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Inhomogeneous Poisson Sampling of

Finite-Energy Signals with Uncertainties in R
d

Flavio Zabini, Member, IEEE, Andrea Conti, Senior Member, IEEE

Abstract—Spatiotemporal signal reconstruction from samples
randomly gathered in a multidimensional space with uncertainty
is a crucial problem for a variety of applications. Such a problem
generalizes the reconstruction of a deterministic signal and
that of a stationary random process in one dimension, which
was first addressed by Whittaker, Kotelnikov, and Shannon.
In this work we analyze multidimensional random sampling
with uncertainties jointly accounting for signal properties (signal
spectrum and spatial correlation) and for sampling properties
(inhomogeneous sample spatial distribution, sample availability,
and non-ideal knowledge of sample positions). The reconstructed
signal spectrum and the signal reconstruction accuracy are
derived as a function of signal and sampling properties. It is
shown that some of these properties expand the signal spectrum
while others modify the spectrum without expansion. The signal
reconstruction accuracy is first determined in a general case and
then specialized for cases of practical interests. The optimal inter-
polator function is derived and asymptotic results are obtained
to show the impact of sampling non-idealities. The analysis is
corroborated by verifying that previously known results can be
obtained as special cases of the general one and by means of a
case study accounting for various settings of signal and sample
properties.

Index Terms—Multidimensional random sampling, signal re-
construction, inhomogeneous Poisson point process, crowdsourc-
ing, sampling uncertainty.

I. INTRODUCTION

MULTIDIMENSIONAL RECONSTRUCTION of sig-

nals is a key enabler for emerging applications in

various sectors including array signal processing, magnetic

resonance imaging, seismology, digital communication and

control, software defined radio and networks, vehicular net-

works, and environmental monitoring [1]–[12]. Big data [13]–

[15] and crowdsourcing [16]–[19] applications can be as-

sociated with multidimensional random sampling (e.g., to

reconstruct spatial distribution of data).

Classical problems in one dimension are the reconstruction

of a deterministic signal and that of a stationary random

process from a finite or an infinite number of its samples

[20]. On the one hand, the uniform sampling theorem from
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Whittaker-Kotelnikov-Shannon [21]–[23] states that a signal

can be exactly reconstructed from its samples if the sampling

frequency is at least twice the signal bandwidth (Nyquist

rate). On the other hand, random sampling introduces non-

uniformities and uncertainties that challenges the signal recon-

struction. The most important result in deterministic irregular

sampling is the one by Landau [24], who found necessary

conditions on the samples density for exact reconstruction

of a finite-energy bandlimited signal. Such a result has been

generalized for multidimensional domain in [25]. The signal

spectrum reconstruction from samples randomly scattered in

time according to a stationary Poisson point process (PPP)1

was analyzed in [27], showing that the signal spectrum can be

reconstructed if the sampling process intensity is greater than

or equal to the Nyquist rate for uniform sampling. In such a

case, the spectrum of the reconstructed signal has an additional

white noise component due to sampling randomness.

Multidimensional random sampling has recently attracted

a vast interest due to various applications in sensor net-

works where a signal reconstruction entity collects samples

from sensors randomly scattered in an environment [28]–

[36]. Existing works focus on algorithms aiming to improve

the reconstruction accuracy in multidimensional domain, for

instance using quantized spatially correlated data and fusion-

center feedback [37], observation prediction [38], spatial best

linear unbiased estimation [39], or spatial Gaussian process

regression [40]. Other works extends Marvasti’s approach or

its main assumption (stationary PPP) to the multidimensional

domain (homogeneous PPP) [41]–[47]. The presence of signal

sources scattered according to a homogeneous PPP is also

common in recent works on wireless communication and

localization networks [48]–[52].

However, homogeneous point processes do not always

accurately describe the sample spatial distribution in many

cases of interest (e.g., sensors scattered accordingly to dif-

ferent densities in regions of a monitored area). Moreover, in

real scenarios there might be uncertainties due to imperfect

knowledge of sample location information. Such uncertainties

can be detrimental for signal reconstruction and call, together

with inhomogeneous sample spatial distribution, for a new

methodology to analyze multidimensional random sampling.

Lacaze solved the one-dimensional problem for cases in

which the sampling time is observed or unknown [53]. In

the former case, an extension of the Lagrange interpolation

formula [20] was given, while in the latter the signal estimator

was provided for Gaussian distributed jitter of regular sam-

1In the case of PPP, the term stationary is used for the time domain, while
homogeneous is widely adopted for multidimensional domain [26].
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pling time.2 The extension of the analysis to a d-dimensional

space when sample positions are randomly distributed accord-

ing to an inhomogeneous point process and are not perfectly

known is not straightforward. A sampling theorem for non-

stationary random process (non-stationarity is referred to the

signal to be reconstructed) has been presented by Gardner

in a two-dimensional domain [55], and then generalized by

Sharma and Mehta to the multidimensional case [56]. The

case of a non-stationary sampling process (non-stationarity is

here referred to the sampling process) is still an open problem.

Inhomogeneous distribution of wireless nodes according to

a modified Ginibre point process is considered in [57] for

communication among nodes with repulsive scattering in R2.

However this kind of distribution implicitly assumes a circular

symmetry that well fits cellular scenarios, but can be less

appropriate in other applications, such as those based on sensor

networks. We consider a general scenario where the sample

spatial distribution depends on external causes and is not tai-

lored to the sampled signal (e.g., applications to environmental

sensing [41] and network interference characterization [48]).

Therefore, emerging approaches such as compressed sensing

[58]–[60] can be unsuitable in such conditions. A frame-

work for the analysis of inhomogeneous multidimensional

random sampling without making any strong assumption on

the sampled signal (e.g., sparse representation) is missing in

the literature. In [61] a geometrical approach to reconstruct

a signal from arbitrary samples in time is proposed and

reconstruction error bounds are provided, but its application

to a multidimensional spatial domain is not straightforward.

This paper analyzes the reconstruction of a finite-energy

signal (e.g., the instantiation of a random process in a finite

space) from samples randomly gathered with uncertainties

in Rd according to an inhomogeneous Poisson sampling

process (PSP). The reconstructed signal spectrum and the

signal reconstruction accuracy are derived as a function of both

the signal properties (signal spectrum and spatial correlation)

and sampling properties (inhomogeneous spatial distribution,

sample availability, and non-ideal knowledge of sample posi-

tions). For the reconstructed signal spectrum, we determine the

properties that expand the spectrum and those that modify it

in-band (whose effects can thus be compensated by proper

filtering). For the signal reconstruction, we determine the

reconstruction accuracy for an omnicomprehensive case by

directly evaluating the unconditioned MSE in closed-form. In

addition, the optimal linear space-invariant (LSI) interpolator3

expression is determined and asymptotic MSE expressions (for

large sampling process intensity with respect to the signal

band cardinality) are derived. It will be shown that previously

known results can be obtained as corollaries of the proposed

theorems. A case study accounting for various signal and

sample properties also corroborates the analysis.

2The signal reconstruction accuracy, in terms of reconstruction mean-square
error (MSE), is typically obtained by first evaluating the MSE conditioned
on the samples position and then averaging over sample spatial distribution.
This typically results in cumbersome expressions for the signal reconstruction
MSE, as Lacaze also noticed for the one-dimensional case [54].

3In a multidimensional domain the term space-invariant takes the place of
the usual term time-invariant in the time-domain.

TABLE I
MAIN QUANTITIES AND OPERATORS USED THROUGHOUT THE PAPER

Quantity Significance

Π Poisson point process in Rd

A sampling space
NΠ(A) cardinality of Π ∩ A (counting measure)

x, ν spatial position and spatial frequency in Rd

z(x), Z(ν) signal to be reconstructed and its Fourier transf.
xn n-th sample position in Π

C
(d)
ℓ

hypercube in Rd centered at 0 with side 2ℓ

NΠ, Nr index set of samples in Π and in Π ∩ C
(d)
ℓ

Ez energy of z(x)
S(x), L(x) random sampling process w/o and with losses
µS(x), µL(x) expectation of S and L
RS(x, τ ), RL(x, τ ) autocorrelation function of S and L
US(ν), UL(ν) Fourier transf. of µS(x) and µL(x)
zS(x), zL(x) signal sampled according to S and L
Ez(ν) energy spectral density of z(x)
EzS (ν), EzL (ν) energy spectral density of zS(x) and zL(x)
λ(x), λ local and average intensity of Π

Rλ(τ ) autocorrelation function of λ(x)
Λ(ν) Fourier transf. of λ(x)
Wλ(ν) Fourier transf. of Rλ(τ )
q(x) probability of sample availability at x
qn probability of n-th sample availability
q average probability of sample availability

x̂n estimated position of the n-th sample
es(xn) position error for the n-th sample

σ2
es

sample position error variance

θ(x) interpolation function in Rd

Θ(ν) Fourier transf. of θ(x)
κθ interpolator parameter
B signal bandwidth per dimension
Bλ, Bq bandwidth per dimension of λ(x) and q(x)
Bs reconstructed signal bandwidth per dimension

B, Bθ signal and interpolator band in Rd

ιλ, ιBθ
oversampling for intensity and spatial band

εs normalized signal reconstruction MSE

(f ∗ g)(u) convolution of functions f and g at u
a · b scalar product of vectors a and b

φ̆ normalized quantity from φ
z† complex conjugate of z ∈ C

E {·} statistical expectation
δ(·) Dirac delta generalized function
1A(x) indicator function for x ∈ A
|·| Lebesgue measure of a subset in Rd

fe(·), Φe(·) PDF of RV e and its Fourier transf.

