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ABSTRACT 

Linear Mixed Models used in small area estimation usually rely on normality for 
the estimation of the variance components and the Mean Square Error of 
predictions. Nevertheless, normality is often inadequate when the target variable 
is income. For this reason, in this paper we consider Linear Mixed Models for the 
log-transformed income (which require back-transformation for prediction of 
means and totals on the variable’s original scale) and a Generalized Linear Mixed 
Model based on the Gamma distribution. Various prediction methods are 
compared by means of a simulation study based on the ECHP data. Standard 
predictors obtained from Linear Mixed Model for the untrasformed income are 
shown to be preferable to the considered alternatives, confirming their robustness 
with respect to the failure of the normality assumption. 

Key words: European Community Household Panel; Average Equivalized 
Income; Lognormal Linear Model; Prediction; Gamma Distribution. 

1. Introduction 

In the European Union, the demand for estimates about the distribution of 
income at the sub-national level, a fundamental tool for the implementation of 
social cohesion policies, has grown rapidly in recent years (Stewart, 2003). For 
the period from 1994 to 2001, income distribution parameters and poverty 
indicators may be estimated consistently across most of the member states using 
information collected by the European Community Households Panel (ECHP), a 
sample survey on households’ income and social conditions, coordinated by 
Eurostat (Betti and Verma, 2002; Eurostat, 2002). This panel survey was designed 
to provide reliable estimates of main parameters of interest for large areas within 



424                                    E. Fabrizi, M. R. Ferrante, S. Pacei: Comparing alternative… 

 

 

countries called NUTS1 (NUTS stands for the “Nomenclature of Territorial Units 
for Statistics”; Eurostat, 2003). 

The ECHP survey was substituted in 2004 by a new rotating panel survey 
called EU-SILC (European Union — Statistics on Income and Living 
Conditions), based on new measurement methodologies and a larger sample 
(Eurostat, 2005). The two surveys are very similar under many aspects and ECHP 
data pertaining to Italy is used for the purposes of this paper. 

We are interested in estimating the mean of equivalized household income for 
sub-national regions defining a partition of the country, for which direct 
estimators, that is, those applying standard weighted estimators to the region-
specific part of the sample, lead to estimates with too large a variance. The 
solution to this problem involves the application of a ‘Small Area’ estimator, that 
is, an estimator using relevant auxiliary information to improve the precision of 
direct estimates (see Rao, 2003, for a general review). The auxiliary information 
may be exploited by specifying a (sometimes implicit) model that relates all the 
areas being studied. 

In particular, in Fabrizi et al. (2007), we discuss several models within the 
class of ‘unit level’ Linear Mixed Models, where a linear relationship is assumed 
between the target variable and a set of auxiliary variables whose total is 
accurately known from the Census or some other sources, and random effects are 
introduced to model the correlation of residuals. In this approach, the models are 
linear for the equivalized household income considered on its original scale, and 
normality is assumed for the random effects and the residuals. In Fabrizi et al. 
(2007), we recognize that the normality assumption may not hold exactly for the 
considered data, but we find it to have a moderate impact on small area point 
predictors of equivalized mean income; moreover, provided that a robust strategy 
for the estimation of MSE is followed (for instance, the jackknife estimator of 
Jiang et al., 2002), an estimate of MSE associated to these predictors with good 
properties may also be obtained. 

Other authors (see for instance Elbers et al., 2003) prefer to apply Linear 
Mixed Models to the log-transformation of income. This in principle may 
improve the fit of the models, but it has two related drawbacks: i) in order to 
predict area means or totals on the original scale of the study variable you need to 
back-transform individual predicted values, but the resulting prediction values 
will be biased (although several methods have been proposed to keep this bias 
low); ii) the prediction of individual values requires that the values of auxiliary 
variables are known for each member of the population outside the sample, 
whereas if the model is linear on the natural scale of the study variable, only the 
area means/totals of auxiliary variables are needed to predict area means/totals of 
the study variable. 

