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Abstract

The automatic detection of differences between documents is a very common task in several
domains. This paper introduces a formal way to compare diff algorithms and to analyse the deltas
they produce. There is no one-fits-all definition for the quality of a delta, because it is strongly
related to the application domain and the final use of the detected changes. Researchers have
historically focused on minimality: reducing the size of the produced edit scripts and/or taming
the computational complexity of the algorithms. Recently they started giving more relevance to
the human interpretability of the deltas, designing tools that produce more readable, usable and
domain-oriented results. We propose a universal delta model and a set of metrics to characterise
and compare effectively deltas produced by different algorithms, in order to highlight what are
the most suitable ones for use in a given task and domain.

1. Introduction

The automatic comparison of two different versions of a document and the compilation of a
list of changes between them is a common task. A diff algorithm is used for this purpose: it takes
two files as input and computes their difference, according to a given set of change operations.
The outputs of diff algorithms, usually called deltas, diffs or patches, are used for many purposes:
programmers review source code diffs to avoid adding bugs and to understand which parts of
the code has changed; editors highlight the changes made on drafts and pre-prints; law makers
compare proposals during the discussion and approval of a bill; philologists use the differences
between documents to recreate the stemma codicum of a text, the history of its development. An
exhaustive survey on change detection and versioning tools can be found in [1].

Historically the research on diff algorithms has been carried out by the database community,
that has to deal with huge quantities of data and seeks to reduce space and time consumption.
In fact, these algorithms have been evaluated mainly by comparing their time and space perfor-
mance. Almost all the experiments in the literature follow the same pattern: the authors first
compare the computational complexity and the execution time of the algorithms, then evaluate
the quality of the results, see for instance [2][3][4][5].

The quality is often expressed in terms of the ability to reduce the size of the produced
delta. As summarized in [6]: “quality is described by some minimality criteria [...] Minimality
is important because it captures to some extent the semantics that a human would give when
presented with the two versions”.

Surprisingly only a few other quality measures have been defined and applied. There is
now a growing interest in characterizing more precisely the quality of deltas, in order to design
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algorithms that produce an output that is easier to interpret and more adequate for human readers,
for instance specialized for literary documents [7] or ontological data [8].

The focus of this paper is on comparing the quality of the deltas produced by diff algorithms.
We introduce a framework for measuring the quality of diffs through an objective evaluation

process. The basic idea consists of extracting numerical indicators from deltas (such as the
number of detected changes, the number of high-level changes, the number of elements listed in
the description of each change) and aggregating them into more complex quantitative metrics.
These indicators can be associated to quality requirements and evaluated to decide whether or
not the algorithm that produced that delta is ‘better’ than others in a given context.

This work is built on top of UniDM [9][10], a unified conceptual model able to abstract the
characteristics of deltas. Each diff algorithm uses its own strategy either in computing deltas or
in serializing. Design choices are strictly dependent on the application domain and, very often,
prescribed by the tools that are meant to apply deltas. Such a unified model, along with the
evaluation metrics on top of it, gives users a powerful tool to analyze in a more precise way the
behavior of the algorithms. It is also worth remarking that this model is general enough to deal
with streams of text, lists, trees or graphs, so that the same evaluation process can be applied to
heterogeneous algorithms and domains.

The paper is structured as follows. Section 2 describes in more depth the solutions adopted
to evaluate the quality of diff algorithms. Section 3 discusses how the same concept of ‘quality’
can have different meanings according to users’ needs and preferences. Section 4 introduces our
solution, that is detailed in each part in the following sections: Section 5 introduces UniDM (the
model used to analyse the deltas) and some quantitative indicators, while Sections 6 describes
the metrics in formal way. The application of the metrics is presented in Section 7: we introduce
a two-phase method to evaluate the existing algorithms and we present experimental results on
some well-known XML diff tools, before concluding in Section 8.

2. Related work

It is hard to compare the quality of the output of diff algorithms. First of all, because different
algorithms might produce different deltas that are all correct. There is a further tricky issue. As
highlighted by [3] “all approaches make use of different delta models, which makes it difficult to
measure the quality of the resulting deltas”. In fact, each algorithm uses its own internal model
and recognizes its own set of changes.

The quality of a delta has been often associated to some notion of minimality; a few alterna-
tive characterizations have been proposed.

2.1. Quality as minimality

The most used parameter to measure the quality of diff algorithms is its ability to reduce
the dimension of the delta. There are two main approaches to calculate such a dimension: either
measuring the size of the file or counting the number of edits listed in the delta. The first approach
has been used, for instance, in [11] and [6]. This evaluation can be fully automated and makes
it possible to compare directly heterogeneous deltas but is not precise, as it does not investigate
the content of the file. The measurement of the number of edits, known as edit distance, was
experimented in many other works, for instance in the evaluation of DocTreeDiff [3], Xandy
[12], X-Diff [4] and XRel_Change_SQL [13].
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A refinement of the first approach has been proposed for measuring the quality of Faxma[2].
The authors compared some algorithms by comparing the size of compressed deltas. The moti-
vation is that: “[the authors] expect to get results that are less dependent on the encoding and
more closely related to the amount of actual information. The difference in output size due to
some tools generating XML and others binary diffs should be mitigated by compression”. This
approach reduces the noise generated by implementation choices of each algorithm.

The edit distance approach is more precise, though is heavily influenced by the set of avail-
able operations. In fact, this model initially considered insertion and deletion operations only.
Later, other edits have also been considered such as the substitution of elements’ labels and
names, of intermediate nodes (including their attributes) and of entire subtrees. The introduction
of these complex operations required more flexible models for calculating the weights of each
operation. The minimization of the edit distance was further refined by deploying edit cost mod-
els. This is the solution proposed in the early days of tree-based diff algorithms by [14]. The idea
is to pre-define a cost for each type of change and to measure the overall cost of the delta as the
sum of the costs of each detected change. In the same paper the authors introduce an algorithm
that minimizes this cost.

2.2. Quality as interpretability
In other cases, the quality of a delta has been associated to the capability of humans to

interpret and exploit the changes it contains. This quality is much more difficult to define, as it
involves the nature of changes and the human analysis of the output.

For instance, in [7] the authors introduced the notion of naturalness of a diff algorithm. The
naturalness indicates the “capability of producing an edit script that an author would recognize
as containing the changes she/he effectively performed when editing a document”. The authors
presented a taxonomy of natural operations on literary documents and an algorithm, called JN-
Diff, able to capture (most of) those operations. The focus is on the quality of deltas in terms of
readability and accuracy for human users, so that JNDiff is slower than other algorithms, but still
acceptable.

The idea of looking for deltas that better describe operations on literary documents has also
been investigated by DocTreeDiff [3]. In the same paper, the authors sketched out an original
approach to measure quality. They suggested to compare the mixture of changes listed in the
deltas. The analysis is quite preliminary but shows a great variety of the types of changes detected
by the algorithms. The ability of an algorithm to detect a larger and more precise set of changes
is considered a good indicator of quality.

The identification of higher level changes that capture appropriately the editing process has
also been studied for XML database schema evolution [15]. The authors discuss a taxonomy
of high-level changes and how each change can be expressed as combination of smaller units.
As stated in the paper, however, their model is incomplete and does not cover all possible XML
DTDs and schemas.

Other interesting ways of assessing the quality of deltas have been proposed in the area of
ontology diffing. In [16] the authors discussed the need of a high-level set of changes that should
be detected in order to produce deltas that are “more intuitive, concise, closer to the intentions
of the ontology editors” and that “capture more accurately the semantics of changes”. They
proposed both a set of high-level changes, described in a formal way, and an algorithm to detect
them. From authors’ perspective, in fact, the presence of high-level changes in the delta increases
its quality and effectiveness. In [8] the authors measured the quality of the deltas between on-
tologies as a combination of heterogeneous properties such as reversibility, size minimality and
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redundancy elimination. The authors introduced multiple differential functions to compute deltas
and argued that the quality depends on types of information extraction and reasoning that are ex-
pected on changes.

