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On the Modeling of Musical Solos as Complex Networks

Stefano Ferretti

Department of Computer Science and Engineering, University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

Notes in a musical piece are building blocks employed in non-random ways to create
melodies. It is the “interaction” among a limited amount of notes that allows construct-
ing the variety of musical compositions that have been written in centuries and within
different cultures. Networks are a modeling tool that is commonly employed to represent
a set of entities interacting in some way. Thus, notes composing a melody can be seen
as nodes of a network that are connected whenever these are played in sequence. The
outcome of such a process results in a directed graph. By using complex network theory,
some main metrics of musical graphs can be measured, which characterize the related
musical pieces. In this paper, we define a framework to represent melodies as networks.
Then, we provide an analysis on a set of guitar solos performed by main musicians. Re-
sults of this study indicate that the presented model can have an impact on audio and
multimedia applications such as music classification, identification, e-learning, automatic
music generation, multimedia entertainment.

Keywords: Complex Networks, Musical Scores, Centrality Measures

1. Introduction

Nowadays, there is a common trend in research to model everything as a network,
i.e., systems or data which can be represented by graphs. In particular, complex network
theory is a mathematical tool that connects the real world with theoretical research,
and is employed in many fields. Networks are employed across a multitude of disciplines
ranging from natural and physical sciences to social sciences and humanities [11, 30].

Technological, biological, economic systems, disease pathologies, protein-protein in-
teractions, can be modeled in the same way. Focusing on multimedia contents, it has
been proved that language, for instance, can be seen as a system that can be represented
as a complex network [10, 13, 15, 20, 32]. As human language has a non-random struc-
ture, since it is used by humans to construct sentences from a limited amount of discrete
units (words), also music is created by combining notes played by a set of instruments.
In this paper, we show that musical pieces can be treated as complex networks as well
(we will focus on melodic lines played by a single instrument).
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When dealing with audio, the main concern has been on the issue of digitalizing it, in
the most efficient way, or to synthesize, represent, reproduce sounds, by employing a va-
riety of sound generation techniques. Attention has been paid on transmitting, indexing,
classifying, clustering, summarizing music [7, 19, 23, 27, 33, 37, 39, 42]. However, the
idea of capturing some general characteristics of a melody (and harmony) is somehow
an overlook aspect. In literature, there are works in the field of computer science that
focus on musical scores [34, 41]. There are studies on the development of digital libraries
and on human interaction with musical scores and more general notational/instructional
information objects [41]. Other works are on the automatic transcription of the melody
and harmony [36]. As concerns music information retrieval, a goal is to devise automatic
measurements of the similarity between two musical recordings, based on the analysis
of audio contents. Techniques worthy of mention are acoustic-based similarity measures
[9], compression-based classification methods [14], statistical analyses and artificial neural
networks [26]. Finally, artificial intelligence techniques have been employed to capture
statistical proportions of music attributes, such as pitch, duration, melodic intervals,
harmonic intervals, etc. [26]; outcomes confirm that several essential aspects of music
aesthetics can be modeled through power law distributions.

Studies on music can be based on symbolic data (music score sheets) or on audio
recordings. Symbolic music data eases the analysis in several music application domains.
For example, finding the notes of a melody in an audio file can be a difficult task, while
with symbolic music, notes are the starting point for the analysis. Thus, in general
traditional musicological concepts such as melodic and harmonic structure are easier to
investigate in the symbolic domain, and usually more successful [22].

In this paper, we develop a model that allows capturing some essential features of
a musical performance (a music track). We will focus on melodies, and specifically on
musical “solos”, which are a part of a song where a performer plays (often improvises)
a melody with accompaniment from the other instruments [17]. It is quite common in
music theory asserting that solos performed by musicians are bound to their technical
and artistic skills. Indeed, musicians are recognized for their own “style” in playing
a solo over a music piece, that identifies a sort of musical “language”, typical of that
musician. It is not by chance that an artist can be recognized from others, and that we
can classify artists in categories and hierarchies. Moreover, since during a solo a player
(quite often) improvises and creates a melody “in real time”, he employs typical patterns
(licks) he is used to utilize. The goal of this work is to make a step further toward the
identification of the rules and characteristics of the music style of a certain performer. If
a music line is conceived of as a complex network of musical units (notes, rests) and their
relations, it is expected to exhibit emergent properties due to the interactions between
such system elements. Complex networks provide appropriate modeling for music as
a complex system and powerful quantitative measures for capturing the essence of its
complexity.

As a proof of concept, we retrieved and analyzed different solos of some main guitar
players. Namely, the artists are Eric Clapton, David Gilmour, Jimi Hendrix, Allan
Holdsworth, B.B. King, Pat Metheny, Steve Vai, Eddie Van Halen. The selection of
guitar as instrument and these particular artists is motivated by the fact that there is
a quite active community of guitar enthusiasts that share musical scores on the Web.
Scores are published and formatted, usually, by employing description schemes that
are alternative, easier and more intuitive to read with respect to the classic musical
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sheets. These schemes are based on guitar tablatures, and there is a wide list of software
applications and libraries to handle digital representations of such scores. The considered
artists are prominent musicians; thus, several scores of their music are available online.
This simplified the creation of the database.

It is worth mentioning that a previous work was published in [24], presenting a
methodological approach that is similar to that presented in this work. Nonetheless, the
use of the model and the application were different to those considered in this work. In
[24], complete scores of classic and Chinese music are considered. Networks are concate-
nations of a number of different music pieces by the same author, having the same style,
to reach 18K notes per composer. Using these aggregate networks, they find scale-free
properties, small-world phenomenon, mean shortest distances around 3 and clustering
coefficients around 0.3. The application approach followed in this work is different. In
fact, the analysis is on solos rather than aggregate music pieces. The focus on solos has
the specific goal to eliminate repetitions typical of the main melodies of contemporary
pop/rock/blues songs, the main theme of jazz compositions, and above all the rhythmic
parts. In any case, following the approach employed in [24], in the last part of Section 6
an analysis is performed of concatenated solos of each artist. Obtained results are com-
parable with those obtained in [24], i.e. networks are small worlds, with a mean shortest
distances around 3 and clustering coefficients around 0.3. However, we show that results
obtained for concatenated networks are different to the average results for separate solos.

The presented analysis provides novel results and promotes novel applications in the
artificial intelligence, didactics and multimedia domains. In particular, the contributions
of this work are the following:

• It is proposed to represent a melodic track as a network (but this can be extended
to a whole instrumental music track); this provides a representation of the entire
track and allows calculating some general measures that characterize it. Such a
representation provides novel insights into understanding the music composition
process and fosters novel applications in this domain.

• We show how complex network theory can be profitably employed in a novel ap-
plication scenario.