F {·} (·), Wt{·} (·) Fourier and t-Weierstrass transforms in Rd

Mσ,ϕ {·} ϕ-mean with parameter σ

The remainder of the paper is organized as in the following.

Sec. II presents the sampling process and the uncertainties

models. Sec. III describes the signal reconstruction and pro-

vides theorems and corollaries for both the reconstructed

signal spectrum and the reconstruction MSE. Sec. IV analyzes

the interpolation filtering. Sec. V shows results for a case

study. Final remarks are given in Sec. VI.

Notations: quantities and operators used throughout the

paper are reported in Tab. I.

II. MULTIDIMENSIONAL RANDOM SAMPLING MODEL

We now model the observed multidimensional signal and

describe the sampling process. A simple example is also

provided for clarification of each considered aspect.
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(b) Normalized ESD of the signal to be reconstructed

Fig. 1. Example of signal to be reconstructed and its normalized ESD in R2, respectively described by (2) and (3) with B0 = B1 = B = 10−4[m].

A. Multidimensional Signal

Consider a multidimensional signal w(x) ∈ C, instantiation

of the observed process w(x) at position x ∈ Rd, with

spatial frequency band Bw ⊂ Rd of cardinality |Bw|.4 Let

z(x) , w(x)1A (x) be the truncated version of w(x), in

A ⊆ Rd with Fourier transform (FT) Z(ν) , F {z(x)}(ν) =
∫

Rd z(x)e
−2πν·xdx and finite energy Ez . By defining the

spatial frequency band B of z(x) as the set of all ν for which

|Z(ν)| is significantly different than zero, |B| = |Bw|+O( 1
ld
)

where l , max{ℓ : C(d)
ℓ ⊆ A} [41]. The signal bandwidth-

per-dimension, in the spatial frequency domain, is B ,

min
{

ℓ : B ⊆ C(d)
ℓ

}

. The truncated signal z(x), instantiation

of the random process z(x) , w(x)1A (x), is reconstructed by

interpolating a numerable set of its samples. The ESD of z(x)
is Ez(ν) = F

{∫

Rd z(x)z
†(x− τ )dx

}

(ν) = |Z(ν)|2, while

that of z(x) is Ez(ν) = F
{∫

Rd E
{

z(x)z†(x− τ )
}

dx
}

(ν) =

E
{

|Z(ν)|2
}

with Z(ν) , F {z(x)}(ν).
Define the normalized spatial coordinate x̆ , 2Bx and

spatial frequency ν̆ , ν/(2B). The FT of a normalized signal

z̆(x̆) , 1√
Ez(2B)d/2

z
(

x̆

2B

)

(unitary bandwidth and energy) is

Z̆(ν̆) =
(2B)d/2√

Ez

Z (2Bν̆) (1)

and the normalized ESD of z(x) is Ĕz(ν̆) , (2B)d

Ez
Ez (2Bν̆).

From (1), Ĕz(ν̆) = Ez̆(ν̆) = |Z̆(ν̆)|2 and
∫

Rd Ĕz(ν̆)dν̆ = 1.

Example: Consider the reconstruction of process instantia-

tion (see Fig. 1(a)) expressed by [46]5

z(x) =
√

Ez

d−1
∏

i=0

(2Bi)
1
2 sinc(2Bixi) (2)

for which (see Fig. 1(b))

Ĕz(ν̆) =
d−1
∏

i=0

1

2bi
rect

( ν̆i
2bi

)

(3)

4The maximal bandwidth-per-dimension is Bw , min{ℓ : Bw ⊆ C
(d)
ℓ

},

where C
(d)
ℓ

, {ν :
∏d−1

i=0 rect
( νi
2ℓ

)

> 0} and rect(x) , 1 for |x| ≤ 1/2
and 0 otherwise.

5The sinc(x) , sin(πx)/(πx) for x 6= 0 and to 1 for x = 0.

where bi , Bi/(2B) is the normalized bandwidth-per-

dimension.

B. Inhomogeneous Sampling Process

Consider a sampling process in which samples are gath-

ered at independent random positions in Rd according to

an inhomogeneous PPP Π with intensity λ(x) at x ∈
Rd [62]. The sampling intensity λ(x) is defined so that

E {NΠ(A)} =
∫

A λ(x)dx for any A ⊆ R
d [26], where

NΠ(A) is the number of points in A (counting measure).

The average sampling intensity in Rd can be written as

λ = limℓ→∞ E

{

NΠ(C(d)
ℓ )

}

/|C(d)
ℓ |.6 The random sampling

process is7

S(x) ,
∑

n∈NΠ

δ(x − xn) (4)

where NΠ denotes the index set of Π. The random sampling

process has mean µS(x) = E
{
∑

n∈NΠ
δ(x − xn)

}

, with d-

dimensional FT US(ν) = E
{
∑

n∈NΠ
e−2πν·xn

}

, and auto-

correlation RS(x, τ ) , E {S(x)S(x − τ )}.

Example: Consider samples randomly distributed according

to an inhomogeneous PSP with intensity λ(x) given by (see

Fig. 2)

λ(x) = λ

d−1
∏

i=0

[1 + ai sin(2πBλixi)] (5)

where ai ∈ [0, 1] is the inhomogeneity amplitude parameter

while bλi , Bλi/(2B) is the inhomogeneity frequency pa-

rameter.

C. Sample Loss Model

Consider a set of independent, identically distributed (IID)

binomial random variables (RVs) an for n ∈ NΠ. Each an
takes value 1 or 0 when the corresponding n-th sample at xn is

available or unavailable for signal reconstruction, respectively,

6The homogeneous case can be seen as a particular case of the inhomoge-
neous case with λ(x) = λ, ∀x ∈ Rd .

7The notation based on Dirac delta generalized functions will simplify the
analysis of signal reconstruction via interpolation filtering.
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Fig. 2. Example of inhomogeneous PSP intensity in R2 (d = 2) described
by (5) with λ = 10−3[m−2], ai = 0.1, and Bλi = 10−4[m−1].

with probabilities qn = q(xn) = P {an = 1} = E {an}
and pn = 1 − qn. The q(x) has FT Q(ν) and the an’s

are independent of Π.8 The average sample availability is

q = limℓ→∞ E{ 1

NΠ(C(d)
ℓ )

∑

n∈Nℓ
qn} where Nℓ denotes the

index set of Π ∩ C(d)
ℓ .

The random sampling process with losses, together with

its mean and its autocorrelation function, can respectively be

written as

L(x) ,
∑

n∈NΠ

anδ(x − xn) (6)

with µL(x) , E {L(x)} = q(x)µS(x) and RL(x, τ ) ,

E {L(x)L(x − τ )}. The d-dimensional FT of µL(x) is

UL(ν) = (Q ∗ US)(ν) . (7)

D. Sample Position Uncertainties Model

Consider a multidimensional random sampling process with

uncertainties in sample positions. In particular, the n-th sample

position xn is imperfectly known as x̂n, with a corresponding

sample position error esn , x̂n − xn [46]. The estimated

position errors esn are zero-mean IID RVs, and independent

of an and xn.9 The characteristic function (CF) of esn is

Ψes
(ν) , E {eν·es} and Φes

(ν) , F {fes
(es)}(ν) =

Ψes
(−2πν).10

The signal sampled with uncertainties (losses and sample

position errors) is an instantiation of the process zu(x) having

FT Zu(ν) given by

zu(x) ,
∑

n∈NΠ

anz(xn)δ(x − x̂n) (8a)

Zu(ν) =
∑

n∈NΠ

anz(xn)e
−2πν·x̂n . (8b)

8For example, consider a network of sensors with different energy consump-
tions leading to different abilities to transmit information to the interpolation
entity (the charge of a sensor is independent of that of other sensors).

9The probability distribution function (PDF) of the sample position error
depends on the technology used to determine the position of the n-th sample
in Rd [63].

10The index n is avoided for notational simplicity since the sample position
errors are IID.

E. Interpolation Filtering

The reconstruction of z(x) from its samples via LSI filtering

is

ẑ(x) = (zu ∗ θ)(x) =
∑

n∈NΠ

anz(xn) θ(x− x̂n) (9)

where θ(x) ∈ R is the interpolation filtering function with

d-dimensional FT Θ(ν).11 The d-dimensional band Bθ of the

interpolator has cardinality12

|Bθ| ,
∫

Rd |Θ(ν)|2dν
|Θ(0)|2 . (10)

Recall that for regular sampling at Nyquist rate-per-dimension

2B the ideal low-pass (ILP) interpolation filtering is com-

monly employed, i.e., Θ(ν) = 1
(2B)d

1B (ν) thus |Bθ| =

|B| = (2B)d.13 For random sampling in Rd, two oversampling

factors are considered

ιλ ,
λ

(2B)d
(11a)

ιBθ
,

|Bθ|
(2B)d

(11b)

respectively on the sampling intensity and for the interpolator

band.