The importance of letting users to tune the quality of a diff algorithm in relation to the set of
detectable high-level changes was also stressed by [17]. The authors, in fact, introduced the idea
of viewpoints (i.e., each ontology designer has her/his own needs and should be able to define
the set of complex changes she/he is interested in) and proposed a language to describe complex
changes, called CDL (Change Definition Language).

We agree that measuring the quality of a delta as a single fixed value is not enough. A better
approach is to think of deltas as objects that have multiple measurable dimensions, each able to
capture one facet of quality. There are in fact contrasting needs and expectations in characterising
such dimension.

3. Quality of deltas in different scenarios

Users in different domains have different requests and expectations on deltas and their qual-
ity. In this section we present some application scenarios and we explain how a more precise
characterization of the quality of (the output of) diff algorithms would help users in selecting the
most suitable solution for their purposes. The scenarios are identified with labels S1, S2, . . . , Sn
that will be used throughout the paper.

The diff algorithms are widely used by programmers. Different programmers, or even the
same programmer in different moments, might have different needs. Consider, for instance, the
following two scenarios:

S1: Programmer developing code: some verbosity is appreciated by developers who review
source code during the development. It is often required to have contextual information
that wraps the actual changes detected by a diff algorithm. Notice that this context is not
strictly necessary but helps developers to understand what has changed and where. The
extent of the context might also be relevant. Novice programmers, for instance, will ask
for a much bigger context as they do not have the ability to recognize code parts using
only few lines and conciseness is only an hindrance to them. Expert programmers, as well
as the authors of the original code, would probably prefer to focus only on the pieces that
have changed.

S2: Programmer browsing code history: in other cases a programmer could be interested only
in seeing which parts of a file have been changed, from a higher perspective. That is
relevant for instance when discussing global refactoring of source code, or when tracing
changes of different users, or looking for unchanged components in a large code base.

The automatic diffing of files is also widely exploited by administrators of systems and networks,
whose needs are different:

S3: Sysadmin diffing files: minimizing the size of the delta (between different versions of files)
is an important requirement for sysadmins, since they expect to store a lot of differences
and do not want to waste space. On the other hand, the readability of the output is equally
important, since differences are expected to be read primarily by human users. Sysadmins
are probably more interested in reading changes line-per-line, with a layout similar to the
ones they are used to deal with.
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S4: Sysadmin transmitting diff information: sysadmins may also have strong constraints on
the available bandwidth and space. Consider, for instance, a group of distributed sensors
that collect data (i.e. monitoring temperature, pressure, levels of water and so on) and
transmit them to a centralized server. The frequency of updates is extremely high and
produces a huge stream of data. On the other hand, it does not make sense to re-transmit
unchanged values, neither to add contextual and not relevant information. It is preferable to
express differences in the most compact way, especially if they are meant to be processed
only by software agents. Such optimisation issues are particularly relevant for multi-sited
version control systems, in which the revisions are not controlled by a centralised server
but are rather distributed across multiple servers. These have to coordinate each other and
to propagate a large amount of data in order to ensure consistency and integrity[18][19].

There are many other situations where detected changes are mainly meant to be interpreted by
human readers. In that case, the most effective algorithms are those that can detect specific types
of changes:

S5: Author revising literary documents: Consider the case of an XML document where a bold
style is added to a fragment by wrapping it into a new element. That change could be recog-
nized as the deletion of the text fragment and the insertion of the new element that contains
a new text node. A more compact and precise delta would instead detect that these two
operations are logically interconnected. Verbosity here leads to redundancy, rather than to
a more accurate representation of the change. Similarly, the split of a paragraph (when a
return is inserted dividing a single paragraph into two ones) could be precisely detected
as a single operation or as two independent changes, i.e. the deletion of the whole second
paragraph, and the insertion of some words in the first one. The detection of higher-level
changes would produce more useful delta for users revising literary documents, where
similar operations happen very frequently.

S6: Developer working on visualization tools: The previous considerations also apply to de-
velopers who build tools working on deltas. For example, the developers of visualization
tools must analyze the content of a delta to create the corresponding graphical represen-
tation; having deltas that contain domain-specific changes may allow the generation of
more precise and interesting visualizations. Additionally, compact deltas can be a problem
because they could be difficult to interpret and to make sense of.

Finally, some other requirements exist for diff algorithms running on structured data and knowl-
edge bases:

S7: XML database admin comparing records: an admin that compares different versions of
the same records in an XML database deals with specific operations. In that case, in
fact, the edit operations often consist of deletions and insertions of entire subtrees or of
modifications ot text nodes and leaves. In a few cases the database schema changes and
the content is wrapped, split or moved around. More than detecting such higher-level
changes, it is then important to minimize the size of the delta and to tame the computational
complexity. Contextual information is also less relevant here than in other cases.

S8: XML designers comparing attributes: similar considerations can also be extended to all
those scenarios where changes are expected to affect textual content, more than structures.
Consider, for instance, an XML vocabulary where most information is stored in attributes
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(one example is GXL [20]). The modification of an attribute value can be expressed in dif-
ferent ways: detecting exactly which characters changed, detecting the deletion/insertion
of the textual value of the attribute, detecting the deletion/insertion of the whole attribute or
even detecting the deletion/insertion of the whole element containing that attribute (with its
value changed). The first solution is the most accurate but the others are faster to calculate.
Moreover such accuracy may not be required. For instance, if an attribute contains a date
users might be interested in the modification of the overall date, instead of the modification
of a single digit of the day, month or year.

From this discussion, it is clear that there is not a single definition of what makes a diff algorithm
good. The suitability of a diff algorithm depends on the deltas it creates and how fit these deltas
are for use in a certain scenario. Deltas that are good in a scenario for certain reasons may be
bad in another for the same reasons. There is, thus, the need to create metrics to measure each of
the qualities that can be found in a delta.

4. Metrics for quality evaluation

The goal of this work is to define some metrics that capture peculiarities of deltas. These
parameters can be used, for instance, to select the most appropriate algorithm for the scenarios
discussed in the previous section. Here we introduce the main ideas behind our framework and
we identify which information is needed to measure these metrics. In the next sections we will
give a formal description of our model and of each metric.

These metrics are meant to capture some qualities that are objective in their nature. It is
outside the scope of the metrics to capture other features, such as the ability to reverse a delta, its
correctness or its size in bytes in a certain encoding: some of these features are taken for granted
(as it is the case with the correctness of a generated delta) or are implementation-specific but not
indicative nor fundamental to the general behaviour of a diff algorithm.

As we said, there is an ongoing request to find more appropriate metrics to evaluate the
quality of deltas. For example, in [16] the authors stress on the human-interpretability of the
deltas and the distinction between high-level and low-level changes. They also measure the
quality of the deltas in terms of “intuitiveness” and “conciseness”. We use similar terms for
some of our metrics; in the case of “conciseness”, even the same exact term but with a different
meaning. In fact, the motivations and goals of these works are very similar.

On the other hand, some fundamental differences are worth highlighting. First of all, the
scope: while they focus on diffing ontologies, our metrics are general and can be applied to
other domains and data structures (streams of text, trees, lists, etc.); second, they propose a
well-defined, unambiguous and complete set of changes on RDF(S) knowledge-bases, while our
model is independent on the set of changes the algorithms are able to detect.