• The proposed representation network model has been applied to a set of guitar solos.
We show that networks associated to different solos do have different topologies;
this allows discriminating among different music solos and music styles of different
artists, in general. An accurate analysis of such tracks can lead to the extrapolation
of general characteristics of a given performer.

• We calculate different measures, typical of complex network theory, on the consid-
ered networks, and present some aggregate results to characterize these performers.
We measure the length of solos, the dimensions of the networks, the degree distribu-
tion, distance metrics, clustering coefficient, centrality measures (betweenness and
eigenvector centralities) and, finally, we identify that the network representation of
certain solos are small worlds. The paper discusses how these metrics are related
to the “style” of the performer.

• Through statistical tests, we show that certain musicians have statistically signifi-
cant differences, by looking at the considered metrics.
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As mentioned, the outcomes of such study can have an impact on multimedia ap-
plications, intelligent systems and on studies of music classification and identification,
in general. While probably a music track cannot be fully described via mathematical
measurements, nonetheless, these measures can help in discriminating among the main
features of a performer and a music track. Such results can be employed as building
blocks inside media applications for the automatic generation of digital music with cer-
tain specific characteristics (e.g., the generation of a solo “à la” Miles Davis). Such
applications could be extensively exploited in didactic scenarios, automatic music gener-
ation applications, and multimedia entertainment.

The reminder of this paper is organized as follows. Section 2 presents some basic
terminology employed in the rest of the paper. Section 3 describes the network model
for music solos. Section 4 presents the main metrics, typically employed in complex
network theory, that are used to characterize musical solos. Section 5 discusses on an
assessment on a list of solos performed by a set of prominent guitar players. Section 6
presents the obtained results. Finally, Section 7 provides some concluding remarks.

2. Terminology

Here, a brief terminology is introduced to avoid potential ambiguities. A song is a
musical piece, which is composed of multiple, simultaneous sounds played by different
instruments. The part of the song played by a single instrument is referred as a track.
Notice that an instrument can play different tracks in the song (e.g. there are multiple
instruments of the same type, or the tracks have been overdubbed).

Instruments (e.g. guitar) can have a rhythmic (accompaniment) and/or a melodic
role. These roles are not exclusive and in the same track an instrument can play both
roles during different moments of the song.

The solo is a part of a track where a performer is playing with unobtrusive accom-
paniment from the other instruments. (Note that even if the solo is a subset of the
track, in the following these two terms are used as synonyms, since they both represent
a sequence of notes, chords and rests.) It is employed quite often in jazz, blues, rock
songs, where the solo has, usually, the twofold role of: i) creating a melody (in certain
cases an improvised melody), which is alternative to the main melody of the song; and ii)
showing off the skills of the performer, due to the technical difficulties to play that solo,
or due to the ability of the performer to create an intense, touching melody. Needless
to say, solos are melodies composed of notes (or groups of simultaneous notes). A note
can be a pitched sound or a rest, lasting for a certain duration. Thus, notes co-occur in
melodies. We define links as co-occurrences of notes in the melody. More specifically, the
approach considers that there is a strict relation (i.e. link) between two notes if these are
neighbors (i.e. subsequent). This allows capturing a quantitative measure of correlation
among notes in the melody.

3. A network model for musical solos

We mentioned that in this model, a note can be a pitched sound or a rest, lasting
for a certain duration. Thus, two notes of the same pitch with different durations are
considered as two different network nodes. Rests and chords are other possible nodes of
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Figure 1: Example of melodic line mapped to a network

a network. In fact, it is quite usual to hear performers playing multiple simultaneous
notes to create multiple voices in the melody they are composing in the solo (when the
employed instrument allows this, such as with a guitar or a piano).

We can represent a track as a directed network, whose nodes are the notes played
by the performer. When a performer plays a note x, followed by a subsequent note y,
we add the two nodes x, y in the network and a directed link (x, y) from x to y. If, for
instance, the player subsequently plays another note z, we add another node z and a
link (y, z) leaving from the already existing node y to z. Networks can have cycles, i.e a
performer can play two subsequent notes of the same type. Weights can be associated to
links (x, y), depending on how many times that link (x, y) is present in the solo, i.e. how
many times the performer plays a sequence of the two x, y notes.

From a mathematical point of view, the simplest form to represent the network is
through the use of the adjacency matrix A, i.e., a n × n matrix (where n denotes the
amount of nodes of the network) with elements

Axy =

{
1 when there is a link from vertex x to vertex y
0 otherwise

For weighted networks, we can replace the binary possible values of Axy with a (non-
negative) associated weight.

Figure 1 shows an example of a simple music score sheet of a melodic line, and the
associated network. On top of the score sheet, the text label over each note represents
the name of the note. The same label is shown next to the network node associated to the
note. In the network, a link is created from the C node to D, (C,D), since the first note
on the sheet is a C, followed by a D. Then, a self loop (D,D) is added to the network,
since the third note on the sheet is a D, again. The fourth note is a C, that corresponds
to the (D,C) link. Then, there is a sequence of links (D,G), (G, rest), (rest, G2). Note
that there are two different nodes for the two G notes, since their pitch is the same
(i.e. G), but they have different duration (the first G is a eighth note, while the second
one is a half note). It is possible to observe that there is a single link (C,D), while the
sequence of a C note to a D note is played twice in the score sheet. To mark this, a
weight might be added to links, so that the (C,D) link has a double weight with respect
to other links, which correspond to note pairs that are played just once.
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To sum up, according to the employed model nodes correspond to specific notes.
Labels associated to nodes vary depending on the type of note. In case of a single note,
the related node has a label composed of the note pitch, octave and duration. A “rest
node” is labeled with the duration of the rest. Finally, nodes corresponding to chords
are labeled with the pitch, octave and duration of each note composing the chord.

As concerns the amount of possible nodes in a network, in the occidental music
an octave (the interval between one musical pitch and another with half or double its
frequency, which is the same note lowered or raised of an octave), is composed of twelve
sounds. Focusing on electric guitar, as an example, it is usually possible to create sounds
belonging to four octaves. (Actually, this is a simplified measure, just to give an idea
on the amount of possible nodes; in fact, a higher amount of sounds can be produced if
one considers the possibility of playing the so called ”harmonics“, i.e. pitch notes quite
higher than ”usual ones“. Moreover, in certain cases strings can be tuned differently to
the standard tuning, so as to produce lower pitches). Then, each note has an associated
duration. Furthermore, it is possible to create and employ chords (e.g. bi-chords, two
notes played simultaneously, are quite often exploited in guitar melodies). Therefore,
according to this model a guitar solo (and, in general, a track) can be associated to a
network composed of hundreds of nodes.

