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Abstract

We consider the Train Timetabling Problem (TTP) in a railway node (i.e. a set of stations
in an urban area interconnected by tracks), which calls for determining the best schedule for
a given set of trains during a given time horizon, while satisfying several track operational
constraints. In particular, we consider the context of a highly congested railway node in which
different Train Operators wish to run trains according to timetables that they propose, called
ideal timetables. The ideal timetables altogether may be (and usually are) conflicting, i.e.
they do not respect one or more of the track operational constraints. The goal is to determine
conflict-free timetables that differ as little as possible from the ideal ones. The problem was
studied for a research project funded by Rete Ferroviaria Italiana (RFI), the main Italian
railway Infrastructure Manager, who also provided us with real-world instances. We present
an Integer Linear Programming (ILP) model for the problem, which adapts previous ILP
models from the literature to deal with the case of a railway node. The Linear Programming
(LP) relaxation of the model is used to derive a dual bound. In addition, we propose an
iterative heuristic algorithm that is able to obtain good solutions to real-world instances
with up to 1500 trains in short computing times. The proposed algorithm is also used to
evaluate the capacity saturation of the railway nodes.

Keywords: Train timetabling, Integer Linear Programming, Relaxation, Heuristic
Algorithm.

1. Introduction

Railway systems are very complex and their efficiency is essential for railway Infrastructure
Managers, especially in a competitive market in which several Train Operators use the same
infrastructure. The increasing utilization of railways for passengers and freights requires an



effective usage of infrastructure. In this paper, we focus on the Train Timetabling Problem
(TTP) at a planning level, which corresponds to a fundamental and very difficult phase in
the optimization of a railway system. We studied the problem within a research project
funded by Rete Ferroviaria Italiana (RFT), the main Italian railway Infrastructure Manager,
and present in this paper the results obtained.

1.1. Problem definition

The TTP calls for determining the best schedule for a given set of trains during a given
time horizon. In this paper, we face the TTP in a railway node as defined by the RFI. We
consider a set of stations and junctions in an urban area interconnected by tracks and a set
of trains to be scheduled in a time horizon of one day. This schedule must respect several
track operational constraints:

e minimum headway times between consecutive arrivals or departures of trains from a
station on a track must be respected;

e the maximum number of trains simultaneously at a station (including the trains that
traverse a station) must respect the number of available platforms at the station;

e overtaking of trains along a track is forbidden;
e rules for traversing junctions must be satisfied.

In particular, we consider the context of a highly congested railway node in which different
Train Operators wish to run trains according to timetables that they propose, called ideal
timetables. An ideal timetable for a train specifies the stations to be visited by the train in
the railway node together with ideal arrival and departure times of the train at each of these
stations. The ideal timetables usually do not satisfy all the track operational constraints.
Therefore, departure/arrival times must be changed in order to obtain a set of non-conflicting
timetables. The goal is to change the ideal timetables as little as possible. To this aim, Train
Operators assign a profit to each train, according to passenger demand of service. This profit
is obtained if the train is scheduled according to its ideal timetable. Every change in the
ideal timetables corresponds to a decrease in profit. If the profit becomes null or negative
due to the changes, the train is cancelled, i.e. it is not scheduled. This is the point of view
of the railway Infrastructure Manager, who collects the ideal timetables provided by the
Train Operators and tries to fulfill their requests in order to maximize the total profit, while
determining timetables that respect all the track operational constraints.

The motivation of this study in cooperation with RFI was to obtain a more efficient usage
of the railway infrastructure inside big railway nodes, in order to obtain a better schedule
of passenger and freight trains on the network, and consequently improve the service. Often
railway nodes constitute the bottlenecks of the network, as many trains need to traverse or
stop at one or more stations inside a node. An optimized schedule of the trains inside the
node can therefore contribute to an improved efficiency of the entire system. Furthermore,
we analyzed the so-called capacity saturation of the railway node, i.e. the maximum number
of trains that can be scheduled according to some given ideal timetables. Overall, the goal
was to develop an automated tool that could provide good solutions in limited computing
time for scheduling trains in a railway node.



1.2. Literature review

We can distinguish between two main areas of study of the TTP: the TTP at a planning
level, and the TTP at an operational level (also known as Train Timetabling Rescheduling
or Train Dispatching or Conflict Resolution). In the first case, the goal is to determine a
schedule for a set of trains to be used usually either for six months or for one year, while in
the second case the goal is to reschedule trains after a disruption or a delay occurred which
led to infeasibilities in the planned schedule.

A considerable amount of literature has recently been published on the TTP at an op-
erational level. The problem is often represented as a job-shop scheduling problem with
additional constraints, and modelled by using the Alternative Graph model introduced in
[41] (see e.g. [22], [23], [40]). Alternative approaches are presented e.g. in [12], [I4], [26], and
[48]. We refer the reader to [10] for a recent survey on the topic.

There is a huge amount of work on the TTP at a planning level. Cyclic or periodic timeta-
bles (i.e. timetables that repeat identically every hour) are often designed, which are preferred
by the passengers as they are easy to remember, but which in turn are more expensive in
the off-peak hours. The seminal work [46] proposed the Periodic Event Scheduling Problem
(PESP) for the cyclic TTP, in which, for a given train, an event represents the arrival at or
the departure from a given station. These events are scheduled for one cycle (e.g. one hour)
and then the cycle is repeated. Cyclic constraints are imposed to satisfy safety requirements.
The PESP model has been applied and extended in several works: see e.g. [35], [36], [37],
[42], [43], [44], [45].

In the context of a competitive market, non-cyclic or aperiodic timetables are usually
preferred. We refer the reader to [L1], [15], [I7], [18], [21], [30] and [38] for extensive surveys
on the topic.

Several mathematical formulations have been proposed for the non-cyclic TTP. One of
the first models is due to Szpigel [47], who proposed a job-shop scheduling formulation for the
TTP on a single track railroad. Carey and Lockwood, in [20], present a model that contains
binary variables used to describe the precedences between trains, and continuous variables
representing the time instants at which a train departs from or arrives at a station. Similar
models are proposed in [32] and [29]. In [50], a multi-activity network data envelopment
analysis model is proposed and applied to simultaneously estimate passenger and freight
technical efficiency, service effectiveness, and technical effectiveness for 20 selected railways
for the year 2002. In [3], a model for the expansion of the Spanish railway network is pro-
posed and a tool based on a scatter search heuristic, which incorporate specific requirements
such as population coverage, origin-destination passenger flows, and budget constraints, is
developed for supporting the decision makers. In [5], it is assumed that each train track is
divided into blocks, and for safety reasons only one train can be present at any given time
instant on each block. The time horizon is discretized and a binary variable is introduced for
each train, block and time instant, assuming a value of 1 if the train occupies the considered
block at the specified time instant, and 0 otherwise. In [28], two mathematical formulations
are compared on a common set of sample problems, representing both multiple track high
density services in Europe and single track bidirectional operations in North America. One
formulation consists of imposing time intervals between trains for avoiding conflicts, while
the other formulation controls the physical occupation of track segments. The results demon-
strate that both models return comparable solutions in the aggregate, with some significant



differences in selected instances. In [49], the optimization of train movement is studied in
a railway network. Two objectives are taken into account: the expected total energy con-
sumption and the total traversal time. Due to difficulties in using analytical calculations,
simulation based approaches are designed to compute the expected total energy consump-
tion and total traversal time. A genetic algorithm is integrated with simulation in order to
find the best control strategies on the railway network. In [4] a micro-macro approach is
proposed, which consists of starting from a detailed microscopic representation of the rail-
way corridor and transforming it into a macroscopic representation that can be handled by
state-of-the-art integer programming optimization methods. The optimized timetable is then
re-transformed to the microscopic level. The method is applied on a real-world case study,
namely the Simplon corridor between Switzerland and Italy. The method is also used for
capacity analysis.