Last but not least, the overall structure of the metrics is different. Our metrics aim at getting a
deeper characterisation of the changes contained in a delta. Besides separating basic (low-level)
and composite (high-level) changes, we try to capture information about the nature of composite
changes and composition rules; for instance, we introduce a metric — called terseness — to also
take into account the amount of contextual information in each change.

Before going any further, let us briefly describe what a delta is in the UniDM model and
which information it may contain, as we will build our metrics on top of it. A summary of the
formal definitions will be given in Section 5.
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Listing 1: Source document (S )

<book>

< i n f o >

< a u t h o r>John Doe< / a u t h o r>

< r i g h t s l i c e n c e =" cc−by−sa " / >

< / i n f o >

< / book>

Listing 2: Target document (T )

<book>

< i n f o >

< a u t h o r><name>John< / name><surname>Doe< / surname>< / a u t h o r>

< r i g h t s l i c e n c e =" cc−by−sa " / >

< / i n f o >

< / book>

Figure 1: Example documents.

To simplify the explanation of our metrics we will base our examples on two XML documents
shown in Figure 1 and some possible deltas generated by algorithms with different characteris-
tics, shown in Figure 2. Please note that to make the examples more readable, many details
are not shown in the presented deltas. Most notably, the XML elements are referred to by their
names rather than by more appropriate pointing techniques such as XPath [21] or XPointer [22]
The deltas in the dataset accompanying this paper contain all the needed details.

In UniDM a Delta is a collection of changes that an algorithm detects, together with some
relations between these changes.

There are two kinds of changes: atomic and complex. Complex changes are obtained by
aggregating atomic ones into more meaningful structures. An example is given in Figure 2:
the change C.1 of Delta 2 can be seen as the aggregation of the changes B.1, B.2 and B.3 of
Delta1bis. The detection of moves is a further very common example of complex change. Mov-
ing a paragraph from a document, for instance, can be expressed as a single high-level change
or as a combination of the deletion of the original paragraph and the combination of another one
that is an exact clone but in a different location.

There are many kinds of relations between changes that can be stored in a delta. The two
most common kinds are the application order relation, used to define a partial or total order in
which changes should be applied, and the grouping relations, used to bundle different changes
that are somehow related. These relations are used to express various properties of a delta, such
as its reversibility [23] or the fact that it contains parts that can be independently applied [24].

Thus, we make a distinction between the top level changes in a delta and the other ones, that
have been grouped in other complex changes.

Let us now discuss our metrics and their possible applications.

4.1. Length

The dimension of a delta has been widely used to evaluate the quality of diff algorithms, as
discussed in Section 2. Two main approaches have been adopted: space consumption [11][6]

7



Listing 3: Delta 1

A . 1 : REMOVE−TEXT( John Doe )
A . 2 : ADD−ELEM(<name> ,< a u t h o r >)
A . 3 : ADD−TEXT( John , <name >)
A . 4 : ADD−ELEM(< surname > ,< a u t h o r >)
A . 5 : ADD−TEXT( Doe , < surname >)

Listing 4: Delta 1bis

B . 1 : REMOVE−TEXT( John )
B . 2 : ADD−ELEM(<name> ,< a u t h o r >)
B . 3 : ADD−TEXT( John , <name >)
B . 4 : REMOVE−TEXT( Doe )
B . 5 : ADD−ELEM(< surname > ,< a u t h o r >)
B . 6 : ADD−TEXT( Doe , < surname >)
B . 7 : REMOVE−CHAR( ’ ’ )

Listing 5: Delta 2

C . 1 : WRAP( John , <name >)
C . 2 : WRAP( Doe , <surname >)

Listing 6: Delta 3

D . 1 : IDENTIFY−NAME( John , <a u t h o r >)
D . 2 : IDENTIFY−SURNAME( Doe , <a u t h o r >)

Figure 2: Possible deltas for <author>. For illustrative purposes, elements are referred to using their names rather than a
proper pointing mechanism such as XPointer.

and edit distance [4][12]. There are various definitions of edit distance; the most basic one is
defined as the number of changes needed to transform one document into another. There are also
weighted variants of the edit distance where costs are associated to the kind of changes produced
(e.g. Add has cost 1 while Del has cost 1.3, making removals slightly more expensive) or to the
amount of data modified by the changes (e.g. making Add("ab") more expensive than Add("a")
but cheaper than Add("a") + Add("b")). Note also that the edit distance is highly affected by the
set of available operations and their weights.

To avoid overloading the word “edit distance” we refer to the most basic edit distance as
Length. The Length measures the number of changes listed in a delta. The goal of many algo-
rithms is to produce deltas with the smallest possible Length, i.e. as short as possible. That is
required for instance in scenarios S3, S4 and S7 of the previous section. However, there are cases
in which a moderately long delta can be preferred over a shorter, equivalent delta. For example,
the editor in S5 may prefer to see a long list of words that have been modified in a paragraph
rather than a single change that states that the whole paragraph has been changed. At the same
time, she/he does not want an even longer delta in which a change is generated for every single
changed character.

4.2. Terseness

There are other evaluations besides the absolute measurement of the space used by the delta.
It is interesting, for instance, to understand whether or not that space is actually required or the
delta contains redundant information.

That is why we introduce the concept of Terseness. The Terseness indicates the relation
between the elements actually modified and the elements that appear in the delta, even if they
were not modified. The measurement of terseness would be useful in several scenarios. In
scenarios S3 and S4 extreme terseness is required. In these cases every repeated byte is a wasted
byte. On the other hand, deltas that are too terse are very hard to read and interpret by a human.
For this reason some algorithms include a bit of context around the real modification, so that the
user can understand better what is being changed and where. In fact, scenarios S1 and S2 would
benefit from a lower degree of terseness.
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The tradeoff represented by the Terseness metric can be seen clearly comparing two possible
ways to express the modifications to the AUTHOR element in Figure 2. Delta 1 removes the
subtree rooted on author and adds the new version of the same; delta 2 wraps some characters
with elements. The latter is more terse than the former because it avoids using the same data in
more than one change or repeating data that is already present in the source document.

4.3. Conciseness

Measuring only length and terseness still hides some useful information about the internal
behavior of the algorithms. It is in fact interesting to also discover which strategies an algorithm
uses to detect a given number of edits and, in particular, its capability of aggregating atomic
changes into complex ones.

Consider a diff algorithm that works on source code and recognizes deletions and insertions
of entire lines of code. The deletion of the lines 7-9 could be expressed as a sequence of atomic
deletions Del-line(7), Del-line(8), Del-line(9) or as a single change Del-lines(7..9) that groups
together the smaller changes. The first representation is more verbose but captures exactly what
has happened on each unit of content, while the second one is more compact and provides a
high-level view of changes.

For this reason, we introduce the idea of Conciseness. Conciseness indicates to what extent
the atomic changes found in a delta have been grouped into complex changes. More precisely,
it indicates the relation between the number of changes in the top level of a delta (that have not
been grouped in other changes) and the overall number of changes. Note that top level changes
can be atomic or complex.

A high degree of conciseness implies a reduction of the details exposed in the delta. This
reduction usually leads to a clearer representation of changes for humans, where details are hid-
den behind higher level changes. Consider again the example in Figure 2. The Wrap operation
(change C.1) in Delta 2 is easier to understand and it is actually derived by aggregating small
changes into a bigger one (changes B.1, B.2 and B.3).

That is why a high conciseness is preferable, for instance, in scenarios S1, S2 and S5 where
changes are expected to be interpreted mainly by humans. On the other hand, conciseness may
be irrelevant or even problematic for software agents. For example, tools that process and apply
deltas need to support all these higher level operations. For them, it would be easier to work with
atomic changes, though in a very long sequence.