Figure 2 depicts four examples of networks derived from four famous blues/rock guitar
solos. Network image representations have been generated using the APIs provided by
the open-source software JUNG (Java Universal Network/Graph) Framework [31]. In
particular, given a network a graph image is created, using a layout (i.e. position of
nodes) that tries to avoid (or minimize) nodes and links overlapping. Thus, the spatial
position of nodes has no meaning with respect to musical aspects, and spatially near
nodes do not necessarily refer to similar notes.

It is interesting to observe that these networks are quite different one from the other.
Figure 2a shows a simple network, with some nodes that have higher in/out degrees
(i.e., number of links entering or leaving a node). Figure 2b has a more linear structure,
suggesting that the melodic line was “simple”, with poor repetitions of single notes.
Figure 2c appears to be a clustered network, with some few nodes connecting the two
clusters. Finally, Figure 2d has a quite complex structure, with many nodes and with
the presence of several hubs. This suggests that it might be interesting to assess if
different artists do have different characteristics that, statistically, produce different types
of networks.

An interesting feature of this model is that it describes the track by focusing on its
structure and its topology. The network is composed by different notes, but the main
aspect is that these notes create a novel node when they are different from others played
in the solo. The structure of the network is not influenced, for instance, by the tonality
of the song, i.e. the obtained network would be the same if a performer plays the same
solo but in different keys. Similarly, we would obtain the same network if the same solo
is played at different tempos.

It is worth noticing that usually a melodic line is strongly influenced by the underlying
harmonic, chord progression. Modulations and chords’ alterations are quite common in
jazz compositions, where improvisations use and outline the harmony as a foundation
for melodic ideas. On one hand, it is recognized that complex chord progressions do
offer performers the ability to vary their melodic lines. On the other hand, some other
artists assert that a complex chords structure represents a constraint for the improviser,
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(a) B.B. King – Rock me baby
(b) Pink Floyd – Comfortably numb (first
solo)

(c) Eric Clapton (Cream) – Crossroads
(second solo)

(d) Jimi Hendrix – Red House

Figure 2: Four examples of networks from different scores
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which is forced to follow that structure, while a simpler harmony offers much more
freedom for improvising on each individual chord change [8, 12]. Without going into this
debate, we simplify this matter by simply ignoring the chord progression of the considered
compositions. Hence, while important, in this study we do not focus on the harmonic
aspects, just taking the melodic line to create the networks. This can be regarded as a
further work. Anyhow, the harmonic structure implicitly influences the melody that has
been created by the artist.

4. Metrics of Interest

This section presents the main metrics, typically employed in complex network theory,
that are used to characterize musical solos.

4.1. Length of solos

The length of a musical track is the amount of notes, chords or rests composing the
track. This metrics is different to the temporal duration time of the solo, even if these two
metrics are related. In fact, during a bar, one might play a fast sequence of notes with
short duration (e.g. a set of 16 sixteenth notes) that would occupy the same temporal
time of a single whole note.

This metrics expresses how much a performer is inclined to elaborate the melodic line
he is creating during the solo. But it is also strongly related to the music genre. For
instance, solos in jazz compositions are usually quite longer than modern pop-rock ones.

4.2. Number of nodes

This measure is the total amount of nodes in a given network, that is the total amount
of different notes that have been played during the solo. The number of nodes differ from
the length of solos, since the length of solo counts multiple times the same note x during
a solo, i.e. x is counted each time the note is played. Conversely, the amount of nodes
counts a note x once, if that note has been played during the solo.

4.3. Degree distributions

The degree of a node x is the amount of links that connect x with other nodes in the
network (included x itself, when a loop is performed). The degree counts how many times
the performer decides playing a note, after (and before) playing another one. Since the
graph is directed, it is worth considering also the in-degrees (number of links arriving at
a certain node) and out-degrees (number of links leaving a certain node). The in-degree
dinx of a node x can be written in terms of the adjacency matrix as

dinx =
∑
y

Axy,

while the out-degree is

doutx =
∑
y

Ayx.

Thus, the degree of a node is the summation between its in-degree and out-degree, i.e.

dx = dinx + doutx .
8



A normalized degree is the degree of a node divided by the maximum degree value,
so as to obtain a measure between 0 and 1.

Weights can be associated to links and exploited to measure the so called weighted
degrees. In this case, a weight is assigned to each link, measuring the amount of times
the solo “traverses” that link (i.e., how many times the performer played those two notes
in sequence). Thus, the weighted degree is the summation of the weights of links of a
given node.

4.4. Distances

The average distance is the average shortest path length in a network, i.e. the average
number of steps along the shortest paths for all possible pairs of nodes. The distance
between two nodes x, y is the shortest sequence of notes played in a solo starting with x
and ending with y.

It is worth noting that when considering distances in most directed networks obtained
from the considered solos, the average path length is infinite, since such directed networks
are not strongly connected, i.e. in these networks it is not possible to create a path from a
node to another, for all possible pair of nodes, by employing their directed links. However,
these nets are typically weakly connected; that is, the corresponding undirected network,
obtained by removing the direction information and considering links as bidirectional
ones, is connected. Hence, it is possible to find an undirected path from each network
node to any other node. For instance, in the sample network of Figure 1 it is not possible
to go from G to C when we consider the directed net, but a path exists if we consider the
undirected network. Distances among nodes are calculated using the standard breadth-
first search algorithm, which finds the shortest distance from a single source node to
every other node in the network.

In this application domain, small networks have a low distance (as we will see for for
the solo depicted in Figure 2a). Thus, a higher distance reveals a higher complexity of
the solo, in terms of amount of notes. When we compare networks of the same size, a
higher average path length means that going from one note to another a high amount of
notes should be traversed, on average. In some sense, similarly to geographical networks
where higher distances suggest that only local connections exists, without high jumps
from one geographical area to another [40], in the case of musical networks one might
assume that the player is used to play “near” notes, meaning that he prefers combining
certain groups of notes in his solo.

This metrics should be considered together with the clustering coefficient. In fact,
these two metrics allow determining if the network is a small world or not (see next
subsections).

4.5. Clustering coefficient

The clustering coefficient is a measure assessing how much nodes in a graph tend to
cluster together. It measures to what extent friends of a node are friends of one another
too. When two connected nodes have a common neighbor, this triplet of nodes forms a
triangle. The clustering coefficient is defined as

C =
3× number of triangles in the network

number of connected triplets of nodes
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where a “connected triple” consists of a single node with links reaching a pair of other
nodes; or, in other words, a connected triple is a set of three nodes connected by (at
least) two links [30]. A triangle of nodes forms three connected triplets, thus explaining
the factor of three in the formula.

In this context, a triangle of nodes means that the performer played in a solo mul-
tiple times the corresponding three notes in sequence, but in different orders. In other
words, the presence of many triangles (i.e. high clustering coefficient) indicates that the
performer is used to play different clusters of notes in whatever order. Conversely, a
low clustering coefficient might indicate that the performer prefers following a specific
melodic line with a specific order on triplets.