III. MULTIDIMENSIONAL SIGNAL RECONSTRUCTION

Theorems for the reconstructed signal spectrum and the

signal reconstruction MSE with multidimensional random

sampling are provided in the following.

A. Reconstructed Signal Spectrum

The power spectral density (PSD) of a one-dimensional

signal reconstructed via random sampling was first studied

by Shapiro and Silverman who provided sufficient conditions

for alias-free sampling [64]. Then, Beutler and Masry derived

expressions for PSD reconstruction through random sampling

[65]–[70]. The same kind of problem was also addressed by

Parzen in the case of a randomness due sample losses [71]. The

aforementioned results are available for stationary point pro-

cesses in one dimension. We extend them for inhomogeneous

(non-stationary) multidimensional random sampling, starting

from the next two lemmas.

Lemma 1: Consider a finite-energy signal y : Rd → C

sampled with losses according to

yL(x) , y(x) L(x) (12)

and define the functional

ΥL[y] ,
∫

Rd

|y(x)|2µL(x)dx . (13)

11Hereafter, we will refer to Θ(ν) as interpolator function.
12In one dimension, this cardinality corresponds to twice the effective

bandwidth of the interpolator.
13It corresponds to θ(x) = sinc(2Bx) in one-dimension (x ∈ R).
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The ESD of yL(x) is found to be14

EyL(ν) = E

{

∑

n∈NΠ

∑

k∈NΠ

anaky(xn)y
†(xk)e

−2πν·(xn−xk)
}

(14)

and

ΥL[y] = E

{

∑

n∈NΠ

qn|y(xn)|2
}

. (15)

Proof: See Appendix A.

Lemma 2: Consider a finite-energy signal y : Rd → C

sampled without losses according to

yS(x) , y(x) S(x) (16)

and define the functional

ΥS [y] ,
∫

Rd

|y(x)|2µS(x)dx . (17)

It results

US(ν) = Λ(ν) (18a)

EyS (ν) = |(Λ ∗ Y )(ν)|2 +ΥS [y] (18b)

where Λ(ν) , F {λ(x)}(ν), Y (ν) , F {y(x)}(ν), and

ΥS [y] = E

{

∑

n∈NΠ

y(xn)|2
}

. (19)

Proof: See Appendix B.

To determine the ESD of the reconstructed signal, the

previous lemmas are applied to the signal z(x).
Lemma 3: The ESD of a signal sampled with losses is found

to be

EzL(ν) = Ezqs
(ν)−ΥS [zq] + ΥL[z] (20)

where Ezqs
(ν) is the ESD of zqs(x) , zq(x)S(x) and zq(x) ,

q(x)z(x).
Proof: See Appendix C.

Lemma 4: The mean of the FT and the mean of the ESD

for the process zu(x) are respectively given by

Uzu
(ν) , E

{

Zu(ν)
}

= Φes
(ν) (UL ∗ Z) (ν) (21a)

Ezu
(ν) , E

{

|Zu(ν)|2
}

= |Φes
(ν)|2EzL(ν) + ΥL[z]

[

1− |Φes
(ν)|2

]

. (21b)

Proof: See Appendix D.

The ESD of the reconstructed signal is now derived.

Theorem 1 (ESD of the reconstructed signal): The ESD

of the signal ẑ(x) reconstructed with general interpolation

function Θ(ν) is found to be

Eẑ(ν) = |Θ(ν)|2|Φes
(ν)|2|(Λ∗Q∗Z)(ν)|2+ |Θ(ν)|2αλ q Ez

(22)

where

α ,

∫

Rd λ(x)q(x)|z(x)|2dx
λ q Ez

. (23)

Proof: Apply Lemmas 1–4 as shown in Appendix E.

Remark 1: The first term in (22) represents the spectrum of

the original signal modified by the effects of random sampling

14The sampled signal yL(x) becomes yS(x) when an = 1 ∀n ∈ NΠ

(i.e., L ≡ S) with corresponding ESD EyS (ν).

and sample position errors in addition to those of interpolation

filtering, while the second term represents an additive noise.

Remark 2: Consider a sampling intensity λ(x) and a

sample availability q(x) both band-limited with maximum

spatial bandwidth-per-dimension Bλ and Bq, respectively.15

Therefore, (Λ ∗ Q ∗ Z)(ν) can be considered extinguished

outside CBs
where Bs , B + Bλ + Bq. From Theorem 1,

the interpolator band in Rd has to contain all the spectral

components of (Λ∗Q∗Z)(ν) to reconstruct the original signal

z(x). Thus, the Bλ and Bq respectively represent the increase

per dimension of the Nyquist sampling rate respectively due to

the inhomogeneous sampling intensity and the inhomogeneous

sample availability.

Remark 3: According to Theorem 1, while the effects of

sample position errors over the reconstructed signal ESD

can be compensated by a proper interpolator those of the

inhomogeneous sampling intensity causes a distortion, due to

the convolution (Λ∗Q∗Z)(ν), which cannot be compensated

by a realizable linear filtering (as it will be shown in Sec. IV).

Corollary 1 (Homogeneous PSP with general interpolator):

In case of homogeneous PSP with λ(x) = λ and homogeneous

sample availability with q(x) = q, the ESD of the recon-

structed signal ẑ(x) with general interpolation function Θ(ν)
results in

Eẑ(ν) = |Θ(ν)|2 q2 λ2|Φes
(ν)|2Ez(ν) + |Θ(ν)|2qλEz . (24)

Proof: For λ(x) = λ and q(x) = q, (23) leads to α = 1.

Thus, (22) reduces to (24) since Λ(ν) = λδ(ν) and Q(x) =
qδ(ν) .

Remark 4: In the absence of sample losses (q = 1) and of

sample position errors (Φes
(ν) = 1), Corollary 1 reduces to

the result of Marvasti [27] after ILP interpolation considering

the ESD instead of the PSD.

To highlight the effects of inhomogeneities (in sample distri-

bution and in sample loss), of signal bandwidth-per-dimension,

and of sample position errors, the following functions are

defined in terms of the normalized spatial frequency. The

normalized spatial frequency bands of the signal and of the

interpolator function are defined as B̆ , {ν̆ s.t. 2Bν̆ ∈ B}
and B̆θ , {ν̆ s.t. 2Bν̆ ∈ Bθ}, respectively. The normalized

Λ(ν) and Q(ν) are

Λ̆(ν̆) ,
(2B)d

λ
Λ(2Bν̆) (25a)

Q̆(ν̆) ,
(2B)d

q
Q(2Bν̆) . (25b)

The standard deviation of the position error normalized to

1/(2B), proportional to the signal spatial correlation per

dimension, and the normalized function Φ̆(ν̆) are16

σ̆es
, 2B σes

(26a)

Φ̆(σes
ν) , Φes

(ν) . (26b)

15The spectra of λ(x) and q(x) do not contain significant component
outside CBλ

and CBq , respectively.
16Observe that the Φ̆(ν) in (26b) is equal to the FT of the PDF for the

normalized sample position error es/σes .
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(a) Ideal homogeneous case
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(b) Homogeneous case with sample position errors (σ̆es = 0.2)
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(c) Inhomogeneous case (a0 = a1 = a = 0.1, bλ0 = bλ1 = bλ = 0.5)
without sample position errors
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(d) Inhomogeneous case (a0 = a1 = a = 0.1, bλ0 = bλ1 = bλ = 0.5)
with sample position errors (σ̆es = 0.2)

Fig. 3. Example of normalized reconstructed signal ESD in R2, corresponding to the case of Fig. 1, for p = 10−3, ιλ = 2.5× 104, and ιBθ
= 25.

From (26a) and (26b) it follows that Φ̆(σ̆es
ν̆) = Φes

(2Bν̆).
The interpolation function and the interpolator parameter are

respectively normalized as

Θ̆
(

ν

2B

)

,
Θ(ν)

Θ(0)
= κθ Θ(ν) (27a)

κ̆θ ,
κθ

(2B)d
. (27b)

The normalized ESD of the reconstructed signal is

Ĕẑ(ν̆) ,
(2B)d

Ez
Eẑ(2Bν̆) . (28)

Theorem 2 (Normalized ESD of the reconstructed signal):

The normalized ESD of the reconstructed signal ẑ(x) with

general normalized interpolation function Θ̆(ν̆) is found to be

Ĕẑ(ν̆) = q ιλ
|Θ̆(ν̆)|2
κ̆2θ

[

q ιλ|Φ̆(σ̆es
ν̆)|2|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|2 + α

]

.

(29)

Proof: See appendix F.