Notice also that the value of the conciseness metric is strongly related to the length metric,
but not equal to it. A high degree of conciseness, in fact, implies a smaller length of the delta
but it does not necessarily imply that the size of the delta is reduced. For example, large space is
required when the delta also carries information about both the aggregating and the aggregated
changes. Finally note that two deltas with the same length can have two different degrees of
conciseness, depending of the different sets of changes grouped together. Consider the Delta 2
in the example, that could be a refinement of Delta 1 (Listing 3) or of Delta 1bis (Listing 4). If
derived from Delta 1, the conciseness is lower since the same delta has been generated from a
smaller set of changes.

4.4. Compositeness

There may be other interesting information worth capturing about the behavior of diff algo-
rithms on complex and atomic changes. For instance, it is relevant to measure if an algorithm
tends to prefer complex changes more than atomic ones. Conciseness is not enough for this, as
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it only evaluates the number of top level changes against the overall number of changes in the
delta (without considering top level atomic changes).

That is why we need a new metric, that we call Compositeness. Compositeness indicates how
much of the delta length is due to the use of complex changes. More precisely, it indicates the
relation between the number of complex changes and the overall number of changes (complex
or atomic) in the top level of the delta. Note that the compositeness only considers the top level
of the delta, without going into details of nested changes.

A high degree of compositeness indicates that a delta is particularly suitable for being inter-
preted by humans. That is very useful, for instance, in scenarios S5 and S6. The human analysis
of literary documents and their evolution, as well as the implementation of tools for capturing
and describing changes, are more effective when working on more abstract representation of
changes. Similar considerations can also be applied to scenario S2: a programmer interested in
a global view of code would benefit a short list of more meaningful changes instead of a longer
list of small atomic ones. In case of scenario S1, on the other hand, a programmer might be
interested in a more specific and localized view of changes and would also benefit a lower degree
of compositeness.

The examples in Figure 2 show two very different levels of compositeness: Delta 1 is com-
posed of atomic changes only, so its compositeness value is extremely low. On the contrary,
in Delta 2 all the atomic changes have been grouped into a complex Wrap that lead to a very
high degree of compositeness. The same applies to the previous example on deleting lines of
code: distinguishing single line deletions produces a very low value of compositeness, while the
compositeness of a delta that detects the deletion of a set of contiguous lines is very high.

4.5. Deep Compositeness

The previous metric, compositeness, indicates how much of the delta length is due to the use
of complex changes. The compositeness of a delta does not take into account the depth of these
complex changes. However, the presence in a delta of deep changes, i.e. changes that encapsulate
other changes that in turn encapsulate other changes and so on, is a strong indicator of the fact
that the algorithm has been able to associate more meaningful operations to the detected changes.

For example, consider again the case in which some lines of a document have been deleted.
We have already said that the grouping of similar changes into a complex change (Del-lines(7..9))
increases the compositeness. Let us assume that the lines under investigation form a paragraph.
If the algorithm knows the document format and sees that, for example, there are empty lines
around the removed lines, it can encapsulate the complex change Del-lines(7..9) into a more
meaningful change Del-paragraph-starting-at(7). The latter change carries more meaning than
the former, yet the value of the compositeness metric is the same.

To capture this other perspective on how changes are further encapsulated by an algorithm,
we introduce a new metric that we call Deep Compositeness.

The expected degrees of deep compositeness to evaluate our scenarios are similar to those of
compositeness: higher values for scenarios like S1, S2, S5 and lower ones for situations like S3
and S4. This metric becomes even more relevant when deltas are expected to be read by humans
since it measures in a deeper way the ability of capturing abstract changes. For this reason, for
instance, a high level of deep compositeness is required for scenario S6, when changes have to
be visualized and analyzed separately.

Such a metric is also useful to measure to what extent an algorithm is specialized for specific
formats. For instance, an algorithm that knows HTML operations will be able to detect more
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complex changes on XHTML files, than an algorithm limited to XML operations or, even, to
pure text. Thus, using this metric can be helpful to select an algorithm for scenarios S7 and S8.

5. Formalization of deltas

In order to provide calculable formulas for the metrics previously outlined, we need to estab-
lish first a reference delta model. We will use this model to calculate various objective properties
of the deltas; the metrics formulas will be built upon these properties.

The delta model we will use in this paper is the Universal Delta Model (UniDM) [9][10].
UniDM is able to express deltas produced by different algorithms on different kinds of documents
and based on arbitrary sets of recognized operations. We adopted this model over other existing
models [25][3][26][27] because all the other models are limited to a specific document format or
force a limited view of what deltas can represent, while the metrics we present in this paper are
general and suitable for use with any delta or diff algorithm. The discussion of the completeness
of UniDM is out of the scope of this paper. An exhaustive analysis can be found in the original
works.

In this section we summarise the main features of UniDM. We will introduce and use only
a subset of the whole UniDM model: just enough to provide the formal groundwork on top of
what our metrics will be built.

The core of the UniDM is the description of deltas, how they aggregate changes, how changes
can be used to expose details about the detection of sophisticated, domain-specific modifications
and how basic and format-specific operations can be defined. In addition to this, the model
provides also a simple formalization of what documents are and what they are composed of.

5.1. Model of document

To illustrate the point of this paper we will use a simplified version of the UniDM definition
of document. Documents are seen as graphs where the nodes are the components of the doc-
ument (e.g. paragraphs and chapters in a DocBook document, nodes and attributes in a XML
document, etc.) and the labelled edges are the relations between said nodes (e.g. order relations,
containment relations, references, etc.).

Definition 1 (Document). A document (D) is a set of elements (E) and relations between ele-
ments (R).

D ≡ (E,R)

This reduced definition of document is flexible enough to describe all kinds of documents at
a certain abstraction level (e.g. at the XML Infoset level or at the Unicode string level).

For simple string-like documents only one kind of elements and one kind of relations
(follows (e1, e2), i.e. e1 is followed by e2) are needed, as shown in figure 3. More elaborate
documents like XML trees can be represented using different types of elements and relations, as
shown in figure 4.
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The string “hello world” can be represented as:

Dh = (
{e1, e2, . . . , e11} ,
{follows (e1, e2) ,
follows (e2, e3) ,
. . . ,
follows (e10, e11)}

)

where
e1 = elem(h), e2 = elem(e) and so on, and the function elem (v) returns a unique element repre-
senting the value of v.

Figure 3: The string document "hello world" in UniDM notation.

The XML document <p class="notice">ready<br/></p> can be represented as:

Dh = (
{e1, e2, . . . , e5} ,
{r1, r2, . . . , r5}

)

where

• e1 = xml-elem(p)

• e2 = xml-attr(class)

• e3 = xml-text(notice)

• e4 = xml-text(ready)

• e5 = xml-elem(br)

and

• r1 = attr-of (e1, e2)

• r2 = attr-has-text (e2, e3)

• r3 = child-of (e1, e4)

• r4 = child-of (e1, e5)

• r5 = follows (e4, e5)

Figure 4: The XML document <p class="notice">ready<br/></p> in UniDM notation.

5.2. Model of changes and deltas
The differences found by a diff algorithm are expressed as a set of changes. Each of these

changes describes an operation that must be done on the source document to reconcile one of
the found difference, in other words to make the source document more similar to the target
document.

Definition 2 (Change). A change is a record of the fact that part of the source document S must
be changed using operation op with data d in order to produce a patched document S ′.

c = (op, d) | S ′ = ϕ (S , c)

Changes by themselves do not carry enough information to rebuild the target document from
the source document. There are various other pieces of information about the changes that must
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be recorded for the delta to be useful. The most basic additional information that is needed is the
order in which the changes must be applied, or the lack of such an order (i.e., when changes do
not depend on each other). In general terms, change relations are objects used to record that a
certain relation exists between certain changes. The meaning and the intended effects of a change
relation are described by the type of that relation.