A customary way for modeling the TTP is to discretize the time horizon (e.g. with an
interval discretization of one minute) and to represent the problem on a suitable time-space
graph, where each node corresponds to a time instant in which a train can arrive at or depart
from a station, and where arcs represent either the travel of a train from one station to the
next or the stop of a train at a station. An ILP model based on this graph representation of
the TTP is proposed by [16] for the case of a single one-way line, and extended in [19] for
dealing with additional real-world constraints while being extended in [8] for dealing with
a railway network. It uses binary variables specifying whether or not an arc of the graph
is selected in the solution for a train. Track operational constraints are imposed by clique
constraints that forbid the simultaneous use of incompatible arcs. This ILP formulation is a
multicommodity flow formulation for the TTP. In [16] a reformulation of the multicommodity
flow model is presented, in which the track operational constraints are modeled using variables
associated with the nodes of the graph, and then relaxed in a Lagrangian way. [§] studied
the problem of scheduling additional freight trains on congested railway networks where a
given set of passenger trains has a prescribed timetable that cannot be changed. An ILP
formulation with arc-variables is presented, and the problem is solved by using a heuristic
algorithm based on a Lagrangian relaxation. The time-space graph representation of the
TTP is also used in [7]: an ILP formulation is proposed in which each variable corresponds
to a full timetable for a train and a branch-and-cut-and-price approach is developed to obtain
optimal solutions to real-world instances on a corridor. In [9], ILP formulations for the TTP
are examined, which involve (exponentially many) binary variables associated with paths
in the time-space graph corresponding to the timetables. These ILPs call for a maximum-
weight clique in the same (exponentially large) compatibility graph, contain only stable-set
constraints and differ only in the type of stable set actually considered. Existing ILP models
from the literature are analyzed and new stronger ones are presented.

1.3. Contribution

The problem under consideration in this paper is NP-hard, since it is an extension of
the problem considered in [16] in which the authors proved that the TTP is NP-hard. The
problem is often still solved manually by a team of human planners, who determine the
solutions from experience and by adapting previous solutions of the problem on the same
network. We propose an automated approach, which can be used by the planners not only
as a black box, but mainly to quickly evaluate many solutions and choose the best one. A



preliminary version of this work was presented in [27], where a fast heuristic algorithm was
proposed for scheduling trains in a railway node. The algorithm was based on a time-space
graph representation of the problem and was tested on an instance of the railway node of
Milan.

We model the problem by a time-space graph representation similar to the one used in
[16], [19], [7], and in [§]. In [16], [19] and [7], the TTP is solved for a railway corridor (i.e.
a single one-way line connecting two major stations), while [8] studies the case of a railway
network. Railway nodes, in which a set of stations and junctions are connected by tracks,
present a more complex structure compared to railway corridors. This structure is similar
to the one of a railway network, but it shows some differences. In particular, in a railway
network a higher level abstraction of the railway topology is considered, i.e. only major
stations are usually considered, while junctions are not taken into account. This is especially
true for large scale railway networks, such as those studied in [§], in which constraints on
the maximum number of trains that can be simultaneously at a station are also neglected.
In this paper, we take into account both complex rules for correct junction traversal (see
Section [2) and constraints on the maximum number of trains allowed to simultaneously be
present at a station.

Given the large number of trains (up to 1500) present in the real-world instances provided
by RFI, we decided to develop a heuristic algorithm that can be executed in short comput-
ing times rather than adopting more sophisticated Lagrangian-based or LP-based heuristic
methods. Indeed, the negotiation process between the Infrastructure Manager and the Train
Operators, in the timetable planning phase, can require several rounds before reaching a
compromise that is accepted by everyone. Keeping the computing time short is therefore
fundamental for having an algorithm of practical use.

The main contributions of this article are as follows:

1. an Integer Linear Programming (ILP) model is adapted from previous models from the
literature for our real-world case study of the railway node by taking additional real-life
constraints into account;

2. the Linear Programming (LP) relaxation of the model is solved in order to obtain a
dual bound on the optimal solution value, which is useful for evaluating the quality of
the computed solutions;

3. an effective heuristic algorithm is developed to obtain good solutions in short computing
times, which uses different train orderings and a dynamic construction of the time-space
graph;

4. capacity saturation of the railway node is analyzed;

5. real-world instances from RFT are tested and computational results show the usefulness
of the proposed method in practice.

The paper is organized as follows: the problem at study is described in Section [2} In
Section [3] an ILP formulation for the problem is given and, in Section [4, we describe how we
solve an LP-relaxation of the presented formulation. Section [5]is devoted to the description
of the proposed heuristic algorithm and computational results on real-world instances from
RFT are given in Section [6] Finally, we draw some conclusions and hints on future research
in Section [



2. Problem description

In this section we provide a formal description of the case study of the TTP in a railway
node at RFI. We are given as input the description of the railway node topology N. In
particular, it contains a set S of stations, a set J of junctions and a set R of (mono-directional)
tracks v = (h,i) € R, each of which connects two locations h,i € L (either a station or a
junction), with L = SU.J. Each station ¢ € S has a capacity c¢;, which represents the number
of trains that can simultaneously stop at the station 7. Two locations can be connected
by single or parallel tracks, i.e. two tracks connecting the same two locations in the same
direction. Each junction j € J has an occupation time o;. In addition, for each junction, a
set of rules for the occupation of the junction is given: more precisely, the rules specify pairs
of incompatible itineraries of trains simultaneously traversing the junction. We are also given
as input a set T' of trains, which belong to different Train Operators and are characterized by
a train type such as Eurostar, Euronight, etc, and by a flag indicating if it is a high priority
train or a low priority train. For each train, we are also given its ideal timetable. The ideal
timetable of a train ¢ € T specifies the set L, C S U J of locations to be visited, the order
in which they must be visited, the preferred tracks to be used (in case of parallel tracks
between stations, the set of parallel tracks that can be used by the train is specified), an
ideal arrival time «(t,¢) and an ideal departure time €(¢,¢) at each location ¢ € L;. Note
that a minimum stopping time at each location is implicitly given by the ideal timetable, i.e.
the stopping time must not be decreased compared to the ideal timetable. The travel times
inside junctions and on tracks connecting locations are assumed to be fixed as specified by
the ideal arrival and departure times for each train. Furthermore, for each train t € T, an
ideal profit 7; is given, which represents the profit associated with the train if it is scheduled
according to its ideal timetable.

The following track operational constraints must be satisfied:

1. departure/arrival constraints: a minimum headway time h*(s,r) (h™(s,r) resp.) be-
tween two consecutive arrivals (departures resp.) of trains at the same station s € S
on the same track r € R must be respected;

2. station capacity constraints: the maximum capacity of each station must be respected;

3. no-overtaking constraints: overtaking between trains is only allowed at stations or by
using parallel tracks;

4. junction constraints: for each junction j € J, itineraries which are incompatible with
one used by a train cannot be used by other trains for the duration of the occupation
time o; of the junction.

The ideal timetables are generally conflicting, i.e. they do not respect one or more of the
track operational constraints. In order to resolve these conflicts, one is allowed to modify
(anticipate or delay) the departure time of each train from its first station (shift), to increase
the stopping time interval at the (intermediate) stations (stretch) and to choose a parallel
track between a pair of locations instead of the preferred track (parallel rerouting). For
each train ¢ € T a maximum shift sh;” ahead of schedule and maximum shift sh; behind
schedule is specified, as well as a maximum total stretch ¢, over all the visited stations, given
in minutes. Furthermore, each train is associated with three weights (given in input) w;',

w; and 9, which correspond to the penalty for shifting ahead of schedule, shifting behind



schedule and stretching a train for one minute, respectively. The shift and stretch changes
decrease the profit of the trains. On the contrary, parallel rerouting does not modify the
profit of the trains, since it does not affect the time schedule of the train nor the service to
the passengers. Note that only the parallel tracks specified in its ideal timetable can be used
by each train.