In this paper, we do not consider this latter problem, we focus instead on the 
prediction of the mean of the equivalized income for a subset of the population by 
considering several alternative options. One is to consider a linear mixed model 
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on the natural scale of the equivalized income. To keep things simple, we will 
discuss the well-known nested error regression model introduced by Battese, 
Harter and Fuller (1988). Another is to also consider linear mixed models on the 
log-transformation of the equivalized income in association with different bias 
correction methods: naïve, smearing (Duan, 1983) and a ratio-adjusted-for-
sample-total (RAST) method discussed in Chambers and Dorfman (2003). 
Finally, we also consider a Generalized Linear Mixed model, in which a more 
suitable distribution (positive and non symmetric) for the equivalized income is 
assumed conditionally on the auxiliary variables, the Gamma distribution. 

The comparison of these options is based on a Monte Carlo exercise. To this 
purpose, the last wave (2001) of the ECHP survey is treated as a pseudo-
population from which we bootstrap samples using the survey weights as the size 
variable. This solution may not be as good as that of using data from a real 
Census population, but it is hopefully more realistic than generating population 
values of household income from a parametric model. 

The paper is organized as follows. Section 2 discusses the use of Mixed 
Linear Models for the small area estimation and describes the nested error 
regression model. Section 3 briefly reviews the ECHP survey and describes how 
we use this survey data to conduct the Monte Carlo simulation study. Section 4 
presents distributional assumptions and predictors suggested as alternatives. 
Performances of the estimators derived from the proposed models are compared 
in section 5. 

2. Linear mixed models in small area estimation 

When the target parameter is an average or a total, Linear Mixed Models 
(LMM) are largely used. A brief description of LMM and the estimators they lead 
to is given below. For a more complete review of the application of this class of 
models in the context of small area estimation, see Rao (2003, ch. 5). A general 
linear mixed model can be described as follows: 

1 1 ...= + + + +y X Z Z es sv vβ ,         (1) 

where { }=y djy  is the n-vector of sample observations, j denotes the unit and d 

the small area ( 1,...,= dj n ; 1,...,=d m ), β  a 1×p  vector of regression 
coefficients, iv  is a 1×iq  vector of random effects ( 1,...,=i s ), { }=e dje  a vector 

of errors; X  is assumed of rank p, { }Z zT
i idj=  is a × in q  matrix of the incidence 

of the i-th random effects. We assume that ( ) 0=iE v , ( ) =Gi iV v , ( ) 0=eE , 

( ) =e RV  (all expectations are wrt. model (1)) and that 1,..., ,esv v  are mutually 
independent.  



426                                    E. Fabrizi, M. R. Ferrante, S. Pacei: Comparing alternative… 

 

 

As a consequence, the variance-covariance matrix of y  is given by: 

( )
1

V y Z G Z R ZGZ R
s

T T
i i i

i

V
=

= = + = +∑ , 

where [ ]1 | ... |=Z Z Zs . It is usually assumed that matrixes ,G R  depend on a k-
vector of variance components ψ , and so we can write 

( ) ( ) ( )V ZG Z RTψ ψ ψ= + . 
Note that at the level of individual observations, the model (1) can be 

rewritten as 1 1 ...x z zT T T
dj dj dj sdj s djy v v eβ= + + + + . 

In small area estimation, the aim is to predict scalar linear combinations of 
fixed and random effects of the type = m + kT T vη β  where m  and k are 1×p  
and 1×q  vectors respectively, with =∑ i

i

q q . The best linear unbiased predictor 

(BLUP) of η  can be obtained by estimating fixed effects and “realized values” of 
random specific area effects by GLS method: 

( ) ( ) ( )= m + kBLUP T T vη ψ β ψ ψ%% % .         (2) 

When the variance components in ψ  are unknown, they may be estimated 
from the data and substituted into (2), thus obtaining “empirical BLUP” 

( ) ( ) ( )ˆˆ ˆ ˆˆ= m + kEBLUP T T vη ψ β ψ ψ%  (see Rao, 2003, ch. 6, and Jiang and Lahiri, 
2006, for details). As far as the estimation of ψ  is concerned, a number of 
methods have been proposed in the literature, such as Maximum Likelihood (ML) 
and Restricted Maximum Likelihood (REML) which assume the normality of 
random terms, and the MINQUE proposed by Rao (1971) which is non-
parametric. In the present work we have opted for the REML method, thus 
assuming normality. 