Definition 3 (Change relation). A change relation is a tuple describing the fact that there exists
a relation of type K between the set of changes C1 and the set of changes C2.

r = (K,C1,C2)

The two most common types of change relations are: application order and encapsulation.
Application order relations describe the (partial or total) order in which changes should be ap-
plied, for example “the changes c3, c7, c89 must all be applied before the changes c4, c12, c72”.
Encapsulation relations record the fact that a change has been detected as the consequence of the
detection of other smaller changes, for example “the change c34 encapsulates the changes c12,
c13, c21”.

The encapsulation relation provides the basis for one main distinction that can be found
between changes: the distinction between atomic and complex changes. Some of the generated
changes are considered atomic changes because they are found and generated by the algorithm
looking only at the content of the source and target documents. Complex changes, instead, have
been generated by analyzing some of the changes that have already found. The link between
the generated change and the changes used to generate it are recorded through encapsulation
relation.

Definition 4 (Encapsulation relation). An encapsulation relation is a kind of change relation that
links a container change to all changes it was generated from.

Rencapsulation ≡ {r | r ∈ R, r.K = encapsulates}

Definition 5 (Atomic change). An atomic change is a change that does not encapsulate any other
change.

Catomic ≡ Ċ ≡
{
c | c, y ∈ C ∧ @r : r ∈ Rencapsulation,

r = (encapsulates, c, y)
}

Definition 6 (Complex change). A complex change is a change that encapsulates at least one
other change.

Ccomplex ≡ C̄ ≡
{
c | c ∈ C,∀r : r ∈ Rencapsulation,

r = (k, c1, c2) , c1 = {c} , c2 , ∅
}

Note that complex changes might encapsulate either complex or atomic changes.
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Definition 7 (Top level change). A top level change is a change that has not been encapsulated
in any other change.

CTopLevel ≡ Ĉ ≡
{
c | c ∈ C,∀r : r ∈ Rencapsulation,

r = (k, c1, c2) , c < c2
}

Figure 5 shows the overall structure of UniDM in UML and highlights the hierachical clas-
sification of changes, their aggregation in deltas and their relation to other referenced changes.
Please note that this is just one of the many possible UML materializations of UniDM. In this
particular graph we give a special status to certain encapsulation relations, creating particular
classes (CompleChange, GroupingChange, etc.) for changes that encapsulate other changes in
certain specific ways. Other relations like apply-before have been left as generic associations,
as they are not important for the analysis done in this paper.

Figure 5: Class diagram of changes in UniDM

UniDM specializes complex changes in three different classes:

Grouping changes Changes that aggregate instances of the same change operating on contigu-
ous elements of the document. An example of a grouping change is Del-lines(7..9), that
groups together smaller changes to single lines ([Del-line(7), Del-line(8), Del-line(9)]).

Meaningful changes Changes that attach a more precise meaning to the aggregated changes.
For instance, the removal of a piece of text in a certain position (Del("bye")) and the
addition of exactly the same text in the another position (Add("bye")) can be expressed as
a more complex change Move("bye", 4, 9).

Structural changes Changes that aggregate all changes applied to the same document structure,
and organize them in a way that resemble that structure or the way users modified it. For

14



instance, the removal of a XHTML node Del(<span class="emph">text</span>) aggre-
gates the removal of all pieces of the subtree rooted in that node: [Del("text"), Del(<span
class="emph"/>)].

Finally, a delta is a collection of changes and change relations:

Definition 8 (Delta). A delta δS ,T is a tuple of changes (C) and change relations (R) that describes
how to transform the source document (S ) into the target document (T ).

δS ,T ≡ (C,R)

Deltas are used to group together the changes found by a diff algorithm during or after the
comparison of two documents. As such, they may be regarded as the main output of a diff
algorithm but also as the working object used by the algorithm during its computations.

Figure 6 shows the delta 2 of figure 2 codified as a UniDM delta.

delta2 = ({c1, c2, . . . , c8} , {r1, r2, . . . , r6})

c1 = (remove-xml-text, ”John”, < author >)

c2 = (add-xml-elem, < name >, < author >)

c3 = (add-xml-text, ”John”, < name >)

c4 = (remove-xml-text, ”Doe”, < author >)

c5 = (add-xml-elem, < surname >, < author >)

c6 = (add-xml-text, ”Doe”, < surname >)

c7 = (wrap, ”John”, < name >, < author >)

c8 = (wrap, ”Doe”, < surname >, < author >)

r1 = (apply-before, {c1} , {c2})

r2 = (apply-before, {c2} , {c3})

r3 = (apply-before, {c4} , {c5})

r4 = (apply-before, {c5} , {c6})

r5 = (encapsulates, {c7} , {c1, c2, c3})

r6 = (encapsulates, {c8} , {c4, c5, c6})

Figure 6: Codification of delta 2 from figure 2

5.3. Objective properties of changes and deltas

There are various objective features that can be extracted from a delta and the changes it
contains. The most basic one is the number of changes produced by an algorithm; for algorithms
that are able to recognize complex changes, one can also extract the number of such changes
and rate their complexity. Structural information about the hierarchical organization of changes
can also be measured automatically. The main properties that can be extracted from each change
expressed in a UniDM delta are:

population the total number of changes of which a change is composed of, including itself and
the recursive closure of the encapsulated changes;

depth the length of the longest path from the change to an atomic change, in the graph of its
encapsulated changes;

width the number of distinct changes encapsulated directly inside the change;
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num touched elements the number of distinct elements of the input documents that are men-
tioned in the change or in its encapsulated changes; in fact, each change might include not
only the elements it has actually modified but also some other elements, which provide
contextual information (for instance, the lines before/after a modified line in a line-by-line
source diff);

num modified elements the minimum number of elements that must be modified by the change
to fulfill its purpose; in other words, the number of elements included in the change since
they were actually modified; the set of modified elements is then a subset of the touched
elements, which does not include those elements added just to provide contextual infor-
mation;

Note that the nature of touched and modified elements – and the granularity of the overall
count – depends on the concrete application domain: it might be single character, a line, an XML
element, and so on;

There are also features that can be calculated on the whole delta, with a direct count or by
combining measures of individual changes:

num top-level the number of changes that are not encapsulated in any other change;

population the sum of the population property of all changes;

num touched elements the sum of the touched elements of all changes;

num modified elements the minimum number of distinct pieces of information that must be
modified in order to turn the original document into the modified one.

From these basic properties, other specialized properties can be derived taking into account
only certain kinds of changes:

propk is the property prop calculated taking into account only changes of kind k. For example
num-top-levelcomplex is the number of complex changes that are not encapsulated in any
other change.

Table 1 reports the values of these properties on the four sample deltas shown in Figure 2. Most
of them have been calculated by aggregating the values of individual changes composing the
delta.

population # touched # modified # top-level

(complex)

Delta 1 5 17 3 5 (0)

Delta 1bis 7 17 3 7 (0)

Delta 2 5 11 3 2 (2)

Delta 3 7 11 3 2 (2)

Table 1: Measuring delta indicators on the sample deltas.

To clarify this, let us discuss how the values in the first two rows have been obtained:
Delta 1: since the delta includes only five atomic changes and none of them is encapsulated in

any other, its population is 5 as well as the number of top-level changes. The number of complex
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changes (fourth column, in parenthesis) is 0 since all changes are atomic. The value of touched
elements takes into account the number of characters and XML elements contained in the delta.
Since the delta lists 15 characters (the string “John Doe” in change A.1, “John” in A.3 and “Doe”
in A.5) and 2 elements (“name” and “surname”, in changes A.2 and A.4) the total value is 17.
The value of modified elements indicates the minimum amount of items to change in order to
obtain the same output of the delta. It is equal to 3 corresponding to: 1 character (the empty
space to delete between “John” and “Doe”) and the new XML elements “name” and “surname”.