The two operations of shift and stretch have a different impact on the passengers: while
the shift does not directly affect passengers (recall that it is applied in the planning phase),
the stretch increases the overall travel time of the passengers to reach their destinations.
Therefore, shift and stretch are chosen to be penalized independently, to avoid that stretch
is used to “compensate” the need of shift to obtain a feasible timetable at “low” cost. Other
types of measure of distance from the ideal timetable could be used, such as considering
point-to-point distance or taking into account the number of passengers that travel along the
line and the connections between trains.

The timetable of a train obtained after the changes have been applied is called actual
timetable and the profit obtained by decreasing the ideal profit according to the shift and
stretch penalties of the train is called actual profit. If the actual profit becomes null or
negative, the train is cancelled. Indeed, it is not worth scheduling a train which causes a loss
instead of a profit. Note that these changes and train cancellations do not directly affect the
passengers since they are applied during the planning phase, i.e. before the schedule of the
trains is published for the passengers.

3. Mathematical formulation

This section presents an ILP model for the TTP, which is adapted from ILP models
presented in [16] and [19] for a railway corridor, and in [§] for a railway network (see Section
for further details). The model is based on a time-space graph representation with the
time horizon of one day discretized to one minute intervals. In Section we briefly recall
this graph representation and show the ILP formulation that we use in Section

3.1. Graph representation

Let H be the set of discrete time steps, in the given time horizon. According to the time
discretization, we have H = {1,...,q} (e.g. ¢ = 1440 if we consider a time horizon of one
day and a time interval of one minute). We define a time-space directed graph G = (V, A)
with node set V' and arc set A. Each node represents either a departure or an arrival of some
train at a specific location from a specific track at a specific time instant. In particular, for
each track r = (h,7) in R, there are a set U(i,7) of arrival nodes at i on r and a set W (h, )
of departure nodes from h on r. In addition, for notational convenience, we have in G an
artificial source node o and an artificial sink node 7. The set of nodes V' is given by:

V={ortu |J U@Er uw(n,r).
r=(h3)ER

Let 6(v) be the time instant associated with a given node v € V and A(u,v) := 0(v)—6(u)
be the time difference between two nodes. We say that node u precedes node v (i.e. u < v) if
A(v,u) > A(u,v). Le, if the time interval between 6(v) and 6(u) is not smaller than the time



interval between 6(u) and 6(v) (note that we will perform these subtractions by using the
modulo ¢ operation implicitly). Analogously, we will use the notation v < v, u = v, u > v.
The set V; C V of nodes associated with each train ¢ € T' is defined by the source, the
sink, and the nodes in V' corresponding to possible departure and arrivals of train ¢ along
its path in the railway node, taking into account the structure of the railway node and the
implicit time windows defined by the allowed changes of shift and stretch along the path.
Each arc of G represents either the travel of a train ¢ € T' from a station to a next one,
the stop of ¢ at a station or the travel of ¢ through a junction. More precisely, arc set A is
partitioned into sets A;, one for each train t € T'. The arcs are defined as follows:

1. travel arcs between stations: for each track r = (h,i) € R, corresponding to two
locations h,i € L; such that train ¢ may travel from h to i on track (h,i) with travel
time d;(h, i), A; contains travel arcs of the form (v, u), one for each v € W(h,r) NV,
and u € U(i,r) NV, such that v < u and A(v,u) = dy(h,1);

2. stop arcs at stations: let S; C S be the set of stations visited by train t € T', f; its first
station and [; its last station. For each intermediate station i € Sy \ {fi,l;}, consider
the (possibly null) minimum stopping time ds;(), for train ¢ in ¢. For each track r;
and each track r, such that train ¢ may arrive at ¢ on r; and depart from 7 on 79, A;
contains station arcs of the form (u,v) for each w € U(i,71) NV, and v € W (i,r9) NV,
such that u < v and A(u,v) > ds;(i);

3. travel arcs through junctions: let J; C J be the set of junctions visited by train ¢t € T
and o; be the corresponding occupation time of junction j € J. For each track r and
each track r, such that train ¢t may arrive at j € J; on r; and depart from 5 € J; on 7o,
A; contains junction arcs of the form (u, v) for each w € U(i, )NV, and v € W (i, 1m9)NV;
such that A(u,v) = o;;

Finally, A; contains starting arcs (o,v), for every node v corresponding to a possible
departure node from the first station f; of train ¢ along any track that can be used by the
train, and ending arcs (u, ), for every node u corresponding to a possible arrival node at the
last station [; of train ¢ along any track that can be used by the train.

Note that, for each train t € T, Gy = (V}, A;) is an acyclic directed graph and a timetable
for train ¢ corresponds to a path from o to 7 in G;.

Let (0, w) be the starting arc in a path of train ¢t € T'. The shift is given by the absolute
difference between the actual departure time 6(w) of train ¢ and the ideal departure time of
train ¢ from its first station, i.e.

vi(w) = |0(w) —e(t, f1)].

For each stop arc (u,w) € A, associated with station ¢ € S;, the stretch is given by the
difference between the actual stopping time and the minimum stopping time of train t at
station 1, i.e.

pe(u, w) = Au, w) — ds (7).

The total stretch of a train is given by the sum of the stretches of the arcs along its path.

Let 14 be the shift of train ¢ in its actual timetable and p; be its total stretch. The actual
profit of t € T is computed as: T, — w;” /=y — Yy e, where w;” (w; resp.) is used if shift
ahead (behind resp.) is applied.



In order to define the profit of the actual timetable of a train ¢ € T, we assign profits
to the arcs in the corresponding path. In particular, we associate to the starting arcs the
ideal profit minus the penalty due to the shift that the train may get, and to the stop arcs
the penalty due to the stretch that the train may get. More precisely, for each starting
arc (o,w) the profit is pyow) = T — w:/_yt(w), for each stop arc (u,w) € A; the profit is
Pr(uw) = —Uipie(u, w), while for each travel arc, junction arc and for each ending arc the
profit is 0.

3.2. ILP formulation

For each train ¢ € T' and node v € V;, let 6; (v) and §; (v) denote the sets of arcs in A;
leaving and entering node v, respectively.

For sake of clarity, we start presenting the model without the track operational constraints.
Then, we present the additional constraints arising in our application.

3.2.1. Model without track operational constraints

We introduce a binary variable x;,, for each train ¢ € T and each arc a € A; of the time-
space graph defined above, which takes a value of one if the corresponding arc a is selected
in the solution for the corresponding train ¢ (and zero otherwise). The choice of an arc for a
train in the solution represents either the travel of the train from a station to the next one,
the stop of the train at a station or the travel of the train through a junction.

For convenience, in order to express the track operational constraints, we introduce a
binary variable y, for each node v € V| which takes a value of one if the corresponding node
is visited by some train in the solution (and zero otherwise), and a binary variable z, for
train t € T and each node v € V, which takes a value of one if the corresponding train ¢
visits the corresponding node v in the solution (and zero otherwise).