One simple example within the class of Linear Mixed Models is given by the 
standard one-fold nested error linear regression model of Battese, Harter and 
Fuller (1988), which has been widely applied in the small area literature: 

 xT
dj dj d djy eβ α= + +           (3) 

where djy  is the Y value observed on unit j of area d, xdj  is the auxiliary vector 
for unit j, β  is the fixed effects vector (common to all areas), dα  is the specific 
area d effect and dje  is the residual term for unit j. 

All random terms are assumed mutually independent and normally distributed 
with zero mean and constant variance: 
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( ) ( )2 20,  , 0,� �
ind ind

d dj eN e Nαα σ σ .       (4) 

Therefore this random effects structure corresponds to the assumption of a 
constant covariance between units that belong to the same area. Note that it is a 
particular case of (1) obtained when 1s = , 1 ,=q m  2 2

1  and G I R Im e nασ σ= = . 
Model (3) — (4) will be considered as the benchmark in the comparison 

between alternative distributional assumptions on residuals. The EBLUP 
estimator of the small area mean ( = +xT

d d dη β α ) will be given by = +x %% %T
d d dη β α , 

where fixed effects and “realized value” of random specific area effects are 
estimated as described above. 

3. The simulation study based on the european community household 
panel data 

We carried out a Monte Carlo simulation study using the last wave (2001) of 
the ECHP data available for Italy as our ‘synthetic population’. The use of the 
sample as pseudo-population is necessitated by the fact that the information on 
household income is not collected by the Census. Nevertheless, this solution is 
hopefully more realistic than generating population values of household income 
from a parametric model. Similar simulation studies based on re-sampling can be 
found in Falorsi et al. (1999); Lehtonen et al. (2003); Singh et al. (1994). 

We took the household to be the reference unit in our study. The households 
in the data set were selected from different strata (NUTS2 regions) and were 
given different weights that account for unequal selection probability, adjustments 
for non-response in the initial recruitment and subsequent attrition. 

In our Monte Carlo experiment, samples were drawn with replacement from 
the ECHP data set using stratified probability proportional to size sampling, the 
size variable being given by survey weights. Strata were given by NUTS2 regions 
which also correspond our domain of interest, the 21 Italian Administrative 
Regions, and were therefore treated as ‘fixed domains’. Moreover we note that 
replicated samples were drawn keeping the pseudo-population fixed, so that the 
simulation was aimed at evaluating the design-based properties of the estimators. 

The size of replicated samples was fixed to 1,000n =  (roughly 15% of the 
size of respondent households in the 2001 wave). The region-specific sample 
sizes we obtained ranged from 14 to 112, being on average equal to 48. The total 
number of simulated samples was set to 1,000. Monte Carlo errors associated with 
this number of replicates were small enough to ensure significance of all 
comparisons we discuss in section 5. 

Our target variable was given by the total net household income equivalized 
with respect to household size and composition. Total net household income is 
obtained as the sum of net incomes of all members of the household. Equivalent 
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net income is calculated by dividing total net household income by equivalent 
household size according to the OECD scale used by Eurostat (which gives a 
weight of 1.0 to the first adult, 0.5 to the other persons aged 14 or over who are 
living in the household and 0.3 to children under the age of 14).  

Regarding the characteristics of the obtained pseudo-population, its overall 
mean is 22,547 Euros and the coefficient of variation is 0.59. The distribution is 
positively skewed even though skewness is not extreme (skewness coefficient 

1 2.5≅γ ). The difference between mean and median is 9% of the mean. Looking 
at the different administrative regions, the small area averages of the target 
variable show very different values, thus reflecting the well-known regional 
disparities which characterised the country. For example, the highest regional 
average is about 70% higher than the lowest one. The variance varies among 
regions, increasing with the regional average, so that the coefficient of variation 
varies among small areas from a minimum of 0.28 to a maximum of 0.84. Also 
the skewness ( 1γ  ranging from 0.1 to 4.6) shows that the distribution of our target 
variable is quite a bit different in different areas. 