4.6. Small worlds

Small world networks are networks that are “highly clustered, like regular lattices;
yet, they have small characteristic path lengths, like random graphs” [40]. In a small
world, most nodes are not linked with each other, but most nodes can be reached from
every other by a small number of hops. Indeed, in a small-world network the typical
distance between two randomly chosen nodes grows proportionally to the logarithm of
the number of nodes.

Given a network, it is possible to verify if it is a small world, by comparing it with
a random graph of the same size. A random graph is a network with links randomly
generated, based on a simple probabilistic model [30]. Different models can be employed
to generate a random graph. According to one of the simplest methods, a random graph
can be constructed by creating a set of n isolated nodes; then, we consider every possible
pair of nodes x, y, and we add a link (x, y) with probability p, independently of other
links. Random graphs exhibit a small average distance among nodes (varying typically as
the logarithm of the number of nodes, ∼ ln(n)) along with a small clustering coefficient
∼ mun links

n2 .
In practice, one can assess whether a network has a small average distance as for a

random graph, but a significantly higher clustering coefficient. In this case, the network
is a small world.

In the context of musical solos, a small world network (low distance, high clustering
coefficient) corresponds to a solo where nodes are combined and played in various orders,
with a significant amount of connections between notes that are in different clusters
(or, in some sense, in different “areas” of the network). Conversely, a network that
does not exhibit the small world phenomenon might can be obtained from a linear solo
(low clustering coefficient, as we will see for the solo depicted in Figure 2b), or some
particularly clustered network (but with high average path length), meaning that the
player prefers playing certain groups of notes in his solo, moving from one cluster (of
notes) to another through some few important notes (then, we should expect that these
notes connecting different clusters have high centrality values, as discussed below).

4.7. Centrality measures: betweenness

Betweenness centrality is a centrality measure that indicates to what extent a node
lies on paths between other nodes. A node with high betweenness has a large influence
in the network. If for instance, we consider a communication network, a node with high
betweenness has high control over information passing through the network. In this
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context, a node x with high betweenness represents a note that is played within many
melodic “phrases” (in the music jargon, these are called “licks”), since if we want to go
from a note to another, we find that the path (which can be viewed as a typical phrase
utilized by the performer) connecting these two notes passes through x. In other words,
the presence of nodes with high betweenness indicates that the player has a prevalence
of passing through some main notes in his solos.

Betweenness of a node x is defined as

bet(x) =
∑

y 6=x6=z

σxz(x)

σxz
,

where σxz is the total amount of shortest paths in the network going from y to z, and
σxz(x) is the number of those paths passing through x. This definition of betweenness
centrality scales with the number of pairs of nodes, as implied by the summation indices.
When one wants to compare different networks, it is thus convenient to normalize this
summation by dividing it by n2 (with n being the number of network nodes), which
represents the total number of possible ordered node pairs [29].

4.8. Centrality measures: eigenvector centrality

Eigenvector centrality is a centrality measure exploited to rank the influence of a
node in a network, similarly to betweenness. It denotes the extent to which a node is an
important node connected to other important nodes, i.e., it assesses how well connected
a node is to the parts of the network with the greatest connectivity [29]. In other words,
this measure ranks nodes based on the concept that connections to nodes with higher
ranks contribute more to the ranking of the node in question than equal connections to
nodes with low ranks. Thus, notes with high eigenvector represent those that are present
in commonly played licks, since they are played together with other commonly exploited
notes.

Since this centrality measure responds to the statement that “a node is important if
it is linked to by other important nodes”, we can say that the centrality ex of a node x
proportionally depends on the centrality of its neighbors, i.e.

ex =
∑
y

Axyey.

To solve this problem, an iterative process can be exploited that computes the estimation
of this centrality measure by starting from an arbitrary vector e(0) of centrality measures
for network nodes, and repeatedly computing the centralities

e(t) = Ae(t− 1) = Ate(0),

where e(t) is the vector of centrality measures of the nodes, computed at the t-th iteration
of this process, and A is the adjacency matrix [29]. Now, if we write e(0) =

∑
i civi as

a linear combination of eigenvectors vi, then the estimation e(t) can be written in terms
of this combination, and Ate(0) can be written using the eigenvalues λi of A, associated
to vi, i.e.

e(t) = At
∑
i

civi =
∑
i

ciλ
t
ivi = λt1

∑
i

ci

(λ1

λi

)t
vi,
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with λ1 being the largest eigenvalue. Thus, by repeating this process in the limit t →
∞, e(t) → c1λ1v1. To sum up, the centrality of nodes is proportional to the leading
eigenvector of the adjacency matrix A, that is Ae = λ1e, or equivalently

ex = λ−1
1

∑
y

Axyey.

4.9. Comparing musical solos

Given all these metrics, a question is if it is possible to introduce a final measure of
similarity between different solos. This is an aspect that would probably require further
studies. An approach is to measure the similarity of solos by comparing the related
networks. Network comparison is recognized as a challenging task and a vast literature
exists [6, 25]. Networks can be compared by looking at their degree distributions. How-
ever, different networks with the same degree distribution may have distinct structural
properties [21]. Thus, the focus on other metrics might provide important indications.
In fact, we might compare two networks according to their density, clustering coefficient,
average path lengths, centrality measures, or any other structural measure.

Not only, trying to compare the general structure of networks, approaches have been
proposed that exploit graph isomorphism methods and heat equations on the graphs
[25]. Then, graph kernels methods exploit machine learning to count similar subgraphs
within two compared networks. As an example, in [18] a kernel method is exploited
that measures the similarity of two graphs based on the length of all walks between each
pair of nodes in the graphs. Another proposed approach is based on counting small sub-
graphs (called motifs), that represent recurring, significant patterns of interconnections
[28]. An alternative family of distance measures for network comparison exploits feature
vectors to summarize the graph topology [6]. In particular, through feature vectors and
machine learning techniques, a distance metric can computed to obtain the similarity (or
dissimilarity) of network topological features.

While in this work we do not propose a novel similarity measure among solos and
their related network, we claim that comparing the values of the different metrics might
provide an overall view of the likeness of the generated networks, and the characteristics
of related solos. With this in view, Table 1 summarizes the features provided by the
metrics presented in this section. It is of course a combined analysis (and comparison) of
these metrics that allows understanding the specific features of a musical solo, as already
mentioned in Section 4.6.

