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Highlights: 23 

 MFC/PLA bilayer films are fabricated as biorenewable barrier solution for packaging. 24 

 Atmospheric plasma activation guarantees the effectiveness of coating process.  25 

 MFC coatings improve significantly the mechanical and barrier performances of PLA. 26 
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ABSTRACT  27 

Fully bio-based and biodegradable materials, such as polylactic acid (PLA) and microfibrillated 28 

cellulose (MFC), are considered in order to produce a completely renewable packaging solution 29 

for oxygen barrier applications, even at medium-high relative humidity (R.H.). Thin layers of 30 

MFC were coated on different PLA substrates by activating film surface with an atmospheric 31 

plasma treatment, leading to the fabrication of robust and transparent multilayer composite films, 32 

which were then characterized by different experimental techniques. UV transmission 33 

measurements confirmed the transparency of multilayer films (60% of UV transmission rate), 34 

while SEM micrographs showed the presence of a continuous, dense and defect free layer of 35 

MFC on PLA surface. Concerning the mechanical behavior of the samples, tensile tests revealed 36 

that the multilayer films significantly improved the stress at break value of neat PLA. Moreover, 37 

the oxygen barrier properties of the multilayer films were improved more than one order of 38 

magnitude compared to neat PLA film at 35°C and 0% R.H. and the permeability values are 39 

maintained up to 60% R.H.. The obtained materials therefore showed interesting properties for 40 

their possible use in barrier packaging applications as fully biodegradable solution, coupling two 41 

primarily incompatible matrices in a multilayer film with no need of any solvent or chemical. 42 

 43 

Keywords: 44 
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 46 
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1. INTRODUCTION  49 

Plastics derived from fossil fuels have been the commodity materials in the packaging industry 50 

during last few decades and this trend has been increasing steadily mainly due to their feasibility 51 

in terms of cost and manufacturing processes.(Plastics Europe, 2015) On the other hand, limited 52 

recycling rates and waste-disposal problems associated with traditional plastic materials led to 53 

serious environmental issues. (Mohanty et al., 2002).  The latest data show that the packaging 54 

industry accounts for nearly 40% of plastics usage in the world (Plastics Europe, 2015). Hence, 55 

due to increasing environmental concerns and end-of-life cycles of commodity packaging 56 

materials, over the last decade the research in developing eco-friendly and biodegradable 57 

polymer solutions has reached its peak in packaging and other sectors. (Petersen et al., 1999; van 58 

Tuil et al., 2000; Siracusa et al., 2008) 59 

Bio-based materials can be divided into three main groups, according to the classification 60 

based on their source: polymers derived directly from natural materials (starch, cellulose, 61 

chitosan), synthesized from bio-derived monomers (polylactide - PLA, bio-polyethylene - PE 62 

etc.) and produced by living organisms such as microorganisms or bacteria (poly hydroxyl 63 

alkanoates - PHAs, bacterial cellulose) (Tharanathan, 2003; Klemm et al., 2006; Siró and 64 

Plackett, 2010; Vieira et al., 2011; Johansson et al., 2012). 65 

Among the different biomaterials, polylactide or polylactic acid (PLA) is a biodegradable 66 

bioplastic produced by the polymerization reaction of a naturally derived monomer (lactic acid), 67 

obtained from dextrose. Being renewable and biodegradable, it decomposes in the environment 68 

into carbon dioxide and water in the appropriate conditions, PLA is a suitable candidate for the 69 

replacement of petroleum based products (Jamshidian et al., 2010), and currently offers a strong 70 

alternative in the packaging industry, also due to its easy processability through conventional 71 
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methods such as melt processing (Drumright et al., 2000; Nakagaito et al., 2009). For these 72 

reasons, PLA has been already applied in the industry for certain food products or goods, and is 73 

currently widely investigated aiming at the improvement of some key properties such as 74 

physical, mechanical and gas barrier properties in order to better compete with oil derived 75 

plastics (Auras et al., 2003, 2006; de Azeredo, 2009; Drieskens et al., 2009; Svagan et al., 2012; 76 