The model reads as follows, where V; = V; \ {o,7} and V =V \ {0, 7}:

max Z Z PitaTiq (1)

teT acAy
Y ma <1 teT (2)
acdt (o)
Z LTta = Z Ttq, tGT;UEVt (3)
a€d; (v) a€d;t (v)
Sty = Z Tta tGT,UG‘N/t (4)
a€d; (v)
Yo = Z 2t CIS f/ (5)
teT:weV
T € {O, 1} te T,CL S At (6)
2w € {0,1} teT,veV, (7)
v, € {0,1} veV. (8)



The goal is to maximize the total profit of the selected arcs. Constraints ensure that
at most one starting arc for each train is selected. Constraints are flow conservation
constraints: together with constraints they require that for each train at most one path
(timetable) in the time-space graph from o to 7 is selected. Constraints and are
used to link the three types of variables. Finally, constraints @, @ and require that
the variables are binary. Note that constraints @ are redundant, since they are implied by
constraints and together with constraints and @ (they are only used to improve
the readability of the model).

In the following we introduce the track operational constraints.

3.2.2. Departure/arrival constraints

These constraints impose that the headway times between consecutive departures (arrivals
resp.) of trains from (at resp.) a station on a track are to be respected. They are expressed
in the form of clique constraints. Indeed, they impose that at most one train can depart from
(arrive at, resp.) a station ¢ on a track r within a time interval of time length < h~(i,r)
(< h*t(i,r), resp.). For each station, each track, and each node representing a departure
(arrival resp.) from that station using that track, we consider a time interval of length
shorter than the minimum headway between two consecutive departures (arrivals resp.),
starting at the time associated with the specific node. We then impose that at most one
departure node (arrival node resp.) associated with this time interval can be visited in the
solution. In particular, for the departure constraints, let ¢ and r be the considered station and
track, respectively, and w € W (i, r) be the considered departure node from station i on track
r. We then consider all the nodes v € W (i,r), such that the time instant associated with
node v is greater or equal than the time instant of node w, and for which the time distance
A(w,v) from w is shorter than the minimum headway time h~ (i, ) between two consecutive
departures from station ¢ on track r. I.e. w is the first node of the time interval of length
shorter than the minimum headway time and v are all the nodes belonging to such interval.
The departure constraints impose that at most one of these nodes can be visited by a train
(i.e. at most one train can depart from one of these nodes) in the solution. These constraints
are expressed for all stations, tracks and for all possible departure nodes w € W (i,r). The
departure constraints read as follows:

Z Yo < 1, we W(i,r),i€ S,r € R, (9)
veW (i,r):w=v,
A(ww)<h™(ir)

Arrival constraints are expressed in a similar way. Let ¢ and r be the considered station
and track, respectively, and u € U(7,r) be the considered arrival node at station ¢ on track r.
We then consider all the nodes v € U(i,r), such that the time instant associated with node v
is greater or equal than the time instant of node u, and for which the time distance A(u,v)
from w is shorter than the minimum headway time h*(i,7) between two consecutive arrivals
at station ¢ on track r. l.e. w is the first node of the time interval of length shorter than
the minimum headway time and v are all the nodes belonging to such interval. The arrival
constraints impose that at most one of these nodes can be visited by a train (i.e. at most
one train can arrive at one of these nodes) in the solution. These constraints are expressed
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for all stations, tracks and for all possible arrival nodes u € U(i, 7).
The arrival constraints read as follows:

> w<l,  ueU(ir)icSreR (10)
veU (i,r)u=v,
A(u,w)<hT(i,r)
Note that constraints are redundant when departure/arrival constraints are included,
since they are implied by constraints together with constraints @D and .

3.2.3. Station capacity constraints

These constraints require that, for each time instant of the considered time horizon, the
maximum number of trains that can be simultaneously present at a station is respected. In
particular, for each station ¢ € S and for each time instant § € H, we impose that at most
¢; trains can be simultaneously stopped at station . This is expressed by imposing that at
most ¢; station arcs, representing a stop of a train at station ¢ at time instant ¢, can be
selected in the solution for some trains.

The station capacity constraints read as follows:

ZZ Z Tia < Gy 1€85,g€ H. (11)

teT reR  a=(u,w):
weU (3,m)NVg,
veEW (i,r)NV4,
0(u)<q,0(v)>q

In constraints , arc a = (u,v) is a station arc of station i for train ¢, representing the
stop of train ¢ at station 4, since u belongs to the arrival nodes U(i,7) N'V; and v belongs to
the departure nodes W (i,r) N'V,. It represents the presence of train ¢ at station i at time
instant ¢ since the arrival time 6(u) of ¢ at ¢ is smaller or equal to ¢ while the departure
time O(v) of ¢ from i is greater or equal to g. Therefore, arc a = (u,v) : u € U(i,r) N V;,v €
W(i,r) NV, 0(u) < q,0(v) > q represents that train ¢ is present at station i at time ¢. In
constraints , for each station ¢ € S and for each time instant ¢ € H, we sum over all
trains, all tracks and all station arcs of these trains, the arc variables x;, and impose that at
most ¢; of them can take value one, i.e. at most ¢; trains can be simultaneously present at
station ¢ at time instant g.

We would like to mention that stations are dealt with in a macroscopic way: we check
the number of trains simultaneously present at a station, but we neglect the details on the
platforming problem, which is itself an NP-hard problem (see [34]). Constraints similar to
those that will be described in Section [3.2.5| could be used to avoid conflicting itineraries of
trains inside stations.

3.2.4. No-overtaking constraints

These constraints ensure that no overtaking between trains is allowed along a track be-
tween two consecutive stations. They are expressed as clique constraints. Let R; be the set
of all tracks used by train ¢ € T. We consider each pair of trains ¢ and k traveling along
the same track r € R; N Ry, from station h to station ¢ for which d;(h,i) > di(h,i) (i.e. k
travels faster than t along 7). Then we consider two departure nodes w; and wy (representing
departures from station h) which are not compatible in the sense that k overtakes t if ¢ uses
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wy and k uses wy. We also consider two departure nodes w3 and wy, where node ws is the
first departure node from station h such that the minimum headway between two consecutive
departures of trains ¢t and k from h is respected, while wy is the first departure node from
station h such that the minimum headway between two consecutive arrivals of trains ¢ and
k at ¢ is respected. Hence, in order to obtain stronger constraints, we insert in the clique all
the travel arcs of trains ¢t and k between stations h and ¢ such that either they represent k
overtaking ¢ or they are incompatible due to departure or arrival constraints.

Towards this end we further define the set of quadruples of nodes O(t, k, r) which contains
the quadruple (wy, we,ws, wy) for wy,ws € W(h,r) NV, and wq,wy € W(h,r) NV if the
following properties hold (according to the definitions of wy, wy, w3 and w4 above):

0 < Aws, wr) < dy(hyd) — dy(h,9),

A(ws,w3) = h™(h,r)

and
A(wy,wy) = b (i,7) + di(h, i) — dg(h, ).

The overtaking constraints read as follows:

Z Zpw T Z kw < ]-7

weW (h,r)NVy: weW (h,r)NVj:
wi Sw<w3 wo SwW=<wy

tk €T, = (hi) € RO Ry, dy(h,i) > di(h, i),
(w17w27w37w4) € O(t,k,?") (12)

Note that we are able to express these constraints as clique constraints only on the
departure nodes because of the fact that the travel times between consecutive stations is
fixed for each train. We refer the reader to [8] for further details.

