 
EVSE loads over time, since they do not model the 
characteristics of vehicular mobility, and thus they might 
not reproduce the effective recharging needs accurately. 
Conversely, these aspects are taken into account by our 
simulation framework, where we model the dynamics of i) 
vehicular congestion (through the car-following models 
provided by SUMO), ii) charging requests (through the 
battery model described in Section IV.A) and iii) vehicle 
arrivals and departures at each EVSE.  
Based on these considerations, we propose the following 
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four-step methodology to compute the EVSE load history 
from simulation data produced by our simulation 
framework: 

1. First, the arrival time-table of EVs at an EVSE is
calculated for the specific target scenario (e.g.
Bologna), through the modeling described in
Section VII.A. EVSEs may consist of several
chargers (e.g. !"#!"## > 1), with different values
of output power.

2. Knowing both the start time of a recharging session
(from the arrival time table) and the charging
power as a function of time (based on the w(!"#!)
coefficients introduced in Equation 8), the charging
duration of a given EV/charger combination can be
determined for a given set of initial and target
SOC, which in turn can be either experimental data
or parameters  calculated according to detailed
physical models and EV routes.

3. Under consideration of different reservation and
charging strategies and while obeying given
recovery times of the charging infrastructure, the
time dependent load characteristics of an EVSE can
thus be calculated and delivered in a format
compatible with the requirements of a grid
planning tool (e.g. for the Siemens PSS SINCAL
software [46], the CVS or Excel format).

4. With the load history information available, the
impact of an EVSE infrastructure in operation on
the grid - i.e. in terms of load, reactive power and
harmonics propagation - can be determined and
thus allow the planning of future decentralized
grids including EV recharging infrastructures
(rightmost illustration in Figure 16).

Figure 16. Methodology to generate EVSEs load 
history traces. 

In the following a proof of concept of steps 1-3 is provided 
for a reference scenario. More specifically, a parking spot 
located near an office district of the Bologna scenario is 
considered. The parking spot is provided with an EVSE to 
allow the charging of parked EVs. In order to compute the 
arrival time table in a realistic way (step 1), we built an 
activity traffic model through the ActivityGen utility of 
SUMO [18]: we provided as input Bologna demographical 
data and the street topology (imported from 
OpenStreetMap), and we got as output the list of vehicles 
routes. We modeled the parking duration through a 
probabilistic distribution, based on typical office opening 
times (i.e. from 7am to 8pm). Figure 17 depicts the number 
of vehicles (conventional and EVs) in the parking spot over 
the 24 hours. All arrivals are concentrated between 7am and 
11am (with a peak between 8am and 9am), while most of 
the departures occur around 6pm; this result confirms the 
correctness of the model implementation. Figure 18 shows 

the total energy delivered by the EVSE to the parked 
vehicles, over the 24 hours. We consider here an EVSE with 
maximum power equal to 40 kW (!"#!"= 40) equally 
shared among its connectors, with each connector rated to a 
maximum of 10 kW, and we consider three different 
connector configurations (i.e. !"#!"## equal to 2, 3 and 4, 
respectively). Moreover, we test two different parking 
management schemes: (i) without  reservation: in this case, 
EVs can recharge if they find a free connector once they 
enter the parking spot, otherwise they will park somewhere 
else and will not recharge. (ii) with reservation; in this case, 
EVs book a charging slot before their arrival at the parking 
spot, and  at their reservation time, they get connected to the 
EVSE (for instance by a valet) and start recharging. . Based 
on the simulation results Figure 18 summarizes recharging 
duration (step 2), and the time dependent load 
characteristics of the EVSE (step 3), which is saved in CSV 
format for grid impact evaluation through the PSS SINCAL 
[46] software (step 4).