Guinault et al., 2012; Delpouve et al., 2012; Bai et al., 2014). In particular, the gas barrier ability 77 

still needs to be enhanced in order to use PLA in barrier packaging applications, e.g. for sensitive 78 

foods (Auras et al., 2006; de Azeredo, 2009; Drieskens et al., 2009). In this concern, several 79 

studies investigated the gas permeability of PLA-based materials, with particular attention to 80 

nanocomposites, prepared following different approaches such as melt extrusion, in situ 81 

polymerization, and solvent casting, to mix the polymer with impermeable layered silicate clays 82 

(Chang et al., 2003; Chowdhury, 2008; Picard et al., 2011;  Svagan et al., 2012). However, due 83 

to difficult exfoliation and orientation of nanoclays, the reduction in oxygen permeability is 84 

somewhat limited around 60% (Chang et al., 2003; Chowdhury, 2008). 85 

Recently, the development of nanometric sized cellulosic materials, known as 86 

microfibrillated cellulose (MFC or NFC) (Herrick et al., 1983; Turbak et al., 1983; Klemm et al., 87 

2006; Siró and Plackett, 2010) and nanowhiskers or nanocrystals, (Samir et al., 2005; Eichhorn, 88 

2011) produced respectively by delamination of the fibers in a high pressure homogenization 89 

process, and by acid hydrolysis to eliminate the amorphous regions of the fibrils, opened up new 90 

possibilities for barrier packaging applications primarily due to the remarkable mechanical and 91 

barrier properties of these new materials (Berglund, 2005; Samir et al., 2005; Fukuzumi et al., 92 

2009; Henriksson et al., 2008; Syverud and Stenius, 2009; Sanchez-Garcia and Lagaron, 2010; 93 

Lavoine et al., 2012; Belbekhouche et al., 2011). 94 



 5

Strong and stiff films of nanocellulose can be produced from highly diluted dispersion in 95 

water by different methods (Yano, and Nakahara, 2004;  Syverud and Stenius, 2009; Minelli et 96 

al., 2010; Österberg et al., 2013), and MFC can also be used as reinforcement for 97 

nanocomposites to improve the mechanical properties due to high aspect ratio of the microfibrils 98 

(Zimmermann et al., 2004; Leitner et al., 2007; Svagan et al., 2007; Iwatake et al., 2008). 99 

Moreover, cellulosic materials can be easily functionalized thanks to the high number of 100 

hydroxyl groups on the surface of microfibrils which create sites for chemical modifications 101 

suitable to various applications (Andresen et al. 2007; Lu et al., 2008; Stenstad et al., 2008; 102 

Siquera et  al., 2009, Lavoine et al., 2014, Habibi, 2014). 103 

MFC is a strong candidate for the fabrication of nanocomposites and coating formulations 104 

for barrier packaging applications in view of its high crystalline content and the ability to form 105 

dense interfibrillar network with hydrogen bonds, which eventually lead to excellent gas barrier 106 

properties (Lavoine et al., 2012; Martínez-Sanz et al., 2013; Bardet et al., 2015, Rodionova et al., 107 

2012). The oxygen permeability of 21 μm thick MFC films produced from bleached spruce 108 

sulfite pulp at 23 °C and 0% RH was reported as 1.9 · 10-18 mol m/m2 s Pa (Syverud and Stenius, 109 

2009), comparable with well-known ultra-barrier polymers, e.g. polyvinyl alcohol, PVOH  or 110 

polyvinylidene chloride, PVdC (Lange and Wyser, 2003). The effect of pretreatments of the 111 

cellulose fiber on the final MFC barrier performances has been also investigated, revealing that 112 

O2 permeability in enzymatically pretreated MFC is comparable if not slightly smaller than that 113 

in carboxymethylated MFC, being the values measured at 35°C as low as 2.6 · 10-19 and 6.3 · 10-114 

19 mol m/m2 s Pa, for the two materials respectively (Minelli et al. 2010). 115 

PLA and MFC are very likely the two most promising bio-based materials for industrial 116 

application in the near future, and for this reason they were often combined to form new 117 
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generation of nanocomposites for different purposes (Iwatake et al., 2008; Suryanegara et al., 118 

2009; Mathew et al., 2005, 2006; Oksman et al., 2006; Iwatake et al. 2008). Interestingly, highly 119 

loaded nanocomposite films (up to 90 wt.% of MFC) have been obtained from an aqueous 120 

suspension of MFC and PLA followed by hot pressing of the dried sheets, leading to a tensile 121 

modulus that increases linearly with the MFC content, followed by strength and strain at fracture 122 