Remark 5: Theorem 2 shows that random sampling and

sample position errors affects the signal-to-sampling noise

ratio SNR at the interpolator output as

SNR =
q ιλ

∫

Rd |Θ̆(ν̆)|2|Φ̆(σ̆es
ν̆)|2|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|2dν̆

α
∫

Rd |Θ̆(ν̆)|2dν̆
.

Thus, SNR = q ιλ
ιBθ

βθ

α that is greater than or equal to 1 iff

qλ ≥ α
ιBθ

βθ
(2B)d (30)

where βθ is in (37b). The factor αιBθ
/βθ represents the

increasing in the average intensity of available samples with

respect to Nyquist rate for obtaining SNR ≥ 1 (random

sampling generates sampling noise) in Rd. 17

A simple example is now illustrated.

Example: Fig. 3 shows the normalized ESD of the re-

constructed signal for the case of Fig. 1 with homogeneous

or inhomogeneous PSP in presence or absence of Gaussian

distributed sample position errors. According to Theorem 2, it

can be observed in Fig. 3(a)-3(d) that: (i) the randomness of

the sampling process generates itself a background white noise

component; (ii) sample position errors cause a spectrum dis-

tortion without spectrum enlargement; and (iii) inhomogeneity

17This result generalizes the important one in [54] that was obtained for
the one-dimensional homogeneous case with ILP interpolator and absence of
sample position errors.
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of the sample process leads to a distortion with spectrum

enlargement.

B. Signal Reconstruction MSE

We now analyze the signal reconstruction error for mul-

tidimensional inhomogeneous random sampling with sample

position uncertainty.

The signal reconstruction MSE is defined as

εs ,
E
{ ∫

Rd |ẑ(x)− z(x)|2dx
}

Ez
(31)

which measures the distance between the reconstructed version

ẑ(x) and the original target signal z(x), normalized to its

energy.

Theorem 3 (Signal reconstruction MSE): For an inhomoge-

neous PSP with intensity λ(x), sample availability q(x), and

sample position errors with Φes
(ν), the signal reconstruction

MSE is found to be

εs =
qλ

κ2θ

(

α |Bθ|+ βθ qλ
)

− γθ
2qλ

κθ
+ 1 (32)

where α is given in (23) and

βθ ,

∫

Rd

|κθ Θ(ν)|2 |Φes
(ν)|2 |(Λ ∗Q ∗ Z)(ν)|2

λ
2
q2 Ez

dν (33a)

γθ ,

∫

Rd

ℜ
{

κθ Θ(ν)Φes
(ν)

(Λ ∗Q ∗ Z) (ν)Z†(ν)

λ q Ez

}

dν .

(33b)

Proof: Apply Lemma 4 and Theorem 1 as shown in

Appendix G.

The parameters α, βθ , and γθ of (32) are evaluated in the

next section for some cases of interest.

Define two modified ESD as

ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆) , |Θ̆(ν̆)|2|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|2 (34a)

ĔZ̆,Q̆,Λ̆,Θ̆(ν̆) , ℜ
{

Θ̆(ν̆)(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)Z̆† (ν̆)
}

(34b)

which, in the case of homogeneous PSP and homogeneous

sample availability, are proportional to the signal ESD when

an ILP interpolator filter is used. Remember that, given a

continuous function ϕ(ν) with ϕ(0) = 1 and a norm-

integrable function f(ν), the ϕ-mean of f(ν) for any σ ∈ R

is [72]

Mσ,ϕ{f(ν)} ,

∫

Rd

ϕ(σν)f(ν)dν . (35)

Theorem 4 (Signal reconstruction MSE with normalized

quantities): Under the same assumptions of Theorem 3, the

signal reconstruction MSE with normalized quantities is found

to be

εs =
qιλ
κ̆2θ

(α ιBθ
+ βθ qιλ)− γθ

2qιλ
κ̆θ

+ 1 (36)

with

α = M1,Z̆†∗Z̆−
{(Λ̆ ∗ Q̆)(ν̆)} (37a)

βθ = Mσ̆es ,|Φ̆|2{ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆)} (37b)

γθ = Mσ̆es ,Φ̆
{ĔZ̆,Q̆,Λ̆,Θ̆(ν̆)} (37c)

where Z̆−(ν̆) , Z̆(−ν̆).

Proof: See appendix H.

Note that the sample position errors affect the parameters βθ
and γθ only, while they do not affect α.

Hereafter, Theorem 4 is used to determine novel results on

the signal reconstruction MSE for some cases of interest on

the sample position errors.

Corollary 2 (Gaussian distributed sample position errors):

For zero-mean Gaussian IID sample position errors with

normalized variance σ̆2
es

, general interpolator, inhomogeneous

PSP with intensity λ(x), and sample availability q(x), the

signal reconstruction MSE is given by (36) with α as in (37a)

and

βθ = (4π tσ̆es
)

d
2 Wtσ̆es

{

ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆)
}

(0) (38a)

γθ = (8π tσ̆es
)

d
2 W2tσ̆es

{

ĔZ̆,Q̆,Λ̆,Θ̆(ν̆)
}

(0) (38b)

where tσ̆es
, (4π σ̆es

)−2 and

Wt{f(ν)} (x) ,
1

(4π t)
d
2

∫

Rd

f(ν)e−
‖x−ν‖2

4t dν . (39)

is the Weierstrass transform [73] with parameter t for f(ν) in

Rd, where ‖ · ‖ denotes the Euclidean norm.

Proof: From (26b), the Gaussian hypothesis on es gives

Φ̆(σ̆es
ν̆) = e−2π2‖σ̆es ν̆‖2

. Thus, from (39), expressions (37b)

and (37c) result in (38a) and (38b), respectively.

Corollary 3 (Absence of sample position errors): In the

absence of sample position errors, general interpolator, inho-

mogeneous PSP with intensity λ(x), and sample availability

q(x), the signal reconstruction MSE results in (36) with α as

in (37a) and

βθ =

∫

Rd

ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆)dν̆ = F
−1

{

ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆)
}

(0)

(40a)

γθ =

∫

Rd

ĔZ̆,Q̆,Λ̆,Θ̆(ν̆)dν̆ = F
−1

{

ĔZ̆,Q̆,Λ̆,Θ̆(ν̆)
}

(0) .

(40b)

Proof: In an absence of sample position errors, we have

fes
(es) = δ(es) and Φes

(ν) = 1, therefore (26b) leads to

Φ̆(ν̆) = 1. Thus, (37b) and (37c) lead to (40a) and (40b),

respectively.

To better understand the effects of sample position errors

on the signal reconstruction MSE, consider the following two

limit cases.

Corollary 4 (Small sample position errors with respect to

signal spatial correlation): Consider an inhomogeneous PSP

with intensity λ(x) and sample availability q(x). For σes
≪

1/(2B) the signal reconstruction MSE results in (36) with

parameters α, βθ, γθ as for Corollary 3 (absence of sample

position errors).

Proof: Since limσ→0 Mσ,ϕ{f(ν)} =
∫

Rd f(ν)dν for

any f : Rd → C [72], (37b) and (37c) reduce to (40a) and

(40b), respectively.

Corollary 5 (Large sample position errors with respect to

signal spatial correlation): Consider an inhomogeneous PSP
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with intensity λ(x) and sample availability q(x). For σes
≫

1/(2B) the signal reconstruction MSE results in

εs = α
qιλ
κ̆2θ

ιBθ
+ 1 . (41)

Proof: Since Φ̆ is the FT of a PDF, Φ̆(σν̆) and |Φ̆(σν̆)|2
tend to 0 for σ approaching infinity. Thus (37b) and (37c) tend

to 0 for σ̆es
approaching infinity, and from Theorem 4 with

βθ = γθ = 0 we obtain (41).

Remark 6: Corollaries 4 and 5 indicate that the impact

of sample position errors on the signal reconstruction MSE

does not depend on the value of position error variance itself,

but rather on its normalized value with respect to the spatial

correlation of the signal. The higher is the spatial correlation

of the signal, the more negligible results the additive MSE due

to sample position errors up to the point where Corollary 3

holds.

Corollary 6 (Homogeneous PSP): Consider a homogeneous

PSP with intensity λ(x) = λ, sample availability q(x) = q,

and presence of sample position errors. The signal reconstruc-

tion MSE for a general interpolator results in (36) with

α = 1 (42a)

βθ = Mσ̆es ,|Φ̆|2{|Θ̆(ν̆)|2 Ĕz(ν̆)} (42b)

γθ = Mσ̆es ,Φ̆
{ℜ{Θ̆(ν̆)} Ĕz(ν̆)} . (42c)

Proof: By substituting the FT of λ(x) = λ and q(x) = q
in (25a) and (25b), respectively, we obtain

Λ̆(ν̆) = (2B)dδ(2Bν̆) = δ(ν̆) (43a)

Q̆(ν̆) = (2B)dδ(2Bν̆) = δ(ν̆) (43b)

in the sense of distributions. Thus, from (37a) α results in

α = M1,Z̆†∗Z̆−
[δ] = (Z̆ ∗ Z̆†

−)(0) =
∫

Rd

|Z̆(ν̆)|2dν̆ = 1 .