Delta 1 bis: the values of the population, top-level and complex changes are respectively 7, 7
and 0 since all changes (B.1-B.7) are atomic and top-level. The value of touched elements is 17
as in the previous case but derives from different touched items: 15 characters (the string “John”
repeated in changes B.1 and B.3, “Doe” repeated in B.4 and B.6, the empty space “ ” in B.7) and
2 elements (“name” and “surname”, in changes B.2 and B.5). The number of modified elements
is calculated as in the previous case.

6. Formalization of metrics

Now that we have a reference formalization of deltas and their properties, we can give a for-
mal description of the metrics we outlined in Section 4 and calculate them through mathematical
formulas.

6.1. Length

The Length of a delta indicates the number of changes listed in that delta. Note that changes
which have been previously aggregated in complex ones are not relevant for the measurement of
the length. In fact, it only considers top level changes.

Length (δ) = num-top-level (δ)

The values of Length for the deltas in Figure 2 are: 5 for delta 1, 7 for delta 1bis, 2 for delta
2 and 2 for delta 3, corresponding to the values in the last column of Table 1.

6.2. Terseness

The Terseness of a delta measures the ratio between the number of elements that have been
included or referred to in the delta because they have changed and the number of context elements
that appear in the delta but were not actually modified. It basically measures the amount of
contextual information.

Terseness (δ) =
num-modified-elements (δ)
num-touched-elements (δ)

Considering the modified and touched elements reported in Table 1, the values of Terseness
are: 0.17 ( 3

17 ) for delta 1 and delta 1bis, 0.27 ( 3
11 ) for delta 2 and delta 3.
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6.3. Conciseness

The Conciseness of a delta indicates how much the delta has been simplified by the encapsu-
lation of changes. It indicates the ratio between the number of changes in the top level of a delta
and the overall number of changes. The formula has been designed so to return values ranging
from 0, for deltas that are not concise, to 1, for very concise deltas.

Conciseness (δ) = 1 −
num-top-level (δ)

population (δ)

The values of Conciseness are: 0 (1 − 5
5 ) for delta 1, 0 (1 − 7

7 ) for delta 1bis, 0.6 (1 − 2
5 ) for

delta 2 and 0.71 (1 − 2
7 ) for delta 3.

6.4. Compositeness

The Compositeness of a delta shows how much of its conciseness is due to the use of complex
changes. It indicates the ratio between the number of complex changes and the overall number
of changes in the top level of the delta.

Compositeness (δ) =
num-top-levelcomplex (δ)

num-top-level (δ)

The values of Compositeness are: 0 ( 0
5 ) for delta 1, 0 ( 0

7 ) for delta 1bis, 1 ( 2
2 ) for delta 2 and

1 ( 2
2 ) for delta 3.

6.5. Deep Compositeness

The Deep Compositeness of a delta measures how an algorithm encapsulates complex changes
into other complex changes. The deep compositeness values ranges from 0, for deltas that con-
tain no complex changes and thus no deep compositeness, up to 1, for deltas with with many
deep changes. The formula has been designed to asymptotically approach the maximum value,
so to accommodate deltas with arbitrary average depth d̄.

DeepCompositeness (δ) = 1 −
1

1 + log
(
d̄
)

where

d̄ =

∑
c∈Ĉ depth (c)

num-top-level

The values of Deep compositeness are: 0 (1 − 1
1+log(1) ) for delta 1 and delta 1bis, 0.52 (1 −

1
1+log(3) ) for delta 2 and 0.58 (1 − 1

1+log(4) ) for delta 3.

7. Applying the metrics

The main goal of these metrics is to allow the evaluation of the fitness of an algorithm in
a certain context, by analyzing the characteristics of the deltas it produces. In this section we
explain how to apply these metrics to existing algorithms and we present the results of their
application on three well-known XML diff tools.
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7.1. A two-phase process to evaluate algorithms through metrics

The delta model and metrics are independent from a specific data format. This makes it
possible to compare different deltas, produced by different algorithms. The basic idea is to rely
on UniDM as reference model to translate all deltas, as depicted in Figure 7. The process can be
split in two phases:

1. interpretation: the output of each algorithm is mapped into UniDM;

2. evaluation: atomic indicators and aggregated metrics are measured on the pre-processed
deltas.

Figure 7: Overview of the process of applying metrics to diff algorithms.

While the evaluation step is generic and the same calculation can be applied to all deltas, the
interpretation one is different for each algorithm.

This is a typical problem of conversions based on an universal model: it is necessary to
implement separate converters, each able to manage the specific features of each algorithm and
to extract information mapped into the general model; the translation has to be lossless, with no
impact on the original algorithm.

The difficulty is then is to build such algorithm-specific converters. In the next section we
will briefly explain how we have implemented some converters for XML diff algorithms. The
problem, in fact, cannot be discussed from a general point of view but it is strongly tied up with
the peculiarities of each algorithm under investigation.

7.2. Applying the metrics to XML diff algorithms

We implemented our approach on three well-known XML diff tools: JNDiff [7], XyDiff [6]
and Faxma [2]. To complete our evaluation we also included an implementation of the trivial
algorithm for diffing XML files that, when diffing documents A and B, produces a delta with two
operations: the deletion of the whole document A and the insertion of the whole document B.
Our goal is to verify if the metrics highlight the ‘bad’ behavior of such algorithm: even if correct,
in fact, the output of this algorithm provides too little information and is very difficult to use.

The overall evaluation process is an instance of the general two-phase approach described in
the previous section, as depicted in Figure 8.
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Figure 8: The chain of tools for applying the metrics to XML diff algorithms.

Since all algorithms produce deltas in XML, we implemented converters as XSLT transfor-
mations1. The UniDM deltas have been serialised in a XML format, whose syntactic details are
not relevant for our discussion.

The critical point was that the deltas produced by each algorithm are optimized for the appli-
cation that is expected to process them and contain data that will be eventually used to re-build
the newer document from the older one. That means, for instance, that changes are ordered in a
way that does not necessarily match the order they were applied, rather the order expected by the
application; or that some types of changes are aggregated at the end of the delta (for instance, all
those involving attributes in the case of most XML diffs).

We studied the serialisation format of both JNDiff and XyDiff and implemented ad-hoc
UniDM converters. Basically, the changes found in the original deltas, almost all atomic changes,
have been grouped in complex changes similar to those used internally by these algorithms.

The case of Faxma was more complex. The algorithm, in fact does not generate a sequence of
edit operations but a format that uses XPath-like expressions to refer to the unchanged fragments
of the original document and, among them, interposes the newly inserted elements and attributes.
This guarantees a very limited use of memory and resources (that is what authors wanted) but
makes it impossible to identify the deleted content from the patch. In this case, the information
needed to apply the metrics is totally absent, not only hidden. Furthermore, in the Faxma’s
deltas there is no way to understand the difference between an update and an addition of content,
concepts that are present in the algorithm and in the implementation but are not made explicit
in the serialized file. The only solution was to patch the original code of Faxma and to add
such missing information. The patched code produces a low-level dump of the changes detected
internally. It is worth stressing that this version does not affect the internal functioning of the
original algorithm but it only adds some information to the output, logging data that had been
removed for optimisation purposes. Both the original and the patched code are open-source2.
This lead us to discuss a further issue: the possibility of instrumenting the source code (to trace
internal delta information) is not applicable to non-open source tools; this is a limitation of our

1Experimental data and UniDM converters are available at http://diff.cs.unibo.it/delta-metrics/
2The original code is available at https://github.com/ept/fuego-diff; the new code is available at

https://github.com/gioele/fuego-diff
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approach which can only be applied to algorithms whose code is available or whose serialisation
format is expressive enough to be translated in UniDM. This is the case, however, of many
existing diff algorithms, as discussed in the previous works about UniDM[9][10].