5. An assessment on guitar solos

While the presented approach is applicable to all musical solos and tracks, regardless
on the musical instrument, this study focuses on guitar solos. The reason is quite simple:
guitar is probably the most popular musical instrument and there is a vast amount of
information available on the Web. Besides classic musical sheets based on the musical
staff, alternative notation systems have been devised (e.g. guitar tablature) and a wide
set of software tools is available. This allowed creating a wide database of guitar solos,
to be used for this study. The idea of employing solos is due to the fact that during a
solo a player creates a melody usually “in real time”; during this process, it is reasonable
to assert that he employs typical patterns (licks) he is used to utilize [8, 12].
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Table 1: Employed metrics and some considerations to analyze solos.

Metrics Description

length of solo how much a performer is inclined to elaborate the melodic line he
is creating

number of nodes it gives an idea of the diversity of exploited notes
degree distribution how much notes are connected; it also allows understanding if

there are some notes which are more played than others
distance it gives an idea of how complex the solo is; larger networks might

have higher distances; however, higher average distances mean
that the player is used to move “locally” to notes he usually plays
together

clustering coefficient how much notes are clustered, i.e., how much the performer plays
notes in an interchangeable order

betweenness identifies those notes the player prefers passing through in his solo
eigenvector centrality identifies those notes the player prefers passing through in com-

monly played licks

A main clarification is that, even if these measures are quantitative, they do not aim
at ranking the ability of performers or the “beauty” of a solo with respect to another.
These are (subjective) opinions which are not under investigation here. The aim of these
measurements is to extract some main characteristics of performers and their solos, that
may serve to perform classifications, build applications for the automatic matching, iden-
tification or even automatic generation of media compositions respecting some musical
genre or style.

5.1. Database creation

A database was created by downloading (∼ 150) guitar scores available in several
dedicated Web sites (e.g. A-Z Guitar Tabs, [1], The Ultimate Guitar Tabs [5]). It is im-
portant noting that these scores are cooperatively provided by users; thus, these sources
might have some minor errors (that nevertheless, do not alter the general scope of this
study). They represent an interesting source of music score sheets that, besides the
general didactic contribution, promotes the development of novel application scenarios.
Since the focus here is on a limited number of performers, and solos were retrieved from
user-generated databases, the amount of available solos was limited to few hundreds.

Retrieved scores were available in Guitar Pro or Power Tab formats. Through the
use of an existing python library, named PyGuitarPro [4], these scores have been ma-
nipulated so as to isolate the solo guitar part, extract the guitar solo and export it in
a musicXML format [3]. Such a process was mostly automatic (partially supervised in
some circumstances). MusicXML is a standard open format for archiving, sharing and
exchanging digital sheet music between applications. As the name suggests, it describes
digital score sheet music as XML documents that can be easily managed by means of
a XML parser. It allows describing complex score sheets composed of multiple instru-
ments. Thus, through the implementation of a parser, it was possible extracting notes
composing the solos of interest, and creating network nodes based on the notes’ pitch,
octave and duration.

Solos were isolated from the rest of the track, when usually the guitar plays a rhythmic
(and thus repetitive) role. The idea was to extrapolate the melodic line played by the
guitar from the rest of the song. In certain cases, the track was completely instrumental.
Thus, in this case the melodic line was entirely played by the performer. In other cases,

13



the performer was continuously playing melodic lines during the song, in alternation
with the main melodic line (i.e. voice). In both these cases, a supervised process was
performed in order to isolate the “solo” parts.

We consider aggregate measures involving the whole solos, that have different dura-
tions. The different durations of solos have an impact on some of the considered quanti-
tative measures (e.g. amount of played notes and number of nodes in the networks). This
allows obtaining a general view of the solo, that considers its duration as a main feature.
An alternative option might have been normalizing these values by dividing them over
the duration of the solo. But in this case, two options would have been available for the
duration, i.e. a relative measure as the number of bars (segments of time used to provide
regular reference points within a piece of music), or a fixed measure such as the number
of seconds.

5.2. Software for the analysis

The software to perform the analysis was built by using Java, Octave and Python lan-
guages. An in-house software was developed in Java to handle the musicXML documents.
The open-source software JUNG (Java Universal Network/Graph) Framework has been
utilized to manipulate networks and extract the metrics of interest [31]. The Apache
Commons Mathematics Library was exploited to perform the mathematics and statistics
analysis [2], together with libraries and functions provided by the Octave language.

5.3. Selection of artists

The selection of artists was based on three criteria, i.e. the ”importance“ of the
performer, the amount of songs available in the Web for that performer, the diversity
(from a musical point of view) from other performers. The idea was to consider a wide
range of different musical styles, to see if there are any differences in the corresponding
obtained networks.

We thus chose those musicians that, according to the general music criticism, have a
unique playing style. Briefly, the artists are:

• Eric Clapton, a rock-blues guitar legend (the slogan “Clapton is God” testifies
this);

• David Gilmour, singer and guitarist of the famous Pink Floyd rock group, known
for his melodic and intense guitar solos;

• Jimi Hendrix, which is considered the most important electric guitar player of all
times;

• Allan Holdsworth, a fusion artist noted for his advanced style and his intricate
solos;

• B.B. King, a blues master quite often referred as “The King of the Blues” that
inspired several generations of artists;

• Pat Metheny, probably the most famous contemporary jazz guitar player;

• Steve Vai, a well known guitar virtuoso, famous for his “unique” approach to the
instrument;

14



• Eddie Van Halen, which is considered one of the most influential hard-rock gui-
tarists of the 20th century.

6. Results

This section reports some aggregate measures for the considered performers. Each
figure refers to a given metrics; in the figures, each column corresponds to a performer.
For each performer, results for his considered tracks are reported as dots in the column,
together with the mean value and standard deviation. Moreover, tables are reported
showing results of statistical hypothesis t-tests, so as to assess if the there are statistically
significant differences among different performers.

6.1. General Metrics: length of solos, number of nodes

Figure 3 shows the length of solos for different tracks of the considered musicians.
As mentioned, this metrics is strongly related to the music genre, with jazz solos being
usually longer than modern pop-rock ones.
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Figure 3: Length of solos

Differences among these results can be appreciated by looking at Table 2, that shows
the results of a statistical t-test made between the sets of length of solos, for each pair of
considered musicians. A symmetric matrix is obtained, that is shown in the table (only
the lower triangular part is reported). In particular, each value related to each pair of
musicians is the smallest significance level at which one can reject the null hypothesis that
the two means are equal, in favor of the two-sided alternative that they are different.
Simply put, values in bold are those showing a significant difference among the two
related musicians (p = 0.05).
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Table 2: Length of solos – the number is the smallest significance level at which one
can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.0 0.45
EVH 0.0 0.59 0.75
EC 0.04 0.05 0.17 0.09
JH 0.33 0.06 0.12 0.09 0.5
PM 0.49 0.0 0.0 0.0 0.09 0.6
SV 0.69 0.01 0.02 0.01 0.14 0.56 0.86