Also, (34b) and (34a) lead to

ĔZ̆,Q̆,Λ̆,Θ̆(ν̆) = ℜ{Θ̆(ν̆)}Ĕz(ν̆)
ĔZ̆,Q̆,Λ̆,|Θ̆|2(ν̆) = |Θ̆(ν̆)|2Ĕz(ν̆)

which gives (42b) and (42c) from (37b) and (37c).

Remark 7: Corollary 6 shows that the effect of sample

position errors is present in βθ and γθ jointly with Θ̆(ν̆).
Therefore, it can be mitigated by a proper interpolation fil-

tering.

IV. INTERPOLATION FILTERING

The impact of the interpolation filter on the signal recon-

struction MSE is now analyzed.

A. ILP interpolator

Recent works related to sensor networks consider an ILP

interpolation filter18 in the form of

Θ(ν) =
1

κθ
1Bθ

(ν) (45)

18Numerical aspects related to practical implementations of such interpo-
lator are addressed in [74].

without accounting for inhomogeneous PSP and sample posi-

tion errors [75].

Corollary 7 (ILP interpolator): In the setting of Theorem

4, for ILP interpolator Θ̆(ν̆) = 1B̆θ
(ν̆) with B̆s ⊆ B̆θ, where

B̆s , {ν̆ s.t. 2Bν̆ ∈ CBs
}, the signal reconstruction MSE

results in (36) with α as in (37a) and

βθ = Mσ̆es ,|Φ̆|2
{

|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|2
}

(46a)

γθ = Mσ̆es ,Φ̆

{

ℜ
{

(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆) Z̆†(ν̆)
}}

. (46b)

These reduce, for zero-mean Gaussian IID sample position

errors with normalized variance σ̆2
es

, to

βθ = (4π tσ̆es
)

d
2 Wtσ̆es

{

|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|2
}

(0) (47a)

γθ = (8π tσ̆es
)

d
2 W2tσ̆es

{

ℜ
{

(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)Z̆† (ν̆)
}}

(0) .

(47b)

In the absence of sample position errors

βθ =

∫

Rd

λ̆2(x̆)q̆2(x̆)|z̆(x̆)|2dx̆ (48a)

γθ =

∫

Rd

λ̆(x̆)q̆(x̆)|z̆(x̆)|2dx̆ = α (48b)

where z̆(x̆), λ̆(x̆), and q̆(x̆) are respectively the inverse FTs

of Z̆(ν̆), Λ̆(ν̆), and Q̆(ν̆).
Proof: Since z(x) is band-limitated, from (1), (25a), and

(25b) it follows that (Λ̆ ∗ Q̆ ∗ Z̆)(ν̆) does not have spectral

components outside B̆s. From Theorem 4, by substituting

Θ̆(ν̆) = 1B̆θ
(ν̆) in (34a) and (34b), we obtain (46a) and (46b).

In addition, (47a) and (47b) follow from Corollary 2, (34a),

and (34b). From (37a), (46a), and (46b) using Φ̆(ν̆) = 1 and

Parseval relation, we obtain (48a) and (48b).

Corollary 8 (ILP interpolator - homogeneous PSP): In the

setting of Corollary 6, for ILP interpolator Θ̆(ν̆) = 1B̆θ
(ν̆)

with B̆ ⊆ B̆θ, the signal reconstruction MSE results in (36)

with α = 1 and

βθ = Mσ̆es ,|Φ̆|2
{

Ĕz(ν̆)
}

(49a)

γθ = Mσ̆es ,Φ̆

{

Ĕz(ν̆)
}

. (49b)

These reduce, for zero-mean Gaussian IID sample position

errors with normalized variance σ̆2
es

, to

βθ = (4π tσ̆es
)

d
2 Wtσ̆es

{

Ĕz(ν̆)
}

(0) (50a)

γθ = (8π tσ̆es
)

d
2 W2tσ̆es

{

Ĕz(ν̆)
}

(0) . (50b)

In the absence of sample position errors βθ = γθ = 1 .
Proof: Apply (43a) and (43b) to results of Corollary 7.

Remark 8: From Corollary 8 with absence of sample posi-

tion errors the signal reconstruction MSE reduces to

εs =
qλ

κ2θ

(

|Bθ|+ qλ
)

− 2qλ

κθ
+ 1 . (51)

Therefore, results in [41] and [45] can be seen as particular

cases of Theorem 3.
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To quantify how the knowledge of samples intensity and

availability can improve the signal reconstruction, we deter-

mine the signal reconstruction MSE for various interpolator

parameter κθ in (45) designed according to such knowledge.

The optimal value of κθ minimizing the signal reconstruction

MSE is obtained by setting to zero the derivative of (32) with

respect to κθ, which results in

κθ =
(

α̂ |Bθ|+ β̂θ qλ
)

/γ̂θ (52)

with α̂ = α, β̂θ = βθ, and γ̂θ = γθ. Thus, (52) depends on

parameters α, βθ, γθ, whose expressions (37a), (46a), (46b)

require the prior knowledge of the signal to be reconstructed

for inhomogeneous PSP. Therefore, three suboptimal cases

are considered in addition to the optimal one. In particular,

κθ is chosen equal the interpolator parameter optimal for the

case of homogeneous sampling and in the absence of sample

position errors (i.e., from Corollary 8 it is α̂ = β̂θ = γ̂θ = 1,

independently of the signal spectrum). The optimal κθ is

considered as a theoretical benchmark for ILP filtering.

1) Case 1 (knowledge of average samples’ density): the

sample availability is unknown thus assume q = 1. The

unknown interpolator spatial bandwidth |Bθ| (related to that

of the signal) is considered negligible with respect to λ.

Therefore, (52) with α̂ = β̂θ = γ̂θ = 1 provides κθ = λ
and (32) results in

εs = α
q

λ
|Bθ|+ βθ q

2 − γθ 2q + 1 . (53)

2) Case 2 (knowledge of average samples’ density and

of sample loss probability): the unknown interpolator spatial

bandwidth |Bθ| is considered negligible with respect to qλ.

Therefore, (52) with α̂ = β̂θ = γ̂θ = 1 provides κθ = qλ and

(32) results in

εs = α
|Bθ|
qλ

+ βθ − 2γθ + 1 . (54)

3) Case 3 (knowledge of average samples’ density, loss

probability, and of signal spatial frequency band): in this case

(52) for α̂ = β̂θ = γ̂θ = 1 provides

κθ = |Bθ|+ qλ (55)

and

εs =
qλ(α |Bθ|+ βθ qλ)

(|Bθ|+ qλ)2
− 2qλ γθ

|Bθ|+ qλ
+ 1 . (56)

Note that Cases 1-3, for α = βθ = γθ = 1 (homogeneous PSP

without sample position errors), result in subcases presented

in [41].

4) Case 4 (full knowledge): substituting (52) with α̂ = α,

β̂θ = βθ , and γ̂θ = γθ in (32) gives

εs =
α |Bθ|+ (βθ − γ2θ )qλ

α |Bθ|+ βθ qλ
. (57)

Note that Case 4 reduces to Case 3 for homogeneous PSP

without sample position errors.

B. Optimal LSI Interpolator

The optimal interpolation filtering function Θ(ν) is known

only for some specific cases in one dimension [76]. Here, by

extending the Wiener filtering theory to the inhomogeneous

(thus non-stationary) multidimensional case, we find the opti-

mal LSI interpolator function.

Theorem 5 (Optimal LSI interpolator for inhomogeneous

PSP): The optimal linear space-invariant interpolator is

Θ(ν) =
[Φes

(ν)(Λ ∗Q ∗ Z)(ν)]†Z(ν)
|Φes

(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 + αqλEz

(58)

with parameter κθ in (81) and equivalent bandwidth in (82).

Proof: See appendix I.

Corollary 9 (Optimal LSI for homogeneous PSP): For

homogeneous PSP with intensity λ(x) = λ and sample

availability q(x) = q, the optimal LSI interpolator results in

Θ(ν) =
Φ†

es
(ν)Ez(ν)

qλ|Φes
(ν)|2Ez(ν) + Ez

. (59)

Proof: It follows from (58) with α = 1, Q(ν) = qδ(ν),
and Λ(ν) = λδ(ν).

Remark 9: By comparing the optimal LSI expressions (58)

and (59), it can be noticed that inhomogeneity would require

prior knowledge of the signal to be reconstructed, while for

homogeneous PSP the optimal LSI interpolator requires the

knowledge of the ESD only. This makes the LSI optimization

mainly useful for deriving theoretical bounds.

In the absence of sample position errors (Φes
(ν) = 1), the

optimal LSI interpolator expression (59) reduces to Θ(ν) =
Ez(ν)/[qλEz(ν) + Ez ], which, if the ESD is replaced by a

power spectral density, corresponds to the multidimensional

extension of the optimal linear time invariant filter for the

reconstruction of finite-power signal through a stationary Pois-

son sampling process as presented in one dimension in [77]–

[79].