Finally, note that implementing the UniDM converter for the trivial algorithm was very sim-
ple, as well as the tool for calculating metrics; the latter basically extracts data by using XPath
and performs simple math calculations, following the formulas presented in the previous sec-
tions.

7.3. Experimental results on XML diff
Our experiment consisted of executing all four XML diff algorithms on a set of documents

and calculating the metrics on their output, by using the above-mentioned tools. We used the
same test-set used to evaluate JNDiff3. It consists of five documents, each available in two
versions. These documents are very heterogeneous for size, internal structure and source:

• The first two documents are taken from the evaluation of DocTreeDiff [3]: the first one
(identified as LETTER from now on) is a one-page letter while the second is a bibliography
of about 15 pages (identified as BIBLIO in the rest of the section). They are both in the
XML format used by Open Office 2.x and available on the Web.

• Two others, respectively called DL1184 and DL2221, are XML-encoded legislative acts
and bills. They are highly structured in articles, clauses and paragraphs and follow precise
rules to encode textual content.

• The last one, identified as PROTOCOL, is an XHTML document containing the speci-
fication of a web protocol, used for a classwork project. It is structured in sections and
subsections and contains a lot of internal references and code snippets.

Table 2 shows in detail all results we collected. Each column represents a metric. Rows
are clustered in five groups, one for each input document. For each document, the table shows
the value of each metric calculated on each algorithm. To better highlight differences between
algorithms and some common behaviors we summarized these results in the radar charts that
follow in this section.

In order to draw these radar charts and to compare the algorithms directly we performed
some normalisation on the values of length.

Given that the length value indicates the total number of top-level changes each delta is
composed of, in fact, absolute values of deltas produced by different algorithms vary a lot and
cannot be compared directly. To solve the problem, we first calculated the magnitude of each
length, as Lalgorithm = log10 (Length (δ)) and then calculated:

LengthNormalized (δ) =

= 1 −
Lalgorithm

max
(
LJNDi f f , LXyDi f f , L f axma, Ltrivial

)
Thus, we obtained a length normalized score between 0 and 1, with higher values for lower

(normalized) values of length. This normalization is also the reason why, for each document,

3The test-suite is available at http://diff.cs.unibo.it/jndiff/tests/
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Length (Normalized) Terseness Conciseness Compositeness Deep Compositeness

BIBLIO

JNDiff 0.45 0.23 0.39 0.13 0.05
XyDiff 0 0.09 0.01 0 0
Faxma 0.99 0.09 0.95 0.21 0.08
Trivial 0.89 0.07 0 0 0

LETTER

JNDiff 0.20 0.38 0 0 0
XyDiff 0 0.28 0 0 0
Faxma 0.2 0.44 0.58 0.15 0.06
Trivial 0.81 0.18 0 0 0

DL1184

JNDiff 0.23 0.27 0.59 0.23 0.08
XyDiff 0.70 0.05 0 0 0
Faxma 0 0.06 0.69 0.18 0.07
Trivial 0.85 0.03 0 0 0

DL2221

JNDiff 0.26 0.43 0.64 0.38 0.12
XyDiff 0.15 0.08 0.28 0.21 0.08
Faxma 0 0.07 0.79 0.26 0.09
Trivial 0.83 0.03 0 0 0

PROTOCOL

JNDiff 0.21 0.26 0.52 0.16 0.06
XyDiff 0 0.06 0.25 0.07 0.03
Faxma 0 0.06 0.56 0.09 0.04
Trivial 0.89 0.06 0 0 0

Table 2: Evaluating metrics for all algorithms on all files of the dataset

there is always an algorithm with length normalized value equal to zero (the one with highest
length).

Note that the normalization process is applied a posteriori and does not impact the actual
measurement of the length. It is only used to compare algorithms, not to calculate the metrics
for each of them. It is true, on the other hand, that such a normalisation has to be repeated
whenever a new algorithm is considered (as we need to calculate again the denominator of the
previous formulas). We think this is acceptable since the calculation is simple and the metrics are
calculated just once for each algorithm. We could have instead maintained the original value or
could have used a fixed normalisation value (for instance, the length of the delta produced by the
trivial algorithm). That would be easier to calculate but would make the radar charts less clear
and meaningful.

A clarification is also needed about the terseness values. The terseness indicates the ratio
between the modified elements and the touched ones. We approximated the number of modified
elements as equal to the minimum amount of modified textual content between the two input doc-
uments. This approximation allowed us to calculate the value in a fully automatic and repeatable
way, without requiring us to manually inspect deltas. This value in fact can be calculated easily
by using external binary diff tools on the isolated characters in the XML text nodes; this value is
not totally accurate but it provides a reasonable round-up, since any other algorithm cannot have
a higher terseness (as it cannot modify a lower number of characters).

The results on documents BIBLIO, PROTOCOL and DL2221 are graphically shown in Fig-
ure 9. These documents are written in three different formats and differ a lot in terms of internal
structures and dimensions. Nonetheless all the web graphs for a certain algorithm look similar,
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while there are big differences in the graphs generated by different algorithms. This is an impor-
tant finding: the algorithms show a quite regular behavior and the metrics are able to capture that
behavior correctly.

Figure 9: Evaluating metrics on documents BIBLIO, PROTOCOL and DL2221

The other interesting point is that these plots highlight clearly some peculiarities of each
algorithm. First of all, consider the results of the trivial algorithm. It scored a very high length
normalized (since only two changes were detected) but obtained a zero score for conciseness,
compositeness and deep compositeness since it does not try to give a higher-level interpretation
of changes. For the same reason, its terseness score is the lowest of all algorithms. Note that a
mere evaluation of the number of edits, i.e. of the length metric, would have given a very high
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score to the delta produced by this algorithm.
Consider also the behavior of Faxma with regard to conciseness, compositeness and deep

compositeness. These dimensions are related to each other and capture whether or not an al-
gorithm is able to aggregate changes into complex ones. Conciseness is very high for Faxma
since the algorithm builds large complex changes in the form of “move” changes. These “move”
changes are the mechanism used by Faxma to move big chunks of documents without the need
to delete and re-add the same data in different position. Notice also that this does not mean that
the majority of changes are very meaningful: rather, the complex changes generated by Faxma
are just large containers of smaller similar changes; Faxma also tries hard in generating as few
changes a possible. These two factors lead Faxma to produce deltas with low values for com-
positeness and for deep compositeness, though these values are higher than other algorithms that
aggregate less changes into more complex ones. However, this helps Faxma with two of its aims:
first, it can store fewer changes in the patch because moves are translated as “copy” operations in
their patch format; second, the lack of an additional step where changes are interpreted at higher
levels allows for more speed and less required space. The normalized scores of the Length metric
highlights how the ability of Faxma to generate less changes using copy operations, however, de-
pends on the file structure and the kinds of modifications made to the file: it generated very few
changes for an highly structured document such as BIBLIO, but had to generate a lot of small
changes to describe the modifications made to semi-structured documents such as LETTER or
PROTOCOL.

The low values of XyDiff in almost all metrics also confirm some of its characteristics. The
algorithm, in fact, gives much importance to performance and does only consider the size of
the delta as indicator of quality. Being a greedy algorithm, it is not able to refine the already
generated changes: for example the deletion of three sibling nodes would appear as three separate
atomic change deleting one node, not as a complex change enclosing all the three siblings; this
reduces compositeness, deep compositeness and conciseness. Its greedy nature also generates
unneeded deletion changes when subtrees are deleted: one change is generated for each hierarchy
level of that subtree; this makes the delta redundant and the overall length normalized score
very low. Another emergent behavior of XyDiff is that fine-grained updates are often expressed
as couples of insertions/deletions of large subtrees with a lot of common parts; this reduces
drastically the terseness score.