It is confirmed that jazz and fusion musicians that usually play instrumental songs
(i.e., Holdsworth, Metheny, Vai) do perform longer solos. Thus, there is a significant
difference between these musicians and rock/blues ones. As concerns Jimi Hendrix, it
shows common features with all other guitar players; hence it is not possible to reject the
hypothesis that it is different to others (or better, that others share some characteristics
of his style).
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Figure 4: Number of Nodes

The metrics above can be analyzed together with the number of nodes, reported in
Figure 4, that measures the number of different notes played during a solo. Table 3
reports the results of the related statistical hypothesis t-test. Those performers that
have longer solos have, in general, higher amounts of nodes in their networks. Based on
this database, results from the figure suggest that Hendrix, Holdsworth and Vai have a
richer vocabulary with respect to others. Moreover, they capture perfectly the style of
B.B. King, noted for his simpler (yet “touching”) solos. In fact, his solos have a lower

16



Table 3: Number of nodes – the number is the smallest significance level at which one
can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.0 0.01
EVH 0.0 0.0 0.84
EC 0.0 0.01 0.83 0.96
JH 0.63 0.01 0.12 0.12 0.14
PM 0.09 0.0 0.07 0.07 0.1 0.6
SV 0.35 0.0 0.0 0.0 0.0 0.29 0.05

average amount of nodes (and lower lengths), with respect to others.
By looking at Table 3, B.B. King is significantly different from others, Vai and

Holdsworth differ from rock/blues musicians, while Hendrix and Metheny have a simi-
larity with other musicians (excepting B.B.King).

6.2. Degree distributions

Figure 5 reports the average degrees of solos of the considered performers. Since we
are observing averages of collected values, results for in-degrees are equal to those for
out-degrees (each link leaves a vertex and enters another one; hence, counting the number
of outgoing links and the number of incoming links produce the same result). Thus, we
do not show out-degrees in the figure. Tables 4, 5, 6 show the results of the statistical
hypothesis t-tests for degrees, in-degrees and normalized degrees, respectively. Tests for
degrees and in-degrees provide quite similar results.

By looking at non-normalized degrees and in-degrees, Holdsworth and Metheny show
higher average degrees; this is due probably to the fact that these two performers have
high solo lengths. Their similarity (and statistical difference to others) is confirmed by
the t-tests in Tables 4, 5. Conversely, if we look at normalized degrees, shown in the
related chart in Figure 5 and Table 6, we can say that these two performers (as well
as Hendrix and Van Halen) have lower average degrees, testifying their inclination to
create various and complex solos. Results confirm that B.B. King was used playing and
repeating specific combinations of notes. In fact, his normalized degree is higher than
others and the t-test shows a significant difference with other musicians.

Table 4: Degree – the number is the smallest significance level at which one can reject
the null hypothesis that the two means are equal in favor of the two-sided alternative
that they are different. In particular, values in bold are those where there is a significant
difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.01
DG 0.0 0.1
EVH 0.0 0.0 0.1
EC 0.01 0.97 0.06 0.0
JH 0.0 0.18 0.7 0.05 0.13
PM 0.56 0.01 0.0 0.0 0.01 0.0
SV 0.0 0.41 0.37 0.02 0.37 0.59 0.0
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Table 5: In-Degree – the number is the smallest significance level at which one can reject
the null hypothesis that the two means are equal in favor of the two-sided alternative
that they are different. In particular, values in bold are those where there is a significant
difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.02
DG 0.0 0.1
EVH 0.0 0.0 0.15
EC 0.01 0.98 0.06 0.0
JH 0.0 0.22 0.64 0.05 0.15
PM 0.49 0.01 0.0 0.0 0.01 0.0
SV 0.0 0.42 0.38 0.02 0.35 0.67 0.0

Table 6: Normalized degree – the number is the smallest significance level at which one
can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.09 0.0
EVH 0.72 0.0 0.03
EC 0.01 0.01 0.23 0.01
JH 0.7 0.0 0.09 0.88 0.01
PM 0.08 0.02 0.39 0.06 0.95 0.06
SV 0.0 0.0 0.0 0.0 0.0 0.05 0.0

As concerns weighted degrees, these are shown in Figure 6, Tables 7 and 8. These
measures confirm the outcome for normalized degrees.

Table 7: Weighted degree – the number is the smallest significance level at which one
can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.0 0.03
EVH 0.0 0.0 0.29
EC 0.0 0.02 0.74 0.46
JH 0.07 0.0 0.11 0.37 0.18
PM 0.23 0.0 0.11 0.31 0.16 0.8
SV 0.99 0.0 0.0 0.0 0.0 0.09 0.25

Figures 7–9 show the degree distributions (and the corresponding cumulative distri-
butions) of solos performed by each considered musician. These charts suggest that there
are no huge discrepancies among performers in the distribution shape, even if average
values are in some case significantly different.

6.3. Distances

Figure 10 shows the average distances obtained for the considered performers. Out-
comes confirm the claims reported for the degrees. In general, classic blues performers
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Table 8: Weighted in-degree – the number is the smallest significance level at which one
can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.0 0.03
EVH 0.0 0.0 0.29
EC 0.0 0.02 0.74 0.46
JH 0.07 0.0 0.11 0.37 0.18
PM 0.23 0.0 0.11 0.31 0.16 0.8
SV 0.99 0.0 0.0 0.0 0.0 0.09 0.25

Table 9: Distance (undirected network) – the number is the smallest significance level
at which one can reject the null hypothesis that the two means are equal in favor of the
two-sided alternative that they are different. In particular, values in bold are those where
there is a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.0
DG 0.54 0.0
EVH 0.0 0.0 0.0
EC 0.14 0.0 0.1 0.0
JH 0.04 0.0 0.2 0.02 0.0
PM 0.05 0.01 0.04 0.0 0.45 0.0
SV 0.0 0.0 0.03 0.23 0.0 0.27 0.0

(B.B. King) have simpler and smaller networks, thus resulting in lower distances with
respect to rock virtuoso performers (Eddie Van Halen, Steve Vai), meaning that the
latter ones create more complex network structures. Results of t-tests, shown in Table
9, confirm this claim. Indeed, this outcome is in complete accordance with the common
opinions of music experts [35, 16, 38, 43].

6.4. Clustering coefficient

Table 10: Clustering coefficient – the number is the smallest significance level at which
one can reject the null hypothesis that the two means are equal in favor of the two-sided
alternative that they are different. In particular, values in bold are those where there is
a significant difference (p = 0.05). Acronyms are used instead of full names.