(Nakagaito et al. 2009). Alternatively, Fukuzumi et al. (2009, 2013) used a different approach 123 

and prepared TEMPO oxidized MFC thin coating (0.4 μm) on plasma-treated PLA film, leading 124 

to a dramatic reduction of the oxygen transfer rate. Plasma treatment can indeed modify the 125 

surface properties of PLA films, such as wettability, surface energy and chemical structure 126 

(Vergne et al., 2011; Jordá-Vilaplana et al., 2014; Cools et al., 2015), enabling and the deposition 127 

of thin coatings on the polymer surface and the consequent production of multilayer films 128 

(Benetto et al., 2015). 129 

Although significant efforts have been devoted to the fabrication of PLA/nanocellulose 130 

composite systems by dispersion of fibrils or crystals into the polymer matrix, very few works 131 

have focused on their assembly in layered structures, which in turn are clearly more industrially 132 

attractive, especially for packaging applications. The main limitation is indeed in the large 133 

incompatibility of the two phases, which can be overcame by chemical modification, surface 134 

treatments (Fukuzumi et al. 2009), or by means of specific deposition techniques (Aulin et al. 135 

2013). 136 

In the present study, a bilayer system is fabricated by coating a thin layer of MFC onto a 137 

plasma activated PLA substrate, obtaining a strong adhesion between two primarily incompatible 138 

layers. Mechanical, optical and transport properties of the multilayer films were analyzed with 139 
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particular attention to the oxygen barrier, which was investigated in both dry and humid 140 

conditions, and compared with data for neat PLA and other current polymer commodities.. 141 

 142 

2. Experimental 143 

2.1. Materials 144 

Microfibrillated cellulose (MFC) 145 

The neat MFC films and the coatings prepared in this work are obtained from aqueous 146 

dispersions at about 2% by weight of solid contents, produced at Innventia AB (Stockholm, 147 

Sweden). Two different MFC dispersions were used, often labeled as MFC generation 1 (MFC 148 

G1) and MFC generation 2 (MFC G2), produced from cellulose pulp after identical mechanical 149 

crushing in the high pressure homogenization step following different pretreatment procedures to 150 

obtain an easier and energy efficient fibrillation process. In particular, MFC G1 is obtained by an 151 

enzymatic pretreatment of the cellulose pulp, as described by Pääkkö et al. (2007), a 152 

carboxymethylation process is used to fabricate MFC-G2, according to Wågberg et al. (2008). A 153 

brief description of the preparation techniques of the MFC productions is here proposed, while 154 

more detailed illustration of the method and the results of their physical and morphological 155 

characterization are in the cited publications (Henriksson et al., 2007; Siró et al., 2011); .  156 

MFC G1 is produced from commercial bleached sulfite softwood pulp (Domsjö ECO 157 

Bright, Domsjö Fabriker AB, Sweden) consisting of 40% pine (Pinus sylvestris) and 60% spruce 158 

(Picea abies) with a hemicellulose content of 13.8% and a lignin content of 1%, whereas 159 

commercial sulfite softwood dissolving pulp (Domsjö Dissolving Plus, Domsjö Fabriker AB, 160 

Sweden), with 4.5% of hemicellulose and 0.6% of lignin content, has been used to obtain the 161 

final MFC G2 dispersion.  162 
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The fabrication of the pure MFC films is carried out by further diluting the dispersions 163 

with deionized water in order to prepare a suspension that could be easily poured (1% of solid 164 

content for MFC G1, and 0.67 for MFC G2), which is then vigorously stirred for about 3 h and 165 

finally cast in glass Petri dishes placed under a clean hood at room temperature, until complete 166 

solvent evaporation is attained. 167 

Polylactic acid (PLA) 168 

Two different types of PLA are used as substrate, in order to explore any possible 169 

difference in the plasma activation process and in the final barrier properties; to this aim 170 

amorphous (PLA-Am) and semi-crystalline PLA are accounted for. 171 

Amorphous PLA films were produced by solvent casting, dissolving Natureworks (4060D) 172 

pellets in dichloromethane 5% wt., vigorously stirring the solution for about 3 h, and finally 173 

pouring it into glass Petri dish which was then placed in a clean hood at ambient conditions for 174 