3.2.5. Junction constraints

These constraints are used to impose the correct transit of trains through junctions by
using the notion of incompatible itineraries for trains traveling through the junction. In
Figure , we show a schematic example of a junction, which connects four stations (A,B,C
and D). Four trains (74, Ty, T5 and T}), each one at one of stations are shown. The arrows
indicate the possible itineraries of the trains. We can see that the itinerary of train 7; from
station A, through the junction, to station D is incompatible with that of train T3 from
station B, through the junction, to station C'. In particular, train 73 blocks the junction (for
all the occupation time) for train 7%, and, for safety reasons, train 7} is stopped at station B,
until the junction is free again. Similarly, the itinerary of train 75 from station C', through
the junction, to station B is incompatible with that of train T from station D, through
the junction, to station A. Note that not all itineraries shown in Figure [I] are incompatible
with each other. For example, itineraries of trains 75 from C to B and T3 from B to C are
compatible with each other. Therefore, the junction constraints need to be expressed for
pairs of trains, as explained below.

Let Z; be the set of all possible itineraries traversing a junction j € J in the railway node.
Each I € Z; is defined as I = {sin, Tin, J, Tout, Sout }» Where s;, and s, are stations, r;, a track
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Figure 1: An example of a junction.

connecting s;, and j and r,,; a track connecting 7 and S,,. For each junction j € J, a set
of pairs of incompatible itineraries P; = {(I'® 1), ... (1™, ")} is then also given, where
(190, 19%) € T; x Z; for 1 < g < m.

Let T3 C T be the subset of trains which uses itinerary I € Z; (j € J) in their ideal path.
Given a junction j € J, consider a pair of trains ¢t and k such that t € Ts and k € Tye for
some (197, [9°) € P;, i.e. consider two trains that can use a pair of incompatible itineraries
traversing junction j. The junction constraint irnposes that if, at time 6, train ¢ travels from

sJ* to j on ri and then contlnues to s9,, on ri,, then from time 0 to time 6 + o; train k

gb
out*

outa
Cannot travel from s *to j on rd’ > and then to s%2, on r

The junction constralnts read as follows:

Zty + Z kv < 17

veEW (598 r9%):

'Ln’ mn

u=v,A(u,v)<oj

jeJ (19 1) e P,

. b . b b
{va mvjv th’ out} ]g {Szm mvjv gut’ Sgut )
t € Troa, k € Trov,u € U(G, 730, (13)

With respect to the ILP model proposed in [8], this model includes new constraints,
namely , taking into account the maximum number of trains simultaneously at each
station, and , expressing the rules for incompatible itineraries inside the junctions.

4. Upper bound computation

In contrast to what is done in [I6] and in [§], in which the ILP model for the TTP is
relaxed in a Lagrangian way, we solve a LP-relaxation of the described model. We remove
the redundant constraints and , and we replace constraints @ with the following ones:

ngmgl tET,aEAt. (14)

We also further relax the obtained model by elimination of constraints (12)) and .

The relaxed LP-model is given by (I} . ., @ ., . It is solved by the general
purpose solver CPLEX [31] in order to derive an upper bound on the optimal solution of
the problem. It is useful especially for evaluating the quality of the solutions found by the
proposed heuristic algorithm, described in the next section.
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5. Heuristic algorithm

Since the mathematical formulation is characterized by large numbers of constraints and
variables, which prevents the use thereof in real-world applications, we decided to develop
a heuristic algorithm for obtaining good quality solutions to the TTP in short computing
times.

The algorithm is executed for a given number of iterations. At each iteration, trains
are considered one at a time in a predetermined order (described below), and a schedule is
computed as follows. Let {O,...,Ojp} be the set of trains in the given order for the current
iteration, and let O; be the current train in the given order. A reduced time-space graph for
train Oy is built dynamically, taking into account the trains Oy, ..., O, 1 already scheduled
and their corresponding timetables. In other words only the subset of arrival and departure
nodes and subset of arcs that respect the track operational constraints are inserted in the
reduced graph of train O;. Given the reduced time-space graph for train O;, and the arc
profits as explained in Section [3.1 the maximum profit path from the source o to the sink 7
is computed by dynamic programming. Since the time-space graph for each train is acyclic,
if we neglect the constraints on the maximum total stretch, the maximum profit path can
be computed in polynomial time (see e.g. [2]). In the following, we describe the standard
dynamic programming procedure that computes the maximum profit path without taking
into account the maximum shift and maximum total stretch constraints. Then, we explain
how we deal with these constraints.

In the dynamic programming procedure, we need to store for each node v € Vp, the
maximum profit of a path from the source o to v, along with the predecessor node of v in
the path, in order to be able to reconstruct it. More precisely, let O, be the current train for
which we are computing the maximum profit path, and Gg¢ = (Vo,, Ao,) its reduced time-
space graph. We associate a label [(v) = (pf(v), pr(v)) with each node v € Vp,, where pf(v)
represents the maximum profit of a path from the source o to v and pr(v) the predecessor
node of v in the path.

Labels are initialized as follows. For all nodes connected to o by a starting arc in Agp,,

we set [(v) = (7o, — W;St/_l/ot(v), o), i.e. we set the profit of the node to be the ideal profit

7o, of train O, minus the shift penalty wgt/ “vo,(v) (see Section for the starting arc
profit definition), and its predecessor to be the source node o. For each other node, we set
[(v) = (0,v).

We iteratively consider the next node v in Vj,, according to the order given by the stations
visited by train O; and, for each station, in chronological order. From the current node v,
if its label has a positive profit, we consider each node s, of its successor nodes, i.e. of the
nodes that are connected to v by an arc in Ap,. We label the current successor node s, as
[(sy) = (Pf (V) + PO, (v,50): V), i DF(V) 4+ PO, (w,s0) > Pf(S0), Where po,(u,s,) corresponds to the
profit of arc (v, s,) (see Section 3.1 for the arc profit definitions). The procedure is iterated
until all the nodes in Vj, have been considered.

If the sink node 7 has a label with positive profit, we reconstruct the maximum profit path
found, by iteratively going backward to the predecessor node stored in the label of the current
node, until we reach node o. If the sink node 7 has a label with profit 0, it means that no
feasible path exists for the current train (due to the conflicts with the already scheduled trains
O1,...,0;_1. If no such path exists, if the total profit of the path is negative or if it does not
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respect the maximum total stretch for the train, the train is cancelled. Otherwise, the path
is selected in the solution, and the corresponding train timetable is updated accordingly.

In the Appendix, we report the pseudocode for the dynamic programming procedure to
compute the maximum profit path.

Note that we also need to take into account the constraints on the maximum shift and
on the maximum total stretch for each train. The maximum shift can be dealt with in a
very easy way: it consists of limiting the set of departure nodes of a train from its first
station. Imposing a maximum total stretch is more difficult and increases the complexity
of the dynamic programming procedure: finding a path of maximum profit respecting this
constraint amounts to finding an optimal path in an acyclic graph with a resource constraint
(see e.g. [25]). More precisely, we need to store, for each possible value s of the stretch until
node v, the maximum profit of path (if any) from o to v with total stretch s.

In order to keep the computational time limited we treat the constraints on the maximum
total stretch in a heuristic way, by computing the maximum profit path while neglecting the
maximum total stretch which is checked only at the end. If the obtained path respects the
maximum total stretch (and has a positive profit), the path is selected in the solution, other-
wise the train is cancelled. Based on extensive computational results, this choice turned out
to be the best trade-off between the computational time of the proposed heuristic algorithm
and the number of cancelled trains due to maximum total stretch (see Section [6.2] for further
details on this issue).

The algorithm behaviour is highly dependent on the order in which the trains are exam-
ined, and the solutions can therefore be improved by repeating the algorithm with different
initial orderings. We consider three different ordering schemes for ordering the trains:

1. random order: trains are ordered in a random ways;

2. random order with priority: according to the importance given to trains by the Train
Operator, they are partitioned into two categories, namely trains with high priority
and trains with low priority. Within each category trains are then ordered in a random
way;

3. adaptive order: trains are again partitioned into two categories, namely trains with
high priority and trains with low priority. Trains which were cancelled in a previous
iteration because of conflicts with other scheduled trains are then inserted at the top
of the ordering of the category to which they belong. In this way it is more likely that
they will be scheduled in the iterations to follow, leading to different (and hopefully
better) solutions. This is an adaptive approach, which collects information on critical
trains from the previous iterations and tries to adjust the decisions (i.e. the ordering of
the trains) accordingly.