Theorem 6 (Signal reconstruction MSE for optimal LSI

interpolator): For the optimal LSI interpolator (58), the signal

reconstruction MSE results in

εs = 1− 1

Ez

∫

Rd

|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2|Z(ν)|2

|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 + αqλEz

dν .

(60)

Proof: See Appendix J.

Corollary 10 (Signal reconstruction MSE with optimal LSI

interpolator for homogeneous PSP): For homogeneous PSP

with intensity λ(x) = λ and sample availability q(x) = q, the

optimal LSI interpolator (59) provides the signal reconstruc-

tion MSE

εs = 1− 1

Ez

∫

Rd

|Φes
(ν)|2E2

z (ν)

|Φes
(ν)|2Ez(ν) + Ez

qλ

dν . (61)

Proof: It follows from (60) with α = 1, Q(ν) = qδ(ν),
and Λ(ν) = λδ(ν).
In the absence of sample position errors (Φes

(ν) = 1), (61)

reduces to εs =
∫

Rd

Ez(ν)

qλEz(ν)+Ez
dν, which corresponds to

the multidimensional extension of the signal reconstruction

presented in one dimension in [77]–[79].
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TABLE II
RECONSTRUCTION MSE FOR 1/ιλ → 0: (A) INHOMOGENEOUS PSP; (B)

HOMOGENEOUS PSP; AND (C) HOMOGENEOUS PSP WITHOUT SAMPLE

POSITION ERRORS.

Interpol. PSP floor (c0) 1st order term (c1)

ILP (A) βθq
2 − 2γθq + 1 αqιBθ

Case 1 (B) βθq
2 − 2γθq + 1 qιBθ

(C) (1 − q)2 qιBθ

ILP (A) βθ − 2γθ + 1 αιBθ
/q

Case 2 (B) βθ − 2γθ + 1 ιBθ
/q

(C) 0 ιBθ
/q

ILP (A) βθ − 2γθ + 1 [α+ 2(γθ − βθ)]ιBθ
/q

Case 3 (B) βθ − 2γθ + 1 [1 + 2(γθ − βθ)]ιBθ
/q

(C) 0 ιBθ
/q

ILP (A)
(

1− γ2
θ
/βθ

)

αγ2
θ
ιBθ

/(qβ2
θ
)

Case 4 (B)
(

1− γ2
θ
/βθ

)

γ2
θ
ιBθ

/(qβ2
θ
)

(C) 0 ιBθ
/q

Opt. LSI (A) 0 α
q

∫

B̆

|Φ̆(σ̆es ν̆)|−2|Z̆(ν̆)|2

|(Λ̆∗Q̆∗Z̆)(ν̆)|2
dν̆

(B̆ ⊂ Rd) (B) 0 1
q

∫

B̆
|Φ̆(σ̆es ν̆)|

−2dν̆

(C) 0 ιB/q

C. Asymptotic analysis

To provide more insights on what affects the most the signal

reconstruction MSE, we study its asymptotic behaviour for a

sample intensity large with respect to (2B)d considering all

the aforementioned interpolation techniques.

Corollary 11 (Asymptotic expression for signal reconstruc-

tion MSE): For ιλ → ∞, the asymptotic expression for signal

reconstruction MSE is

εs = c0 + c1
1

ιλ
+ o

( 1

ιλ

)

(62)

where the floor c0 and the first order coefficient c1 are specified

in Table II for ILP interpolator and for optimal LSI interpolator

with ιB , |B|/(2B)d.19

Proof: For ILP interpolator, results follow from (53)–(57)

by using normalized quantities. For optimal LSI interpolator,

the normalized version of (60) results in

εs =1−
∫

B̆

|Z̆(ν̆)|2
1 + α

qιλ
|Φ̆(σ̆es

ν̆)|−2|(Λ̆ ∗ Q̆ ∗ Z̆)(ν̆)|−2
dν̆

that, for ιλ → ∞, leads to the expressions in row 5 of Table II.

Remark 10: For homogeneous PSP without sample position

errors, the ILP interpolator (typical choice for wireless sensor

network applications) in cases 3 and 4 with ιBθ
= ιB is

asymptotically optimum.

V. CASE STUDY

We now describe a case study for multidimensional random

sampling under different conditions and, when present, with

Gaussian distributed sample position errors. The considered

sampled signal is that of the example in (2). Since the

sampling intensity λ(x) and the sample availability q(x) are

19For ILP interpolator cases 3 and 4, in which the signal band is known,
ιBθ

= ιB can be considered. For optimal LSI interpolator, the signal z(x),
availability q(x), and intensity λ(x) are here considered strictly band-limited

(i.e. B̆ ⊂ Rd).

interchangeable in the presented Theorems,20 without loss of

generality consider the case q(x) = q.

Proposition 1 (ILP Interpolator): Under the hypothesis of

Corollary 7 for zero-mean Gaussian IID sample position errors

with normalized variance σ̆2
es

, when the sampled signal has an

ESD as in (3), the PSP intensity is λ(x) as in (5), and the

sample availability is q(x) = q, the reconstructed signal ESD

results in

Ĕẑ(ν̆) =
q2 ι2λ
κ̆2θ

e−4π2σ̆2
es
‖ν̆‖2

d−1
∏

i=0

1

2bi

{

rect

(

ν̆i
2bi

)

+
a2i
4

[

rect

(

ν̆i
2|bi + bλi |

)

− rect

(

ν̆i
2|bi − bλi |

)]}

+
q ιλ
κ̆2θ

1B̆θ
(ν̆)

and the signal reconstruction MSE is found to be (36) with

α = 1 (63a)

βθ =

d−1
∏

i=0

1

4
√
πbiσ̆es

{

erf(2πbiσ̆es
) +

a2i
4

erf (2π|bi + bλi |σ̆es
)

− a2i
4

erf (2π|bi − bλi |σ̆es
)

}

(63b)

γθ =

d−1
∏

i=0

1√
8π biσ̆es

erf
(√

2πbiσ̆es

)

. (63c)

where erf(·) is the Gaussian error function.

Example: Consider the setting of Proposition 1 with ιBθ
= 25

and κθ according to (55) since α, βθ , and γθ are unknown

to the interpolator.21 The signal bandwidth-per-dimension is

B = 10−4 [m−1].
Fig. 4(a) shows the signal reconstruction MSE as a function

of λ for bλ = 1/2 and different values of σ̆es
and a. The

case of homogeneous PSP without sample position errors

(a = 0, σ̆es
= 0) is also given as a benchmark. It can

be observed that, while in the case of homogeneous PSP

without sample position errors the signal reconstruction MSE

is linearly decreasing with the average sampling intensity λ
(consistently with [41]), both the inhomogeneity and the sam-

ple position errors generate an error floor. However, while the

effect of the inhomogeneous amplitude parameter a is always

appreciable, that of the normalized position error standard

deviation σ̆es
is evident only with homogeneity (a = 0) or

small inhomogeneity (a = 0.01). Note also that the effect on

the signal reconstruction MSE of an inhomogeneity of 1% is

almost equivalent to that of a position error of 5%.

Fig. 4(b) shows the signal reconstruction MSE as a function

of σ̆es
for an average PSP intensity λ = 10−2 [m−2] and

different values of a and bλ. It can be observed that, in the

homogeneous case (a = 0 or bλ = 0) the effects of sample

position errors become evident when σ̆es
is greater than 5%

of the signal correlation distance (i.e., 1/2B). Also, in the

inhomogeneous case (a > 0 and bλ > 0) the effects of

sample position errors become relevant for lower σ̆es
and the

20This is expected since the effect of q(x) is to mark Π.
21The ιBθ

= 25 corresponds, e.g., to an oversampling factor of 5 for each

dimension in R2, thus B̆s ⊆ B̆θ for bλ ≤ 2.
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(a) Signal reconstruction MSE as a function of average PSP intensity λ for
bλ = 0.5
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(b) Signal reconstruction MSE as a function of normalized position error σ̆es

with λ = 10−2 m−2

Fig. 4. Signal reconstruction MSE as a function of average PSP intensity λ and normalized position error σ̆es with the following parameters: d = 2,
B = 10−4 m−1, ιBθ

= 25, p = 10−3.

behaviour of the signal reconstruction MSE shows a local

minimum that is more evident for higher values of a. This

can be attributed to the fact that, when samples are inho-

mogeneously distributed with low intensity, sample position

uncertainties regularize the sample spatial distribution. For

high σ̆es
, however, all the curves approach to an asymptotic

value.

Proposition 2 (Optimal LSI interpolator): In the setting of

Proposition 1, the optimal LSI interpolator leads to

εs = 1−
∫ b0

−b0

∫ b1

−b1

...

∫ bd−1

−bd−1

dν̂0dν̂1...dν̂d−1

ζ(ν̂0, ν̂1, ..., ν̂d−1)
(64)

where

ζ(ν̂0, ν̂1, ..., ν̂d−1) ,
1

qιλ

d−1
∏

i=0

2bi e
4π2σ̆2

es
ν̆2
i

1 +
a2
i

4 ψ bλi
2bi

(

ν̆i
2bi

) +

d−1
∏

i=0

2bi

and ψb(x) , [rect(x− b)− rect(x+ b)]
2
.