24 h, until the solvent was completely evaporated. The films obtained were then treated under 175 

vacuum at 50°C to ensure the complete solvent evaporation. 176 

Semi-crystalline PLA (Polybio 212) was a commercially available product obtained by 177 

extrusion, and kindly provided by Coopbox S.p.A; the film has a thickness of 40 μm, a 178 

crystalline fraction of about 18%, as obtained by DSC measurements. 179 

 180 

2.2. Atmospheric Plasma treatment  181 

PLA films were plasma treated by means of two different Dielectric Barrier Discharge (DBD) 182 

sources, named planar-DBD and DBD-roller; during the treatment, PLA films were positioned in 183 

the interelectrode gap on the grounded electrode of the DBD plasma sources. 184 
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The DBD-roller, whose details have been previously illustrated, (Boselli et al. 2012), was 185 

specifically designed to enable a roll-to-roll continuous treatment of films. The plasma source 186 

was operated in air driven by a high voltage generator (FID GmbH – FPG 20–1NMK), and the 187 

treatment was performed using peak voltage (PV) of 20 kV and pulse repetition frequency (PRF) 188 

of 330 Hz and was operated for 20 s. A planar-DBD source, also described in a previous work 189 

(Boselli et al. 2013), was operated in air as well, driven by a high voltage generator (Trek model 190 

30/20-H-CE), connected to a function generator (Stanford Research model DS335). The 191 

operating parameter of the high voltage generator were set as follows: bipolar square-wave 192 

having a PV of 12.7 kV and a PRF of 100 Hz. PLA films were treated for 5 minutes. 193 

No bulky effect is expected to be produced by the plasma process, which is ultimately an almost 194 

purely superficial treatment: its penetration is indeed in the order of few hundreds of nanometers, 195 

not able to produce significant changes in the overall properties of the PLA film. In this respect, 196 

the gas transport properties of PLA films have been demonstrated to be practically unchanged by 197 

the plasma treatment (Boselli et al., 2013). 198 

 199 

2.3 multilayer film preparation 200 

PLA/MFC films are prepared by solvent casting of the MFC dispersion on top of a plasma 201 

treated PLA film conveniently located in a glassy Petri dish; alternatively adjustable casting 202 

knife technique was used on rectangular glass support (BYK-Gardner). Multilayer films are then 203 

obtained after the evaporation of water in a clean hood at ambient conditions for 2-3 days. The 204 

thicknesses of the films used in the different tests span from 10 to 60 microns (Table 1). They 205 

were obtained by controlling the exact amount of solution poured in the petri dish during casting 206 

procedure. The resulting thicknesses were then measured with a Mitutoyo micrometer (Mitutoyo 207 
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Scandinavia AB, Väsby, Sweden) in 10 different spots, resulting deviation, on the single sample, 208 

not exceeding 5 %. 209 

It is noteworthy that the bilayer systems are obtained only after the plasma treatment of the 210 

PLA film surface. In absence of any activation, indeed, no adhesion at all could be achieved 211 

between coating and substrate. 212 

 213 

Table 1. Bilayer films characterized in this study with their thicknesses and analyzing methods. 214 

Film 
Thickness range 

(m) 

PLA 40 

PLA-Am 40-50 

MFC G1 9-32 

MFC G2 10-27 

PLA/MFC G1 40 + 10-17 

PLA/MFC G2 40 + 7-17 

 215 

2.4. Material characterization 216 

Scanning electron microscope (SEM) 217 

The materials were characterized by SEM on an FEI Quanta 200 ESEM FEG at 5 kV. 218 

SEM images were obtained in order to investigate the arrangement of the different layers in the 219 

bilayer structure. Indeed, MFC G1 and MFC G2 coatings on top of PLA substrates were 220 

expected to show a dense and continuous layer, as typically observed for self-standing 221 

nanocellulose films (Minelli et al. 2010). 222 

Tensile tests 223 

Tensile tests were carried out by means of an INSTRON 4301 apparatus (Instron 224 