A computational comparison between these different orderings is carried out in the next
section of the paper, in particular we will discuss the quality of the solutions that these
different orderings allow to obtain.

6. Computational results

In this section we present computational results obtained by using real-world data pro-
vided by RFI. In particular, we consider four instances: the railway node of Milan with two

15



different levels of detail of the railway network and two different sets of trains to be scheduled
(indicated as Milan (a) and Milan (b) in what follows), and the railway nodes of Bologna
and Florence. We show in Figure [2| the network of the railway node of Milan.

Milan
T Central
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Figure 2: Railway node of Milan.

The considered time horizon is one day and the time discretization is one minute. The
description of the instances is presented in Table[l] In particular, we show, for each instance,
the number of stations and junctions, the number of trains, the number of different train
types (such as high-speed trains, freight trains, etc), the number of tracks, the number of
parallel tracks, the sum of all the profits of the trains, station capacity values, headway time
values and junction occupation time values. The sum of all the profits of the trains would
be obtained if all the trains would be scheduled according to their ideal timetables, and
is therefore an upper bound on the optimal solution value. As it can be seen in Table [1]
the railway node of Bologna contains a larger number of stations than the other ones. The
reason for this is that the boundary of each railway node was determined by the practitioners,
according to what is done in real-world practice. Different levels of detail for a node can also
be considered, as is the case of the node of Milan.

The ideal profits for each train and the penalty weights for shifting and stretching are set
according to [7], as shown in Table . Since additional train types are present in the instances
of our case study, we agreed with RFT to classify them in one of the existing classes. The
maximum shift ahead of schedule is set to 1 minute, the maximum shift behind schedule is
set to 10 minutes and the maximum total stretch is set to 2 minutes, according to what was
proposed by RFT.

The algorithm was implemented in C++ and run in Linux Ubuntu (compiled using g++
with option -O3) on an Intel(R) Core(TM) i7-3770 CPU computer with 8 processors each
clocked at 3.40GHz, and with a total of 16 GB of RAM.
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Stations  Junctions  Trains  Train types  Tracks  Parallel tracks  Profits

Milan (a) 44 6 1500 17 134 16 164300
Milan (b) 53 10 1544 19 146 14 170510
Bologna 222 26 1080 17 490 12 125300
Florence 8 1 36 4 22 4 5120
Station capacity Headway time Junction
values values (minutes) X?;fl}t}za(trlr?ﬁlﬁ}cgs

Milan (a) [2,17],24 3,6 5

Milan (b) [2,16],24 3, 6] 4

Bologna [2,10],27 2 2

Florence 2,3,9,17, 30 6 5

Table 1: Instance details

Train type  Eurostar ~ Euronight  Intercity = Express  Combined  Direct  Local  Freight

i 200 150 120 110 100 100 100 100
wi Jwy 7 7 6 5 6 5 5 2
Yy 10 10 9 8 9 8 6 3

Table 2: Profits and penalty weights for each train type

6.1. Relaxation of the ILP model

In this section we present the characteristics of our model (number of variables and
constraints), and the upper bound values obtained by relaxing different subsets of constraints,
with the corresponding computational times. Our goal is to show the trade-off between upper
bound quality and computational times.

Table [3| shows, in the first column, the subset of considered constraints of model —,
@D, , , . For each instance, in Table |3] we report the number of variables, the
number of constraints according to the selected subset (shown in the first column), the value
of the upper bound obtained and the corresponding computing time (expressed in seconds).
As expected, an increase in the number of constraints leads to a larger computing time but
also to a better upper bound. Note that, if we consider only the subset of constraints —,
, the obtained upper bound coincides with the sum of the profits of all the trains, since
no constraint is imposed except from computing a set of maximum profit paths for all the
trains.

In the following section, we show the percentage gaps between the heuristic solution values
and the best upper bounds of Table
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Constraint Number of Number of UB Value Time Number of Number of UB Value Time
sets variables constraints variables constraints
1)-(3), (14 848566 164300 33 665738 170510 16
163D, (), a; 1; 1; 7234403 1421930 154457 8190 3509648 1249210 162071 1607
163D, (), guy 1; 1460723 154030 132426 1288998 160058 6550
Milan (a) Milan (b)
1)-(3), (14 1259725 125300 54 6794 5120 1
1)-(3), ), @ 1; 1; 6527895 2720915 124831 69 34909 13852 5021 2
1D-03). G5). (o)1), 1) 2003492 124831 178 14320 5021 2
Bologna Florence

Table 3: Upper bounds obtained by relaxing different subset of constraints.

6.2. Heuristic solutions

In this section, we present the heuristic solutions obtained by applying the heuristic algo-
rithm presented in Section [§] with three different orderings of trains. In particular, we consider
two different configurations: the first one runs the algorithm for 100 iterations, while the sec-
ond one for 10000 iterations. These two configurations are used to show the applicability of
the proposed heuristic in different situations. In particular, 100 iterations can be used if the
Infrastructure Manager wants to analyze several different scenarios, corresponding to differ-
ent train timetable requests from the Train Operators. On the contrary, 10000 iterations
can be used to refine the solution. We would like to mention that the configuration with
100 iterations shows the applicability of our method to real-time train rescheduling. The
extension of the proposed algorithm to this context will be investigated as future research.
In the latter case, however, additional real-life constraints need to be taken into account,
which go beyond the scope of this paper.

In Table 4] we show, for each instance, the obtained heuristic solution values. The first
column indicates the ordering rule, while the second column shows the considered number
of iterations. For each instance we then show the heuristic solution value (Value), the corre-
sponding computing time (expressed in seconds) and the percentage gap with respect to the
best upper bound value (UB Value) computed as in Section (Gap=((UB Value - Heur sol
Value)/UB Value)*100). In addition, we report the percentage (Canc.) of trains cancelled
and the number (h.p.) of high priority trains cancelled.

A higher number of iterations leads to better results for all instances. The computing time
also increases as the number of iterations increases, but even for 10000 iterations the time
remains less than half an hour, which is reasonable when dealing with the planning problem.
If the results are required in a shorter computing time, we can set the limit to 100 iterations
and still obtain good results, which shows that the developed algorithm is of practical use.
The negotiation between the Infrastructure Manager and the Train Operators in the planning
phase can be a long process, requiring many rounds before reaching an adequate solution.
Keeping the computing time limited to half an hour at most is therefore fundamental for
practical use.
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The adaptive order gives rise to the best results for the instances Milan (a), Milan (b)
and Bologna, both in the case of 100 and 10000 iterations. The random order reaches the
best solution for the instance Florence. However, using the adaptive order, the percentage
gap is very small (1.57%).

In Table [} we also report the percentage of cancelled trains and the number of high
priority cancelled trains. As can be seen, a larger number of iterations generally reduces the
number of cancelled trains. In all cases, a larger number of iterations leads to a better value
of the objective function. Recall that the aim is to maximize the sum of the train profits,
i.e. changing the ideal timetables as little as possible. In addition, we are able to obtain
solutions where no high priority trains are cancelled for all instances. This is a significant
result since priorities are set by the Train Operators according to the passenger demands,
and it is therefore important to be able to meet their requests, especially on high priority
train scheduling. In Section [5 we explained that we treat the constraints on the maximum
total stretch in a heuristic way. We would like to mention that the number of cancelled trains
due to maximum total stretch violation is very low for all the instances (at most 4 for the
Milan (b) instance).