Remark 11: For homogeneous PSP (ai = 0 or bλi = 0) in

the absence of sample position errors (σ̆es
= 0), (64) becomes

εs =

∏d−1
i=0 (2bi)

qιλ +
∏d−1

i=0 (2bi)
(65)

that, for one dimension (d = 1 thus b0 = 1/2) is consistent

with the result in [77] for a sinc-type signal reconstructed by

an optimal linear time-invariant (LTI) interpolator in the case

of stationary PSP.

Proposition 3 (Optimal LSI interpolator - Homogeneous

PSP - Asymptotic analysis): In the setting of Proposition 2

with homogeneous PSP, the signal reconstruction MSE results

in

εs =
1

qιλ

d−1
∏

i=0

1

2
√
π σ̆es

erfi(2πbiσ̆es
) + o

( 1

ιλ

)

(66)

where erfi(z) , − erf(z).
Example: Consider the signal as in (2) sampled by an homoge-

neous PSP. Fig. 5(a) and 5(b) show the signal reconstruction

MSE as a function of the normalized PSP intensity ιλ for

the homogeneous case in R2 with the different interpolators

discussed in Sec. IV. When the signal band is unknown, an

oversampling factor ιBθ
= 25 is considered. In the absence

of sample position errors, Fig. 5(a), the only knowledge of

the average sample density (Case 1) shows an error floor. If

also the band of the signal to be reconstructed is known to the

interpolator (Case 3), the signal reconstruction MSE is reduced

due to the lower amount of sampling noise22 collected by an

ILP interpolator with oversampling factor ιBθ
= 1. Case 4

coincides with Case 3 in the absence of sample position errors,

as expected. The signal reconstruction MSE with optimal

LSI interpolator case coincides in this example to that with

optimized ILP interpolator, as it can be noticed by comparing

(56) for α = βθ = γθ = 1 (homogeneous case without

position errors) and ιBθ
= ιB = 1 (knowledge of signal band)

to (65) for b0 = b1 = 1/2. In the presence of sample position

errors, an error floor is introduced for all the ILP cases. Note

that the advantage of the knowledge of sample loss (Case

2) becomes irrelevant, while that of the signal band (Case

3) is relevant only for relatively small sample density. The

optimized ILP interpolator with the knowledge of the position

error statistic performs closely to the optimal LSI interpolator

for ιλ < 106, while for higher values an error floor arises

(even if lower than the other ILP cases).

Proposition 4 (Optimal LSI interpolator - Inhomogeneous

PSP - Asymptotic analysis): In the setting of Proposition 2,

the signal reconstruction MSE results in

εs =
1

q ιλ

d−1
∏

i=0

∫ bi

−bi

e4π
2σ̆2

es
ν̆2
i dν̆i

1 +
a2
i

4 ψ bλi
2bi

(

ν̆i
2bi

) + o
( 1

ιλ

)

. (67)

Example: Consider the signal as in (2) sampled by an inho-

mogeneous PSP with intensity given by (5). The oversampling

factor is ιBθ
= 25 for ILP interpolator cases 1 and 2, while for

22We recall that the homogeneous PSP introduces a sampling noise in the
sampled signal spectrum, as shown in Fig. 1(b).
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(b) Homogeneous case with sample position errors (σ̆es = 0.05)
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(c) Inhomogeneous case (a0 = a1 = 0.05, bλ0 = bλ1 = 0.05) without
sample position errors
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(d) Inhomogeneous case (a0 = a1 = 0.05, bλ0 = bλ1 = 0.05) with
sample position errors (σ̆es = 0.05)

Fig. 5. Signal reconstruction MSE in R2 (corresponding to the case of Fig. 1) for p = 10−3.

ILP cases 3 and 4, the interpolator band is assumed to be the

minimal such that B̆s ⊆ B̆θ (i.e., ιBθ
= 1.21 for bλ = 0.05).

Fig. 5(c) and 5(d) show the impact of inhomogeneity on εs.

Both in the absence and in the presence of sample position

errors, it can be observed that the error floors for the ILP

interpolators are higher than in the homogeneous case and that

performance close to the case of optimal LSI can be reached

for low ιλ. In such case, the knowledge of the signal band and

that of the inhomogeneous PSP intensity function (case 3) are

significant. In the presence of sample position errors, their

statistical knowledge (case 4) provides a negligible advantage.

VI. FINAL REMARK

This paper provides a general analysis for sampling and

reconstruction of a finite-energy signal in Rd based on a

finite set of samples randomly gathered in a presence of

sample position uncertainties. The reconstructed signal ESD

and reconstruction MSE are derived accounting for: (i) signal

properties such as signal spectrum and spatial correlation; (ii)

sampling properties such as inhomogeneous sample spatial

distribution, sample availability, and non-ideal knowledge of

sample positions; and (iii) interpolation filtering. The main

results are listed below.

1) The reconstructed signal ESD derived in Theorem 1

shows how the ESD is enlarged by inhomogeneous PSP

and distorted in-band by imperfect knowledge of samples

positions. The former effect requires an interpolator with

bandwidth per dimension greater than Nyquist frequency,

whereas the latter can be mitigated through equalization.

2) A general expression for the signal reconstruction MSE

is derived in Theorem 3 extending the one for the case of

homogeneous PSP with perfect knowledge of the samples

positions to the case of inhomogeneous PSP with imperfect

knowledge of samples positions. Such expression generalizes

a known result by mean of three parameters (α, βθ , γθ) that

are obtained as a function of signal and sampling properties. In

addition, the parameters are determined for cases of practical

interest.

3) The reconstruction MSE parameters are obtained in

Theorem 4. Parameter α depends on the sampling intensity

function, the sample availability function, and the signal to

be reconstructed. Parameters βθ and γθ depend on the Φ-

mean of modified versions of the signal ESD (Φ is related

to the characteristic function of sample position errors), the

normalized standard deviation of sample position errors σ̆es
,

and the spectra of sampling intensity and sample availability.

4) It was know that one-dimensional homogeneous PSP
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introduces a white sampling noise, and that the condition

for the signal-to-sampling noise ratio (evaluated in the signal

bandwidth) greater than 1 is average intensity of available sam-

pling greater than or equal to the Nyquist rate, i.e., qλ ≥ 2B.

We have demonstrated that for d-dimensional inhomogeneous

PSP with sample position errors and generic LSI interpolator,

the condition for the signal-to-sampling noise ratio at the

interpolator’s output greater than 1 is qλ ≥ α |Bθ|/βθ, where

|Bθ| is the Lebesgue measure of the interpolator d-dimensional

band.

5) The optimal LSI interpolator minimizing the signal

reconstruction MSE is derived in Theorem 5 and the corre-

sponding signal reconstruction MSE is given in Theorem 6.

Such interpolator can compensate both sample inhomogeneity

and position errors. In the inhomogeneous case, the optimal

LSI is not practically realizable as it would require the prior

knowledge of the signal to be reconstructed. Moreover, it

is shown that the widely adopted ILP interpolator can be

considered asymptotically optimal in the case of homogeneous

sampling without sample position errors only, as in non-ideal

condition (inhomogeneous PSP and/or sample position errors)

it generates a reconstruction MSE error floor.

6) It is demonstrated to which extent sample position

errors affect the signal reconstruction MSE based on the ratio

between the error standard deviation and the spatial correlation

of the signal per dimension. When the sample position errors

are Gaussian distributed, βθ and γθ reduce to the Weierstrass

transform (with parameter inversely proportional to the square

of σ̆es
) of a modified version of the signal ESD. Moreover,

when the spatial sample distribution and the sample availabil-

ity are homogeneous and no sample position errors are present,

the expression of the signal reconstruction MSE and that of

optimal LSI interpolator reduce to known results as subcases.

APPENDIX A

PROOF OF LEMMA 1

Proof: In the sense of distributions, from the prop-

erties of Dirac delta generalized function, yL(x) =
y(x)

∑

n∈NΠ
anδ(x − xn) =

∑

n∈NΠ
any(xn)δ(x − xn).

By applying the FT, YL(ν) , F {yL(x)}(ν) =
∑

n∈NΠ
any(xn)e

−2πν·xn , thus

EyL(ν) = E
{

|YL(ν)|2
}

= E

{
∣

∣

∣

∑

n∈NΠ

any(xn)e
−2πν·xn

∣

∣

∣

2}

that results in (14). By substituting (6) and µL(x) = E {L(x)}
in (13), and exploiting the linearity of integral operator, it is

ΥL[y] = E

{

∫

Rd

|y(x)|2
∑

n∈NΠ

anδ(x− xn)dx
}

which, from the properties of Dirac delta generalized function

and the independence of an’s from Π, results in (15).