Engineering Corporation, Canton, MA, USA) at a strain rate of 1 mm min-1 for PLA-Am, MFC 225 
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G2 and PLA/MFC G2 films, in order to inspect the stability of the coating application and to 226 

ensure that the adhesion between two layers is retained as well as the mechanical properties are 227 

preserved. Wide rectangular shaped specimens with a dimension of 50x10 mm were prepared for 228 

testing. The Young modulus was determined from the slope of the linear region of the stress-229 

strain range (approximately between 1% and 6% of strain). 230 

Optical properties 231 

UV light transmissions of PLA-Am, MFC G1, MFC G2, PLA/MFC G1 and PLA/MFC G2 232 

films were measured using a UV-Vis spectrometer (Polar Star Omega) in the range of 220 nm – 233 

1000 nm by triplicate.  234 

Gas permeation apparatus 235 

Gas permeation experiments were carried out in two different apparatuses, namely dry and 236 

humid permeation systems, already described in previous studies (Minelli et al. 2008, 2010). 237 

Both pieces of equipment exploit a standard barometric technique for the evaluation of the 238 

permeate flux from the measure of a pressure increase in a closed downstream compartment, 239 

whose volume has been previously calibrated (ASTM Standard D 1434). Humid gas tests were 240 

carried out conveniently pre-equilibrating the sample at the desired humidity by exposing both 241 

sides of the film to pure water vapor at controlled pressure (corresponding to the target activity). 242 

Therefore, when one side of the sample is fed by a humidified O2 stream at the same RH of the 243 

preequilibration step, the water has the same chemical potential in both upstream and 244 

downstream compartment and only oxygen permeates through (Minelli et al., 2008; Ansaloni et 245 

al., 2014). Thus, at steady state conditions Eq. 1 provides the required expression for 246 

permeability: 247 
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. . .
t

dp V
P O T R

dt R T A p




          
       (1) 248 

being V the downstream volume (23 cm3), A the permeation area (9.6 cm2),  the sample 249 

thickness, and p the pressure difference across the film (about 1 bar), whereas O.T.R. is the 250 

oxygen transmission rate. The uncertainty in the permeation measurement can be estimated 251 

within ± 10% of the reported values. 252 

 253 

3. Results and discussion 254 

PLA/MFC multilayer films obtained after plasma treatment are robust, stable and resistent 255 

even after the successive cycles of permeability tests at various relative humidity conditions. 256 

Indeed a remarkable adhesion is achieved between the two layers, and the coating cannot be 257 

peeled off even after bending or stretching the multilayer samples in atmospheric air; the sample 258 

is also able to resist to exposure to saturated water environment before each permeation test in 259 

the conditioning step. Interestingly, no aging effect has been observed; the two layers of the 260 

MFC/PLA samples, stored in standard room conditions of temperature and relative humidity, are 261 

still well attached after in almost one year after their preparation. 262 

The effective adhesion is obtained for MFC types produced both with enzymatic 263 

pretreatment (G1) and carboxymethylation pretreatment (G2), and on top of all PLA substrates 264 

investigated (semicrystalline or amorphous polylactide). The multilayer films were then tested in 265 

order to investigate the structural stability and their performances, and the results are presented 266 

in the following sections. 267 

 268 

3.1. SEM images 269 
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SEM micrographs of the cross section of PLA/MFC G1 and PLA/MFC G2 multilayer 270 

films are shown in Fig. 1a-d below, with two different magnifications for each sample. A dense 271 

and continuous layer of MFC coating is clearly visible in all figures, similarly to the SEM 272 

micrographs already reported for self-standing MFC films (Minelli et al. 2010); the apparent 273 

thickness obtained from the images is in the range of 3-10 and 4-13 m for MFC G1 and G2, 274 

respectively, thus only slightly lower than the values measured by the digital micrometer. Small 275 

defects around the edges of the samples can be attributed to the cutting procedure, performed 276 

after freezing the sample in liquid nitrogen, which was required for cross section SEM analysis. 277 
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MFC G2 94  16 10  3 1.0  0.1 

PLA/MFC G2 86  1 - 1.12  0.01 

 297 

The results from mechanical tests confirmed the strong adhesion between PLA substrate 298 

and the dense MFC layer, which was able to prevent any delamination before the ultimate stress 299 

of the single MFC layer is reached. The mechanical properties of MFC G2 are comparable with 300 

those reported in a previous study (Plackett et al. 2010)  for the same material except Young’s 301 

modulus, which is lower in this study likely due to different casting procedures, which produced 302 

different packing of nanofiber networks. The testing procedure and setup, as well as the 303 

preparation protocol of MFC films are indeed the main causes of the literature data variability, 304 

which affect MFC mechanical properties (Svagan et al., 2007; Henriksson and Berglund, 2007; 305 