Ordering Rule Tter. Value  Time Gap Canc. h.p Value Time Gap Canc. h.p
Random Order 100 136434 16 11.42 11.40 10 147043 9 813 8.68 7
10000 137433 1647 10.78 11.13 6 147760 844 7.68 8.81 9
With Priority 100 137151 17 10.96 11.47 0 147990 9 7.54 8.74 0
10000 137811 1642 10.53 11.33 0 148621 842  7.15 9.13 0
Adaptive Order 100 138413 16 10.14 10.13 0 149642 8 6.51 8.29 0
10000 138845 1657 9.86 9.93 0 150000 835  6.28 7.58 0

Milan (a) Milan (b)
Random Order 100 117302 15 6.03 1.85 12 4921 0 1.99 2.78 0
10000 117909 1473 5.55 1.67 8 5018 6 0.06 0.00 0
With Priority 100 118561 15 5.02 1.30 0 4942 0 1.57 2.78 0
10000 118955 1468 4.71 0.83 0 4949 5 1.43 2.78 0
Adaptive Order 100 118836 15 4.80 0.65 0 4942 0 1.57 2.78 0
10000 119031 1459 4.65 1.02 0 4942 5 1.57 2.78 0

Bologna Florence

Table 4: Heuristic solutions obtained with different train orderings and different number of iterations.

The results presented in Table 4] are plotted in Figure In particular, we report for
each train ordering the percentage gap between the best upper bound and the current best
solution found versus the number of iterations. The plots are shown for each instance. We can
see that the adaptive order outperforms the other orders for all instances except Florence,
which is, however, also the smallest instance. In the first iterations (up to 1000) the decrease
of the percentage gap is significant, while during the next iterations the improvement is less
evident.
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Figure 3: Plots of the percentage gap with respect to the upper bound at each iteration in which the current
best solution was improved.

6.3. Practicality of the solutions

In this section, we investigate some issues concerning the applicability of the solutions
found by the proposed heuristic algorithm in practice. We consider the timetables obtained
by using the adaptive ordering method and 10000 iterations.

Recall that, as mentioned in Section [3.2.3] the capacity of the stations is only considered as
the maximum number of trains simultaneously present at the station, neglecting the specific
itineraries that each train should follow to reach a specific platform. When the capacity of a
station is saturated (i.e. the number of trains simultaneously present at the station is equal
to the number of its platforms), it is more difficult to find a platform assignment that avoids
conflicting itineraries. In order to show the practicality of the solutions found for our real-
world instances, we evaluate, for each station, how often the number of trains simultaneously
present at the station equals its capacity. For each of the four real-world instances, we count
the total number of time instants of station capacity saturation in the final timetables (if two
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stations are saturated at the same time instant, we count two instants of station capacity
saturation). It turns out that the station capacity is saturated in at most 1.1% of the time
instants, which occurs for Milan (b) instance. For the other instances, the station capacity
is saturated in less than 0.8% of the time instants. This is an indication of the practicality
of the obtained timetables, even if the train platforming problem must be solved to validate
the timetables at a microscopic level and to assign specific platforms to trains.

A second issue that we analyze is the robustness of the obtained timetables to delay
propagation. We estimate the effects of delay scenarios on the timetables obtained for the
railway node of Bologna, for which a record of historical delays occurred in practice was
available from RFI. The first of the recorded delays occurs at 04:45 and the last one at 22:10.
Each delay is caused by a specific reason, such as delay of the crew, longer stop at a station,
broken rolling stock unit, or delay because of a connection with another delayed train. Delay
durations range between 60 and 2460 seconds, but most delays are around 120-400 seconds.

Since we have a different timetable from the one on which the historical delays occurred,
we used the historical data in order to generate delays to be applied to the timetable obtained
by the proposed algorithm. In particular, we divided the day in intervals of 30 minutes
each, and evaluated, for each time interval and station, the minimum and maximum delay
durations, occurred in the historical data. Then, we generate the delay scenarios as follows.
We randomly select, with uniform probability, a station and a time interval in which a delay
occurred. Given the station and the time interval, we generate a delay for a train (if any)
that departs from that station in the given time interval, with duration uniformly distributed
between the minimum and maximum delay durations computed. Each delay scenario contains
a single delayed train. Overall we generated 100 delay scenarios.

For each delay scenario, we evaluate the effect on the timetable as follows. When a delay
occurs, some conflicts between trains can arise. In this case, it is necessary to reschedule trains
in order to obtain a feasible timetable. To this aim, we again use our heuristic algorithm
with adaptive order. In this case, we keep as fixed all the train timetables before the delay
time and allow to shift trains only later than the scheduled departure time in the planned
timetable. In addition, we set the minimum stopping time of each train at each of its visited
stations as in the planned timetable (and not as in the ideal one). To emulate a real-time
context, the algorithm is executed until either a time limit of two minutes is reached or no
trains are cancelled. In more than 90% of the scenarios, the computing time is less than
5 seconds, while, in the remaining case, the longest computing time is 77 seconds (i.e. the
algorithm stops because there are no cancelled trains). The maximum shift and the maximum
stretch are both set to 5 minutes. We underline that the proposed algorithm is not an effective
rescheduling algorithm, but is used here for train rescheduling only to evaluate the robustness
of the obtained timetable to delay propagation. The development of a rescheduling algorithm
goes beyond the scope of this paper and it will be investigated as future research.

In order to analyze delay propagation, we compute the total additional delay of the
rescheduled trains with respect to the planned timetable, by summing all the delays of trains
(except from the originally delayed one) at their final stations. Clearly, a smaller delay
corresponds to a more robust timetable. It turns out that for the large majority (77 out of
100) of the scenarios there are no additional trains delayed at their final stations. In the
remaining cases (23 out of 100), most scenarios have one additional delayed train, while the
worst scenario has 4 additional delayed trains. We also compute the maximum additional
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delay cumulated by a train at its final station in each of the 23 scenarios in which at least
one train has an additional delay. In most cases, the maximum delay is at most two minutes,
while the higher maximum additional delay among all scenarios corresponds to 5 minutes.
This computationally shows that the obtained timetable is robust to delays of this kind.

Finally, we evaluate, for each of the 23 scenarios and for each delayed train, the percentage
of stations, with respect to the total number of stations visited by the train, in which the
train is delayed. In particular, we distinguish trains that are delayed in:

e < 25% of the stations they visit,

> 25% and < 50% of the stations they visit,

> 50% and < 75% of the stations they visit,
e > 75% and < 100% of the stations they visit.

It turns out that, overall the 23 scenarios, 5.77% of the delayed trains fall in the first category,
19.23% in the second one, 21.15% in the third one and 53.85% in the last one. This shows
that about half of the delayed trains are delayed in many of the visited stations. One reason
for this is certainly that the rescheduling algorithm does not allow to increase the speed
along the tracks nor to decrease the stopping time with respect to the planned timetable.
Therefore, if a train is delayed at its first station, it continues to be delayed (even if no
additional delay occurs) until it reaches its final station. This further motivates the need for
an effective rescheduling algorithm.

6.4. Capacity saturation

This section is dedicated to the evaluation of capacity saturation of the railway nodes,
i.e. we investigate the maximum number of trains that can be scheduled in the railway node.
Note that this is different from the station capacity saturation described in the previous
section, which concerns single stations only and not the entire railway node.

0.4.1. Literature review

A common definition of capacity of a single railway line is given by the ratio between
a given time period and the minimum headway time between two consecutive trains. This
represents the total number of trains that can traverse a critical section in the given time
period and is called bottleneck approach (see [24], [6]). When dealing with a railway node,
this definition has to be extended as it cannot be simply determined as the sum of the
capacities of the lines inside the node. Several types of trains must be taken into account
and their specific schedules, which lead to interactions and conflicts. A complete analysis
can show the efficiencies and weaknesses of the railway infrastructure.