AH BBK DG EVH EC JH PM
BBK 0.18
DG 0.15 0.03
EVH 0.82 0.14 0.21
EC 0.29 0.53 0.02 0.2
JH 0.63 0.1 0.27 0.81 0.11
PM 0.18 0.61 0.01 0.11 0.82 0.05
SV 0.01 0.01 0.56 0.02 0.0 0.03 0.0

Figure 11 shows the measured clustering coefficient for the considered performers.
In this case, there are no big differences among groups of performers (in terms of mu-
sical genres); David Gilmour has a lower average clustering coefficient, but with a high
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standard deviation. Steve Vai has a lower clustering coefficient, with smaller deviation.
Indeed, the difference between Steve Vai and others is confirmed in Table 10 showing
the results of t-tests for this metrics. This might indicate (from the considered solos) a
higher inclination to create melodic (even if quite elaborate) solos. It is also worth citing
that the obtained results for the clustering coefficient are in line with results reported in
[24], where an average clustering coefficient around 0.3 was measured for the aggregate
networks embodying different music pieces by the same composer.

6.5. Is there any small world property?

Table 11: Small world property: comparison between the clustering coefficient (column
“cc”) and the average distance (column “avg dist”) of the considered network, and the
clustering coefficient (column “cc (RG)”) and the average distance (column “avg dist
(RG)”) of the corresponding random graph.

song cc cc (RG) avg dist avg dist (RG)

B.B. King – Rock me baby 0.41 0.11 2.17 3.26
D. Gilmour (Pink Floyd) – Comfortably numb (1st solo) 0.06 0.03 4.30 4.03
E. Clapton (Cream) – Crossroads (2nd solo) 0.40 0.04 3.68 4.29
J. Hendrix – Red House 0.24 0.02 3.37 5.00

Table 11 assesses if some particular networks (solos) exhibit a small-world phe-
nomenon, by comparing the clustering coefficient and average distance of these networks
with those of a random graph of the same size. The considered networks (solos) are those
shown in Figure 2. For each solo, column “cc” of the table reports the clustering coef-
ficient measured for the corresponding network; column “cc (RG)” shows the clustering
coefficient for a random graph of the same size; column “avg dist” provides the average
distance among nodes in the networks (i.e. the average shortest path); finally, column
“avg dist (RG)” reports the average distance for a random graph of the same size.

It is possible to observe that two solos can be classified as small worlds, namely
“Crossroads” by E. Clapton and “Red House” by J. Hendrix. In fact, these two solos
have a clustering coefficient significantly higher than their corresponding random graphs,
and the average distances are lower but comparable to those obtained for random graphs.
As to “Rock me baby”, by B.B. King, its clustering coefficient is lower than that of its
corresponding random graph (and its average distance is lower as well), but this difference
is not evident as for the other two solos mentioned above. Finally, a small world property
is not evident for “Comfortably numb (1st solo)” by D. Gilmour (Pink Floyd). Indeed,
this solo is a (touching) linear melody, without an intricate structure, and this is evident
by the pictorial representation of the network reported in Figure 2b.

Further tests have been accomplished for other solos. Results demonstrate that there
are different outcomes (i.e., some solos are small worlds, other do not), depending on the
solo, as with the four solos considered above.

6.6. Centrality measures: betweenness

Figures 12–14 show, for each considered performer, the distribution of the between-
ness centrality measure for the considered solos (left-side charts) and the cumulative
distribution (right-side charts). In the charts, values on the x-axis are the betweenness
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values, and the values on the y-axis is the distribution (or cumulative distribution). The
distribution allows understanding if there is a non-negligible presence of nodes with a be-
tweenness higher than others, i.e., if the performer is used to build his licks by exploiting
some main, preferred notes.

Charts show important differences among performers. In fact, it appears that, mainly,
jazz/fusion performers (Holdsworth, Metheny) have nodes with low betweenness; curves
in the distribution decrease quite rapidly, and the curves in the cumulative distribution
reach the 1 value quite rapidly. Other rock-blues performers have higher portions of
nodes with higher betweenness. In particular, a higher variability is evident for the
betweenness distributions of different solos of the same (rock-blues) artist, while such a
variability is limited for the mentioned jazz/fusion performers.

We also measured the weighted betweenness centrality, a measure which is similar
to the betweenness centrality, but in the formula reported in Section 4.7 the summation
considers weighted links to measure the shortest paths. In this case, the differences
among performers is (slightly) more evident, but in essence results are comparable to
those for the betweenness. For this reason and for the sake of brevity, we do not report
these charts.

6.7. Centrality measures: eigenvector centrality

Figure 15 shows the distributions (left-side charts) and the cumulative distributions
(right-side charts) of the eigenvector centrality for solos of the first three performers
(in alphabetical order). In this case, we show only the first three ones in order to
limit the total amount of figures, since no important differences are evident from the
distributions. Rock-blues musicians appear to have slightly higher portions of nodes
with low eigenvector centralities. However, the trend is almost similar for all musicians.
These results suggest that there are notes more present than others in commonly played
licks, and this is a common practice for all the considered performers.

6.8. Analysis of concatenated solos

This subsection presents results related to networks obtained by concatenating dif-
ferent solos of the same artist, following the approach employed in [24]. The idea is that
musical solos can result in networks smaller than typical ones employed in complex net-
work theory. Through concatenation, we obtain one track (and one network) per artist
composed of a number of notes higher than 20K. In general, some of the features and
metrics related to the concatenated network are different to those of single solos.

The rationale here is to obtain results that can be compared with those presented
in [24]. In fact, they found out that these concatenated networks exhibit a scale-free
structure, small-world phenomenon, mean shortest distances around 3 and clustering
coefficients around 0.3.

Table 12 assesses if the concatenated network obtained for each artist is a small-world,
by comparing the clustering coefficient and average distance of these networks with those
of random graphs of the same size. We previously observed that when considering single
solos, a small world phenomenon was not always present. As concerns concatenated
networks, it is evident that all networks are small-worlds. This is in accordance with
results in [24].

In any case, if we compare the clustering coefficient of the concatenated network
with the average clustering coefficient of separate solos of the same artist, we notice that

23



Table 12: Small world property of concatenated solos: comparison between the clustering
coefficient (column “cc”) and the average distance (column “avg dist”) of the considered
network, and the clustering coefficient (column “cc (RG)”) and the average distance
(column “avg dist (RG)”) of the corresponding random graph.

artist cc cc (RG) avg dist avg dist (RG)

Allan Holdsworth 0.41 0.03 2.97 5.77
BB King 0.44 0.03 2.54 5.24
David Gilmour 0.38 0.02 3.01 6.03
Eddie Van Halen 0.33 0.01 3.44 6.05
Eric Clapton 0.44 0.01 3.05 6.06
Jimi Hendrix 0.32 0.01 4.04 6.39
Pat Metheny 0.38 0.03 2.91 5.51
Steve Vai 0.30 0.01 3.35 6.30

Table 13: Clustering coefficient of concatenated solos vs average clustering coefficient
of separate solos. Artists sorted by increasing values of the clustering coefficient of the
concatenated network.

artist cc concatenated net average cc

Steve Vai 0.30 0.24
Jimi Hendrix 0.32 0.29
Eddie Van Halen 0.33 0.29
David Gilmour 0.38 0.25
Pat Metheny 0.38 0.33
Allan Holdsworth 0.41 0.30
BB King 0.44 0.35
Eric Clapton 0.44 0.33

the former value is always higher that the latter. Results are shown in Table 13. It is
thus unclear whether this measure for concatenated solos can represent a general value
characterizing the artist.