Figures 19 and 20 show additional results that demonstrate 
how our simulation platform can assist the pre-deployment 
analysis of the charging infrastructure on the target scenario, 
by providing useful indications about the correct EVSE 
sizing and configuration based on the load produced by the 
EVs. More specifically, Figure 19 depicts the ratio of fully 
charged EVs, i.e. of EVs that leave the parking spot with 
SOC equal to 100%, as a function of number of connectors 
(!"#!"##) available at the EVSE. We test the two parking 
management schemes defined above (i.e. with 
reservation/without reservation), considering two different 
EVSE power profiles (!"#!" = 50 kW and !"#!" = 100 
kW). The following considerations can be drawn from 
Figure 19: (i) increasing the power profile of the EVSE 
produces a poorer improvement than increasing the number 
of available connectors; (ii) when reservation is not 
available, at least 15 connectors (i.e. !"#!"## ≥ 15) are 
needed in order to serve all the EVs; (iii) when reservation 
is used, 5 connectors are enough (i.e. !"#!"## ≥ 5) to 
obtain the same result. Figure 20 compares the average 
EVSE occupation of the two parking management schemes, 
as a function of !"#!"## and for two values of !"#!". 
Here it is possible to notice that - for !"#!"## ≤ 10 - the 
occupation is much higher when the reservation service is 
used. This is reasonable as more EVs are served during the 
24 hours, in fact even if a EV finds all connectors busy at its 
arrival in the parking spot, it will be charged during its 
reserved slot. Vice versa, the occupation becomes very low 
for both schemes when !"#!"## > 10, since the EVSE is 
clearly oversized - in terms of number of connectors - 
compared to the actual load produced by the EVs. 
Operational stakeholders interested in infrastructure 
deployment should then compare the cost of extending the 
hardware equipment (in terms of additional connectors) 
against the cost of implementing the reservation and valet 
service, but this is out of the scope of the current analysis.  

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel simulation framework to 
analyze the impact and the operations of Electric Vehicles 
(EVs) in complex, large-scale and heterogeneous 
environments. The proposed framework integrates models 
of vehicular mobility, battery charging/discharging and EM- 
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Figure 17. Vehicles arrival/departure at the parking spot 
over hour of the day 

Figure 18. EVSE load over hour of the day 

Figure 19. Ratio of fully charged vehicles over total number of 
connectors (!"#!"##) 

Figure 20. EVSE Occupation (%) over total number of 
connectors (!"#!"##) 

related city services, and it relies on the semantic 
architecture deployed within the IoE project, through which 
real and simulated components can be integrated seamlessly. 
Two use-cases have been discussed: (i) the evaluation of 
large-scale EM scenarios (i.e. the city of Bologna) through 
which we derived useful pre-deployment indications about 
charging infrastructures and reservation services, and (ii) the 
immersive emulation of EM-related mobile applications 
through the Mobile Application Zoo (MAZ) concept. 
Coherently with these two research directions, the future 
works and open issues embrace on one side the aspects of 
modeling and simulation of EM scenarios, and on the other 
the mobile services to assist EVs drivers and also minimize 
the recharging impact on the grid. Particularly, with 
reference to the first aspect, we plan to further extend the 
battery model of the EV by also considering the impact of 
regenerative breaking on energy consumption. At the same 
time, a major improvement will consist in the further 
integration of our simulation framework with smart grid 
simulators and planning tools, in order to analyze the impact 
of EVs charging operations to the smart grid in terms of 
reactive power and harmonics propagation. An additional 
yet more challenging research direction aims to have both 
the smart grid simulator and our EV simulation platform 
running simultaneously (and not sequentially, like in Section 
VII.C), in order to allow the investigation of complex
aspects related to energy production and selling, like the
energy price dynamics and the utilization of renewable

sources for not only domestic charging services. At present, 
our framework already provides hooks in the OMNET++ 
implementation of the EVSE model, to which external 
software components can be attached in order to read the 
power request from a charging EV and set the output power. 
However, there still remains the main issue about the time 
synchronization, since SUMO/OMNET++ rely on a 
discrete-event scheduler, while most of the existing smart-
grid simulators in the literature (e.g. tools used in [4][5]) are 
time-driven and based on differential equations, and thus 
time-stepped synchronization and communication 
techniques [3] should be implemented. A complementary 
research direction is focused on the definition of novel and 
advanced mobile applications for EM scenarios, which can 
be tested and validated on the proposed framework through 
the MAZ. To this purpose, we are investigating for example 
how to extend the battery monitoring application of Section 
VI.B with battery state prediction algorithms able to suggest
charging options on the basis of the user’s planned route and
of the current SOC.
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