Several works studied the evaluation of railway infrastructure capacity. In [24], the capac-
ity of a railway junction is determined as the maximum number of trains, among a predefined
set of trains, that can operate on the junction. The assumption that trains do not stop dur-
ing the run in the junction is made and a microscopic detail of the junction is considered.
Two methods are developed: the first one is a constraint programming approach solved by
a greedy heuristic; the second one is a set-packing problem solved by an adapted GRASP
metaheuristic. In [0], complex railway networks are analyzed and several aspects related to
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the infrastructure capacity, such as different train types, their directions and lengths, the
headway and dwell times, are taken into account. The authors define the capacity as the
maximum number of trains that can traverse the entire railway or certain bottleneck sections
in a given duration of time. The developed approach consists of an optimization approach,
based on the bottleneck method. A case study is used to illustrate the proposed technique.
In [I], a survey of methods to evaluate railway capacity is presented. They include analytical,
optimization and simulation methods. The authors present a system that embeds analytical
and optimization approaches. An analysis is also conducted that shows how different param-
eters affect railway capacity. In particular, train speed, train heterogeneity, headway times
and buffer times are considered.

6.4.2. Capacity saturation evaluation

We propose to use the developed heuristic algorithm for capacity saturation evaluation of
the four instances, in the scenario corresponding to the set of trains given by RFI. In order
to estimate the capacity, we consider two different parameter settings. In the first one, the
profit of the trains are increased to 100000: in this way, we can avoid train cancellations
caused by null or negative profits due to shift and stretch changes. In the second one, in
addition to profit increase, maximum shift and maximum stretch values are increased to 20
minutes each to allow more trains to be scheduled.

In Table [f], we report the results of capacity saturation analysis, which were obtained by
executing the proposed heuristic algorithm for 10000 iterations using adaptive ordering of
the trains. For each instance, we show the percentage of scheduled trains in the standard
configuration and the corresponding computing time (in seconds). For the cases of increased
train profits and increased train profits together with increased maximum shift and maximum
stretch values, we report the percentage of additional scheduled trains. As it can be seen
from Table [5] additional trains can be scheduled for the instances Milan (a), Milan (b)
and Bologna, both when increasing profits and when allowing for larger maximum shift and
maximum stretch. On the contrary, the node of Florence shows to be saturated. The results
are plotted in Figure [} in which we plot the percentage of scheduled trains at each iteration
in which the number of scheduled trains was improved for each instance. The percentage of
scheduled trains ranges between 93% and 100% for the four instances. This indicates that
the considered railway nodes are properly sized for the current traffic since at least 90% of
the train requests can be scheduled on each node.

Standard Increased profits,
6 : Increased profits max shift and max
configuration )
stretch

Instance % sched. Time % add. Time % add. Time
Milan (a) 90.07 1656 1.27 1664 3.00 2625
Milan (b) 92.42 842 0.58 843 3.82 2655
Bologna 98.98 1459 0.83 1464 1.02 5109
Florence 97.22 5 0.00 5 0.00 18

Table 5: Results for TTP saturation using the adaptive ordering method for 10000 iterations.
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Figure 4: The percentage of scheduled trains with increased profits, and maximum shift and maximum
stretch, at each iteration in which the number of scheduled trains was improved.

However, if additional trains need to be scheduled, the capacity might not be sufficient,
and additional tracks may be required. In this case, the analysis can be used to determine
where additional tracks should be placed in order to avoid bottlenecks. We evaluated the
effect of adding (from 1 to 5) additional tracks in bottleneck areas of the railway nodes. These
bottleneck areas are determined as follows. For every two stations s, so € S and each time
instant h € H, let T (s1, S2, h) give the number of trains which are scheduled to be present
on the track section between s; and sy at time h, which may be seen as a measure of the
congestion of that track section at that time. However, D, . T (s1, 52, h) is simply the sum
of the travel times of all trains traveling between s; and s, and does not reflect the degree to
which there are conflicts on this track section. Alternatively we therefore propose (7(51;2”‘))
as a measure of congestion, i.e. the number of pairs of possible conflicts between trains for
that time instant. A measure of the total congestion of the track section between stations s;
and s, throughout the considered time horizon is therefore considered to be

}; (T(sl,;Q,h))

In Table[6] we show the percentage of trains scheduled when additional tracks are inserted
in the railway node. It may be noted that the percentage of scheduled trains does not change
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significantly when we insert additional tracks. Therefore, we can conclude that there is not
a problematic bottleneck area in the railway node, and in order to be able to schedule more
trains several changes in the infrastructure would be needed.

Number of additional tracks

Instance 0 track 1 track 2 tracks 3 tracks 4 tracks 5 tracks
Milan (a) 90.35 90.35 90.35 90.35 90.35 90.35
Milan (b) 92.20 92.20 92.20 92.80 93.73 93.73
Bologna 95.37 95.37 95.46 95.46 95.46 95.46
Florence 97.22 97.22 97.22 97.22 97.22 97.22

Table 6: Percentage of trains scheduled when additional tracks are added to the railway node.

7. Conclusions and future research

This paper deals with the Train Timetabling Problem in a railway node. We consider the
point of view of the Infrastructure Manager, who collects requests from the Train Operators
of scheduling trains in the railway node, according to so-called ideal timetables, which in
turn are proposed by the Train Operators based on passengers and freight demand. The
goal is to determine conflict-free timetables, which differ as little as possible from the ideal
ones, while respecting several track operational constraints. The problem was studied for a
research project funded by Rete Ferroviaria Italiana, the main Italian railway Infrastructure
Manager.

We have proposed an Integer Linear Programming model for the problem, which is based
on a time-space graph adapted from previous models in the literature for dealing with the rail-
way nodes. The mathematical formulation is characterized by a large number of constraints
and variables, which prevents the use thereof in real-world applications. Therefore, we have
proposed a relaxation of the model for deriving dual bounds and a heuristic algorithm which
obtains good solutions to real-world instances with up to 1500 trains in short computing
times. In addition, we have showed the usefulness of the presented heuristic algorithm in
capacity saturation analysis.

Future research will be devoted to the extension of the described approach to deal with
real-time timetable rescheduling in cases where delays or disruptions cause infeasibilities in
the planned timetables. This is an important issue, since the increasingly utilized railway
systems experience frequent delays, and an efficient use of the infrastructure is crucial at an
operational level. Another research area is to investigate how to embed the proposed approach
in a complex scheduling system, in which timetables are first determined for railway corridors
and then railway nodes are considered in a closed loop framework in order to derive improved
timetables for the entire railway network.
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Appendix

In Figure 5| we present the dynamic programming procedure for the maximum profit path computation
on the acyclic time-space graph.

O;: current train
Gyt = (Vo,, Ao,): reduced time-space graph for O,
for v € Vp, do

if (o,v) is a starting arc of Ap, then
| 1(v) = (70, — W vo,(v),0)
end
else
| 1(v) == (0,0)
end
end

//nodes are evaluated according to the order given by the stations visited by train
//Oy and, for each station, in cronological order

for v € Vp, do
if [(v) # (0,v) then
for s, € Vo, : (v,s,) € Ao, do

if pf(v) + po,(w,s,) > pf(s,) then

| 1(s0) = (pf (V) + PO, (v,50), V)

end

end

end
end
if [(17) # (0,7) then
| return found path for O;
end

else
| no feasible path for O,
end

Figure 5: Dynamic programming procedure for computing the maximum profit path of a train.
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