The results on JNDiff are also insightful. The algorithm, in fact, works very well on textual
changes and is able to aggregate fine-grained modifications on text nodes into complex changes.
On the other hand, such JNDiff is not equally precise on elements and some structural changes
that could be aggregated are left disjoint. This is the reason why results are generally good but
there is no clear dominance in any dimension. It is also interesting to note that JNDiff tries to
limit the amount of nodes involved in each change, in order to be as much faithful as possible
to what authors actually did on the document. This is confirmed by the value of terseness, that
is the highest in all cases. Similarly, the fact that JNDiff tries to reduce the number of detected
edits influences the length normalized score that is always quite high, but lower than the trivial
algorithm, as expected. Last, the not-so-high deep compositeness metric shows that JNDiff is
indeed able to associate some meaning to the found changes but it still needs some improvements
to handle deeper nestings and domain-specific changes.

The experiments on the other two documents produced slightly different results. A deeper
analysis, however, shows that even these results are consistent with what we discovered so far
about metrics and algorithms’ peculiarities. The plot related to DL1184 is shown in Figure 10.
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Figure 10: Evaluating metrics on document DL1184

The plot appears different from the previous ones: the length normalized value of XyDiff,
in fact, is much higher than the others. Though, we expected an opposite behavior from an
algorithm that tends to repeat information and to not express abstract and concise changes. These
results depend on the nature of changes applied to the document: a lot of small structural changes
on a single flat element. While all other algorithms tend to fragment that change into smaller ones
(obtaining a higher number of edits), XyDiff detects a large change without being too precise in
detecting sub-changes. This implies that the length value is very high while all other metrics are
low. In this case, the internal strategies of the algorithm fits very well with this test case because
it has a record-like structure that is similar to that of a database, the class of documents XyDiff
has been designed for.

Figure 11: Evaluating metrics on document LETTER. Note that XyDiff is not plotted properly because all the values are
near 0.

The final plot, related to document LETTER and shown in Figure 11, looks again very differ-
ent from the others. The reason is that the changes applied to this document are of specific types,
mainly attributes updates, moves and a few changes on text elements (and no one on mixed
content-models). The metrics work quite well on these specific types of changes. In fact, the
terseness of Faxma is very high. The algorithm is designed to natively detect moves and aggre-
gations of sequences after the deletion of interposing elements. On the other hand, the results
of JNDiff get worse: its capability of detecting changes on mixed content-models is not very
helpful in this context. JNDiff is not able to aggregate atomic changes into more complex ones.
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That is the reason why conciseness, compositeness and deep compositeness are equal to zero.
For similar reasons, since the impact of nested changes and fine-grained textual modifications

is very low, XyDiff has the same behavior for these metrics but its values of terseness is a bit
higher than in the previous cases.

These experiments showed us some very interesting trends. In fact we managed to find
some peculiarities of the algorithms directly from the metrics values, although these values were
calculated only from the deltas and without any knowledge of the internals of each algorithm.
Though the evaluation dataset was quite small, the direction looks very promising and we expect
to obtain a full characterization with a larger analysis.

By limiting us to the data gathered during this evaluation, however, we can propose a ranking
of XML diff algorithms to use in the scenarios presented in Section 3. Though not directly
applicable to scenarios S1 and S2, since users in those scenarios usually compare non-XML
source code, the values of low terseness and high conciseness would suggest Faxma as first
choice for similar cases, followed by JNDiff. For these scenarios XyDiff would perform very
badly. JNDiff is also the best choice for scenarios S3 and S4, since it guarantees a very good
terseness and length (normalized), while Faxma is preferable as second choice. Faxma and
JNDiff are also suitable for scenarios S5 and S6. They, in fact, guarantee a good degree of
compositeness and deep compositeness. We would prefer to use JNDiff because of its higher
degree of terseness (that still maintains enough contextual information for human reviewers),
though the higher degree of conciseness of Faxma makes it a good choice too. For the same
reasons, JNDiff and Faxma are well ranked for scenarios S7 and S8 as well. Note also that
XyDiff is not suggested for scenarios S7, although it should, because we did not, on purpose,
take performance into account in our metrics. Finally, note that the trivial algorithm performed
bad in all metrics (apart form the length normalized score) thus it cannot be suggested for any of
the scenarios under discussion.

The findings of this experiment can be generalized into a set of rules for selecting the most
appropriate algorithm for a given situation. Table 3 shows the guidelines we distilled. It describes
some common situations and contains one row for each of them. The right column lists the
desired values of our metrics for each situation, so that any algorithm showing those values is a
good candidate for that case.

When diffing text-based documents, for instance, it is useful to have a clear output for hu-
mans, in which high-level changes have been detected from low-level ones (high conciseness and
compositeness). An algorithm with a high degree of terseness is fine for experienced users, since
they do not need a lot of contextual information. A low degree of terseness (i.e. more contextual
information) is instead needed for average users. The ability of an algorithm to reduce as much
as possible the information stored in the delta is useful when designers need to reduce space
consumption and when diffing large amount of data. When performance is a key aspect, in fact,
it is recommended to rely on algorithms with a low degree of conciseness and compositeness,
which do not use time and resources for interpreting and reorganizing changes.
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Scenario/constraints Desired metrics

Diff on text-based documents for experienced reviewer High conciseness
High (deep) compositeness

High terseness

Diff on text-based documents for average user High conciseness
High (deep) compositeness

Low terseness

Need to reduce space consumption High terseness

Large amount of data-centric documents Low conciseness
Low (deep) compositeness

High terseness

Table 3: Guidelines to select the most suitable diff algorithm.

8. Conclusions and future works

In this paper we presented a set of metrics and a methodology for the evaluation of the deltas
produced by diff algorithms. The metrics are based on a general delta model, called UniDM
and summarised in Section 5. The metrics were successfully experimented on XML diff: our
experiments showed that the values of these metrics reflect some properties of the analyzed
algorithms, for example the capability of detecting many localized small changes instead of
fewer large changes.

The current metrics are only some of the possible metrics one can use to measure the quality
of a delta. In our opinion this set gives good indications about the deltas and the algorithms,
and their ability to work in a given context. It is interesting, on the other hand, to investigate
additional metrics and to verify which new metrics can be built on the same formalization.

A key aspect of our solution is that it is designed not to be bounded to any specific domain.
We experimented it on XML diff algorithms and this analysis has not required us to do any
modification or extension to the model. The generality of UniDM and our first experiments make
us optimistic about the possibility of extending and tuning the metrics to evaluate diff algorithms
specialized, for instance, on database dumps[13], ontologies[8] or diagrams[28]. This is one of
the main future directions of our research. It will also be interesting to study the relation between
these domain-independent metrics and the domain-specific delta models and properties.

Another distinctive point of our metrics is that their values can be calculated in a totally
automated way, without resorting to any human intervention or judgment. The fact that these
values can be calculated in an unsupervised way opens the way to additional exploitations of
these metrics. One possible application is the use of these metrics as a fitness function in genetic
algorithms to calculate the best parameters for parametrized diff algorithms. For instance, JNDiff
has a threshold parameter that indicates the percentage of content that needs to be changed in a
block of text to make the algorithm emit a single large update change instead of many smaller
changes. Now this parameter must be set manually by the users of JNDiff; with the use of the
presented metrics it would be possible for a user to say “find the highest threshold value that
makes JNDiff generate deltas with a high conciseness value”.
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