Henriksson et al., 2008). 306 

 307 

3.3. Optical properties 308 

Fig. 3 illustrates the UV transmittance spectra of PLA, MFC G1, MFC G2, PLA/MFC G1 309 

and PLA/MFC G2 films, revealing that the transmittance at 600 nm (center of visible light 310 

spectrum) is about 87, 34, 27, 64 and 34%, respectively. PLA is practically transparent (almost 311 

90% of transmittance), while MFC is typically opaque, and its effect on the overall behavior is 312 

clearly apparent. As one can see, the difference in the opacity of the two types of MFC (in the 313 

self standing films) is definitely not significant, as also reported in a previous work (Plackett et 314 

al., 2010). It is noteworthy, however, that PLA/MFC G1 sample showed satisfying transparency 315 

of 64% compared to PLA/MFC G2, even though its MFC layer was slightly thicker (about 17 316 

m for MFC G1 coating, and about 10 m for the MFC G2 one). 317 
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still stable as the bilayer film performed well within the temperature range investigated under dry 330 

oxygen permeation measurements. 331 

Interestingly, the O2 permeability in MFC films increases significantly at increasing 332 

temperature, appreciably more than in pure PLA films, following an Arrhenius relationship: 333 

0 exp PE
P P

RT

 
   

 
          (2) 334 

This indicates a larger activation energy of the gas transport process for MFC films, and 335 

consequently for PLA/MFC multilayer systems. The calculated values of activation energy of 336 

permeation are 19.6 and 15.7 kJ/mol for amorphous and semicristalline PLA, respectively, while 337 

the value of 41.8 kJ/mol is obtained for MFC self-standing films. 338 

The barrier performances of the bilayer film were also evaluated in humid conditions, 339 

relevant in the packaging sector, and in view of the very hydrophilic nature of cellulosic 340 

materials. As already mentioned, the MFC coatings are firmly attached to the PLA substrates and 341 

no delamination is observed even in highly humid environments. Oxygen permeability at various 342 

humidity contents was then measured in PLA/MFC G1 and PLA/MFC G2 films, and successive 343 

experiments at increasing and decreasing trends of R.H. were carried out in order to investigate if 344 

any structural changes are induced in the multilayer materials, which might reduce the barrier 345 

ability. Fig. 5 shows the oxygen permeability obtained behavior at 35 C in PLA/MFC G1 and 346 

PLA/MFC G2 films with respect to water activity (R.H.). 347 
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In the present study, a fully biodegradable and biorenewable multilayer film has been 397 

developed coupling, by means of an environmental friendly method needing no additional 398 

chemicals, two primarily incompatible polymeric materials. A MFC coating was indeed 399 

deposited onto a plasma activated PLA substrate, aiming at the fabrication of an oxygen barrier 400 

and water resistant solution for barrier packaging applications. The atmospheric plasma surface 401 

activation of the PLA substrate promoted a strong adhesion between two layers, as observed by 402 

SEM micrographs and by mechanical analysis, which revealed an improved behavior of the PLA 403 

film in presence of the MFC coating.  404 

The plasma assisted methodology, indeed, offers a sustainable tool for the fabrication of 405 

effective and stable barrier coatings on biopolymer substrates, and the presented DBD-roller 406 

plasma source has the potential for the scale up and the integration in ‘‘in-line’’ procedures for 407 

industrial production of multilayer films. 408 

The oxygen permeability of bilayer films in dry conditions showed a remarkable barrier 409 

effect produced by the addition of the MFC coating on PLA substrate. As a decrease of the 410 

O.T.R. of about one order of magnitude was indeed observed that interestingly was preserved 411 

also in humid environments (up to about 60% RH at least), as revealed by the investigation of the 412 

gas permeability at various water activities. The oxygen permeability of present materials then 413 

resulted to be much lower than most of the conventional oil-based and novel bio-based barrier 414 

solutions at 50% R.H.  415 

The calculation of the coating permeability (from series resistance expression) and its 416 

comparison with pure MFC permeability data revealed very similar results for MFC coating or 417 

self-standing films, confirming the a dense and stable thin top layer is achieved without any 418 

cracks or detachment from PLA substrate. 419 
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