Of the many covariates available from the ECHP questionnaire, we 
considered only those for which area population means were available from the 
2001 Italian Census results, because those means are necessary to calculate the 
EBLUP estimator. Thus the chosen covariates are as follows: the percentage of 
employed; the percentage of unemployed; the percentage of people with a 
high/medium/low level of education in the household; household typology 
(presence of children, presence of aged people, etc.); the number of rooms per-
capita and the tenure status of the accommodation (rented, owned etc.).  

The adjusted R2 of the OLS regression is close to 0.35 in almost all repeated 
samples. This rather low figure is the result of the nature of the phenomenon 
under study (household income is not easy to predict) and the constraint 
represented by the need to include only those covariates for which the population 
total can be obtained from the Census. 

4. Alternative predictors 

We consider two classes of alternatives to the empirical best predictor 
(EBLUP) associated with the nested error regression model described in section 
2: the first includes predictors based on the fitting of a nested error regression 
model onto the logarithm of the total net equivalized household income; whereas 
the second assumes that, conditionally on the covariates, the total net equivalized 
household income is Gamma distributed. 

The logarithmic transformation is often used in models for income because 
the logarithm of values generated from a positively asymmetric distribution are 
generally more “normal” than the untransformed values. Also the Gamma model 
has often been considered for the study of income distribution. Reasons for its use 
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have been both theoretical (Mukerji, 1967) and practical, due to the better fit 
provided with respect to empirical distribution (Eltetö e Frigyes, 1968; Van Praag 
et al., 1983). 

The two strategies are described in subsections 4.1 and 4.2. 

4.1. Predictors based on modeling the logarithm of income 

In this model the dependent variable is given by the (natural) logarithmic 
transformation of the household equivalised income: 

log         1,..., 1,...,= = =dj dj dz y d m j n  

= + +xT
dj dj d djz eβ α           (5) 

( ) ( )2 20, 0, ⊥� �d dj e d djN e N eαα σ σ α .      (6) 

The usual hypotheses of independence, homoschedasticity and normality of 
residuals hold so variance components are estimated using the REML technique. 
The ‘naïve predictors’ discussed in subsection 4.1.1 rely on this normality 
assumption. However, we have proof that this assumption does not hold exactly 
in the case of our data. To overcome this problem, non parametric solution that do 
not rely on this assumption have been proposed. We discuss two different options 
within this class in subsections 4.1.2 and 4.1.3. 

4.1.1. Naïve predictor 

The quantity to be estimated is given, for area d, by 

( )1 1
,

1 1
exp− −

= =

= =∑ ∑
d dN N

U d d dj d dj
j j

y N y N z . A simple back transformation of the empirical 

best linear unbiased predictor (EBLUP) ,
ˆˆ ˆ= +xT

U d d dz β α , i.e. ( ),
ˆexp U dz  cannot be 

used since it would be severely biased. A slightly better predictor may be 
obtained as: 

( )
,

ˆexp
ˆ ∈ ∉

+
′ =

∑ ∑dj dj
j s j s

U d
d

y z
y

N
         (7) 

with ˆdjz  = ˆ ˆ+xT
dj dβ α . However, also this predictor is biased low because, in 

general: 
( ){ } ( ){ }exp exp+ + ≠ +x xT T

dj d dj dj dE e Eβ α β α       (8) 
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even when ( ) 0=djE e . 

In the literature, different strategies have been suggested to overcome this 
problem. Some of them keep the normality distribution assumption for the 
transformed variable, others escape this restriction. In the first group of methods 
there is, for instance, the naïve lognormal predictor (Chambers and Dorfman, 
2003), which uses a first order bias correction. In the case of model (5) – (6) it 
becomes: 

( )

,

ˆ
ˆexp

2
ˆ ∈ ∉

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠′ =

∑ ∑ dj
dj dj

j s j s

U d
d

V z
y z

y
N

       (9) 

where the estimated variance of djz  is ( ) 2 2ˆ ˆ ˆ= +dj eV z ασ σ . However this predictor 

is still biased ( ( )2−O n  bias). It is possible to demonstrate that the correction for 

the negative bias leads to the overestimation of Y values (Chambers and Dorfman; 
2003). 