APPENDIX B

PROOF OF LEMMA 2

Proof: By generalizing the result of [80] for an inhomo-

geneous PSP S in R
d with intensity λ(x), it is

µS(x) = λ(x) (68a)

RS(x, τ ) = λ(x)λ(x − τ ) + λ(x − τ )δ(τ ) . (68b)

The (18a) is obtained by Fourier transforming (68a). Since S is

non-stationary, the ESD of yS(x) cannot be directly evaluated

as a convolution between the ESD of y(x) and the PSD of

S, but has to be computed by Fourier-transforming CyS (τ ) ,
∫

Rd RyS (x, τ )dx where

RyS (x, τ ) = y(x)y†(x− τ )RS(x, τ ) . (69)

By substituting (68b) in (69) we obtain

CyS (τ ) =

∫

Rd

λ(x)y(x)λ(x − τ )y†(x− τ )dx

+ δ(τ )

∫

Rd

y(x)y†(x− τ )λ(x − τ )dx

= (yλ ∗ y†λ−)(τ ) + δ(τ ) (y ∗ y†λ−)(τ ) (70)

where yλ(x) , λ(x)y(x) and yλ−(x) , yλ(−x).
By Fourier transforming (70) and using the fact

that F

{

δ(τ ) (y ∗ y†λ−)(τ )
}

(0) = (y ∗ y†λ−)(0) =
∫

Rd λ(x)|y(x)|2dx, we obtain

EzS (ν) = |(Λ ∗ Y )(ν)|2 +
∫

Rd

λ(x)|y(x)|2dx .

This results in (18b) using (68a) and (17). From (15) with

an = 1 ∀n ∈ NΠ (L ≡ S and qn = 1 ∀n) we obtain (19).

APPENDIX C

PROOF OF LEMMA 3

Proof: From (14) with y(x) = z(x), the independence of

an’s from Π, and E
{

a2n
}

= qn, we have

EzL(ν) = E

{

∑

n∈NΠ

∑

k∈NΠ

k 6=n

qnqkz(xn)z
†(xk)e

−2πν(xn−xk)
}

+ E

{

∑

n∈NΠ

qn|z(xn)|2
}

= E

{

∑

n∈NΠ

∑

k∈NΠ

zq(xn)z
†
q(xk)e

−2πν(xn−xk)
}

− E

{

∑

n∈NΠ

|zq(xn)|2
}

+ E

{

∑

n∈NΠ

qn|z(xn)|2
}

.

This results in (20) by using Lemma 1 with y(x) = zq(x) and

L ≡ S (an = 1 ∀n ∈ NΠ) for the first two terms, and by

using (15) with y(x) = z(x) for the third term.

APPENDIX D

PROOF OF LEMMA 4

Proof: Note that, by using the definition of FT and the

properties of Dirac delta generalized function, it is

F

{

z(x)
∑

n∈NΠ

anδ(x− xn)
}

(ν) =
∑

n∈NΠ

anz(xn)e
−2πν·xn .

(71)
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This, together with (8b) and the independence of esn’s, an’s,

and Π, gives

Uzu
(ν) = Φes

(ν)E
{

∑

n∈NΠ

anz(xn)e
−2πν·xn

}

= Φes
(ν)F {z(x)µL(x)}(ν) (72)

that, through the convolution properties, gives (21a). From the

aforementioned independence property and Lemma 1, it is

Ezu
(ν) = E

{

∑

n∈NΠ

a2n |z(xn)|2
}

+ E

{

∑

n∈NΠ

∑

k∈NΠ

k 6=n

anak

× z(xn)z
†(xk)e

−2πν·(xn−xk) Φes
(ν) Φ†

es
(ν)

}

= E

{

∑

n∈NΠ

qn|z(xn)|2
}

− |Φes
(ν)|2

{

∑

n∈NΠ

qn|z(xn)|2
}

+ |Φes
(ν)|2E

{

∑

n∈NΠ

∑

k∈NΠ

anakz(xn)z
†(xk)e

−2πν·(xn−xk)
}

that results in (21b) by (14) and (15) with y(x) = z(x).

APPENDIX E

PROOF OF THEOREM 1

Proof: From (20) and (21b) we have

Ezu
(ν) = |Φes

(ν)|2Ezqs
(ν)− |Φes

(ν)|2ΥS [zq] + ΥL[z] .

From (18b) with y(x) = zq(x) it follows

Ezu
(ν) = |Φes

(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 +ΥL[z] . (73)

From (15) with y(x) = z(x) and from (19) with y(x) =
√

q(x)z(x), we obtain

ΥL[z] = ΥS [
√
qz] = E

{

∑

n∈NΠ

qn|z(xn)|2
}

. (74)

By using (17) with y(x) =
√

q(x)z(x) and inverse FT of

(18a), (74) leads to

ΥL[z] =
∫

Rd

λ(x)q(x)|z(x)|2dx . (75)

Then, (22) is obtained from (9), (23), (73), and (75).

APPENDIX F

PROOF OF THEOREM 2

Proof: Using the properties of the convolution operator

for two generic functions F (ν) and G(ν), it can be seen that
[

F (u) ∗G
(

u

2B

)]

(ν)

(2B)d
= [F (2Bu) ∗G (u)]

(

ν

2B

)

. (76)

From (25a), (25b), (76) with F (·) = Λ(·) and G(·) = Q̆(·),
and (76) with F (·) = Z(·) and G(·) = (Λ̆ ∗ Q̆)(·), it is

(Λ ∗Q ∗ Z)(ν) = qλ

√
Ez

(2B)
d
2

(Λ̆ ∗ Q̆ ∗ Z̆)
(

ν

2B

)

. (77)

From (11a), (28), (26b), (27a), (27b), and (77), the (22) results

in (29).

APPENDIX G

PROOF OF THEOREM 3

Proof: By using (9), (21a) and (21b) in (31), and by

applying the Parseval relation, we obtain

εs =

∫

Rd |z(x)|2dx
Ez

+

∫

Rd E

{

|(zu ∗ θ)(x)|2
}

dx

Ez

−
2ℜ

{

∫

Rd E

{

(zu ∗ θ)(x)
}

z†(x)dx
}

Ez

= 1 +
1

Ez

∫

Rd

|Θ(ν)|2Ezu
(ν)dν

− 2

Ez

∫

Rd

ℜ
{

Θ(ν)Uzu
(ν)Z†(ν)

}

dν . (78)

By applying (7), (18a), (21a), and (73) to (78), the signal

reconstruction MSE can be written as

εs = 1 +
ΥL[z]
Ez

∫

Rd

|Θ(ν)|2dν

+
1

Ez

∫

Rd

|Θ(ν)|2|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2dν

− 2

Ez

∫

Rd

ℜ
{

Θ(ν)Φes
(ν) (Λ ∗Q ∗ Z) (ν)Z†(ν)

}

dν .

that results in (32) from (10) and (75).

APPENDIX H

PROOF OF THEOREM 4

Proof: First apply the Parseval relation to (23), then (37a)

is obtained from (35) after using (76) with F (·) = Λ(·),
G(·) = Q̆(·) and with F (·) = Z†(·), G(·) = Z̆−(·). Equations

(37b) and (37c) are obtained from (35) after substituting (26b),

(27a), and (77) in (33a) and (33b), respectively. From (11a),

(11b), and (27b), the (32) results in (36).

APPENDIX I

PROOF OF THEOREM 5

Proof: Consider the isometry between every generic

finite-energy random process f(x) and the corresponding

vector f . By establishing a metric defined by the scalar product

as < f, g >, E
{∫

Rd f(x)g
†(x)dx

}

, it can be shown that the

LSI minimizing the signal reconstruction MSE results in

Θ(ν) =
Z(ν)U†

zu
(ν)

Ezu
(ν)

. (79)

By (7), (18a), and (21a) it is

Uzu
(ν) = Φes

(ν)(Λ ∗Q ∗ Z)(ν) . (80)

By substituting (73), (75), (23), and (80) in (79), we obtain

(58). It follows that

κθ =
|
∫

Rd q(x)λ(x)z(x)dx|2 +
∫

Rd q(x)λ(x)|z(x)|2dx
∫

Rd q(x)λ(x)z†(x)dx
∫

Rd z(x)dx
(81)

and

|Bθ| = κ2θ

∫

Rd

|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2|Z(ν)|2

[|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 + αqλEz ]2

dν .

(82)
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APPENDIX J

PROOF OF THEOREM 6

Proof: By substituting (58) in (33a) and (33b), it is

βθ
κ2θ

=
1

q2λ
2
Ez

∫

Rd

|Φes
(ν)|4|(Λ ∗Q ∗ Z)(ν)|4|Z(ν)|2dν

[|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 + αqλEz]2

(83a)

γθ
κθ

=
1

qλEz

∫

Rd

|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2|Z(ν)|2

|Φes
(ν)|2|(Λ ∗Q ∗ Z)(ν)|2 + αqλEz

dν .

(83b)

From (82) and (83a), it is α |Bθ|
κ2
θ
+ qλβθ

κ2
θ
= γθ

κθ
that substituted

in (32) gives εs = 1− qλ γθ

κθ
leading to (60) from (83b).
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