Table 14: Average degree of concatenated solos vs average degree of separate solos.
Artists sorted by increasing values of the average degree of the concatenated network.

artist average degree concatenated net average degree

Jimi Hendrix 8.98 4.91
Eddie Van Halen 10.85 4.13
BB King 11.75 5.59
Eric Clapton 12.34 5.57
Steve Vai 12.47 5.16
David Gilmour 12.88 4.74
Pat Metheny 15.87 7.46
Allan Holdsworth 18.34 7.08

The difference between the concatenated network and the separate networks is more
evident if we consider the degree. Table 14 compares the average degree of the con-
catenated network with the average of all the average degrees measured for separate
networks. It is possible to notice a high gap between these measures, in all cases.

Table 15 compares the average distance of the concatenated network and the average
of the average distances of separate networks of all artists. In this case there are slight
differences. It is interesting to observe that the average distance of the concatenated
networks is in general around 3, as in [24].
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Table 15: Average distance of concatenated solos vs average distance of separate solos.
Artists sorted by increasing values of the average distance of the concatenated network.

artist avg dist concatenated net avg dist

BB King 2.54 2.49
Pat Metheny 2.91 2.93
Allan Holdsworth 2.97 3.27
David Gilmour 3.01 3.40
Eric Clapton 3.05 3.05
Steve Vai 3.35 4.03
Eddie Van Halen 3.44 4.42
Jimi Hendrix 4.04 3.72

Based on these results, it is possible to conclude that the concatenation of different
solos of an artist is a simple strategy to collect all the licks played in his works. It might be
exploited as a means to capture his whole “musical vocabulary”, to be employed during
a music generation process [24]. Thus, it might be manipulated in order to automatically
extract common patterns and licks played by the artist in his works; indeed, the (non-
automatic) “manual” version of such a technique is broadly employed in modern music
didactics.

On the other hand, the focus on single tracks and solos is probably more accurate,
in general. Indeed, melodic lines have their own “meaning” and intention. Melodies are
influenced by the underlying harmonic structure, the tempo and the general mood of the
specific track. Thus, what the performer plays is strictly dependent on the track; this
results in a melody that has properties which can be different to those for other tracks.
Results obtained on the assessment on single tracks confirm this claim. Conversely, the
concatenation of musical tracks changes the value of certain (average) metrics, since it
aggregates several melodies into a single one.

Finally, while the presented assessment focused on the peculiar characteristics of
artists, one might decide to study other aspects of a set of solos, such as their similarity.
Another example is the study of differences among songs or music genres; e.g., melodic
songs “inspire” artists to create melodies with certain features, while blues melodies have
other features. In this case, it is clear that the networks obtained from the tracks are
the elements to inspect.

To sum up, depending on the analysis, one should identify the most proper musical
element (e.g., entire track, isolated solo, concatenation of solos, etc.) to be treated as a
network, so as to optimize the analysis.

7. Conclusions

We presented an approach to model melodies (and music pieces in general) as net-
works. To this aim, several methods can be exploited; in this work, a network is created
based on a melody/solo, by representing notes as network nodes, and links are added
between two nodes if the related notes are played in succession.

A database of different solos played by eight important guitar players has been an-
alyzed through this approach. Some main metrics, typical of complex network theory,
have been computed and analyzed, i.e. length of the solo, number of nodes, degree distri-
bution, distance, clustering coefficient, betweenness and eigenvector centrality measures.
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Outcomes are in complete accordance with the common opinions of music experts. In-
deed, there are works where aspects on improvisation and musical styles are considered
[35, 16, 38, 43]. While in agreement to the discussion in this work, there are no quantita-
tive measures that can be compared with our results. A contribution of this work is that
of considering some mathematical metrics that can be employed during the classification
of a musician. Summing up, jazz guitar players and rock “virtuoso” players do create
solos corresponding to more complex structures. Conversely, those solos that are usually
considered as “melodic” have a simpler structure. Blues performers such as B.B. King
are different from other musicians (as demonstrated via statistical tests). This testifies
the correctness of the presented approach.

We argue that the use of a mathematical modeling of a solo (or a music track in
general) provides a general and compact way to analyze music. We noticed interesting
differences among performers in the degree distributions, distance measures, clustering
coefficient and betweenness. Moreover, we assessed that some networks/solos are small
worlds, while others, usually melodic ones, do not. This suggests that further studies
might be done to classify solos, regardless of the performers that played them.

The provided insights stimulate new questions on the possibility to fully characterize
and capture the artistic traits and skills of a musician, through mathematical concepts.
The application scenarios of this study are related to the possible development of in-
novative applications related to music classification and categorization. Moreover, the
proposed framework can be exploited as a tool during the automatic generation of music.
If we are able to harness the main characteristics of a musician, it would be possible to
combine this approach to some artificial intelligence machinery and generate, for exam-
ple, a solo “à la” Miles Davis. As an example, these results suggest that a “bluesy” solo
should have a high clustering coefficient and low distance; a “modern rock” solo should
have high distance and an average degree lower than other genres, while a “melodic”
solo should have a simple network structure. This might have interesting applications in
music didactics, multimedia entertainment, and digital music generation.

Another interesting further work is related to the clustering of musical solos, so that
to group them, provide support for speculative analysis and capture the typical charac-
teristics of a given “type of solo”, regardless of the particular musician that might have
played it.
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Figure 7: Degree Distribution – part 1. Each row corresponds to a given artist; the left
side chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 8: Degree Distribution – part 2. Each row corresponds to a given artist; the left
side chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 9: Degree Distribution – part 3. Each row corresponds to a given artist; the left
side chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 12: Betweenness – part 1. Each row corresponds to a given artist; the left side
chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 13: Betweenness – part 2. Each row corresponds to a given artist; the left side
chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 14: Betweenness – part 3. Each row corresponds to a given artist; the left side
chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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Figure 15: Eigenvector Centrality. Each row corresponds to a given artist; the left side
chart shows the degree distribution, while the right side chart shows the cumulative
distribution. Points refer to values obtained for each of the tracks, while lines are the
related Bézier interpolations.
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