An alternative predictor, which is strongly based on the assumption of log-
normality and characterized by the same order of bias as the previous one 
( ( )2−O n ), has been discussed by Kalberg (2000). 

4.1.2. The rast predictor 

The aim of the method is to yield a predictor calibrated on the sample average 
(or total) of Y, that is, such that ˆdj djj s j s

y y
∈ ∈

=∑ ∑ . The lognormal predictors 

discussed in the previous paragraph do not possess this property. The ‘naïve’ 
predictor (7) is modified so that it will possess this property (Chambers and 
Dorfam, 2003). It is necessary to find new formulas for GLS estimators of 

 and dβ α  so that: 

( ) ( )* * *exp exp
∈ ∈ ∈

= = +∑ ∑ ∑ xT
dj dj dj d

j s j s j s
y z β α

. 

It is easy to show that the equality holds by simply adding to the intercept a 
correction given by ( ) ( )ˆ ˆˆ ˆ, log log exp= − +∑ ∑ xT

d dj dj dyγ β α β α . Therefore, 

assuming K covariates, ( )( )*
0 1

ˆ ˆ ˆ ˆ, ,...,
T

Kβ β γ β β β= +  and * ˆ= d dα α . The resulting 

predictor of the population mean is: 
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( )
,

*

1

1

ˆexp exp
1ˆ

ˆexp

dj

U d

K

dj k kdj dj
j s j s j s k j sRAST

dj K
j sd d

k kdj
j s k

y z x y
y y

N N x

β

β

∈ ∉ ∉ = ∈

∈

∈ =

⎛ ⎞⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= = +
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑
∑

∑ ∑
  (10) 

It is possible to note that in (10) both intercept and specific effects disappear, 
but their effect is taken into consideration in the estimation of the other 
coefficients. In effect, the ratio between the sample sum of Y values and the 
sample sum of their predictions is used to correct individual non sampled 
predictions. 

4.1.3. The smearing predictor 

With the aim of estimating the untransformed scale expectation 
( ) ( ) ( )exp ′= +∫X XE Y dFβ ε ε , without knowing the error distribution function 

F or a reliable parametric form for it, Duan (1983) suggests substituting F by its 
empirical estimate n̂F  so as to obtain what she calls smearing estimate: 

( ) ( ) ( ) ( )1 ˆˆ ˆ ˆexp expX X XT T
n j

j s

E Y e dF e e
n

β β
∈

= + = ⋅ +∑∫  

where the ˆ je  are the sample residuals from the ordinary least squares fit of log jy  

onto x j . Following this idea, for an arbitrary estimator β̂  of β , the smearing 
predictor of the population mean may be written as: 

( )

( ) ( )

* 1

1

ˆ ˆexp
ˆ

ˆ ˆexp exp

x

x

T
j j j j h

j s j s j s j s h sSMEARING

T
j j h

j s j s h s

y y y n e
y

N N
y n e

N

β

β

−

∈ ∉ ∈ ∉ ∈

−

∈ ∉ ∈

+ + +
= = =

+ ⋅
=

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 

where the observations for the non sampled units are predicted by correcting the 
“naïve” back transformation by a factor given by the average of the sample 
residuals ( ) ( )1 ˆexp−

∈

= ∑e j
j s

sc n e . 

In the case of model (5) – (6), the smearing predictor for area d will be given 
by: 
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( ) ( )

( ) ( )
,

1 ˆ ˆˆexp exp
ˆ

ˆ ˆexp

x

e x

U d

T
dj d dh dj d

j s h s j sSMEARING

d

T
dj d dj d

j s j s

d

y n e
y

N

y sc

N

β α

β α

−

∈ ∈ ∉

∈ ∉

+ ⋅ +
=

+ ⋅ +
=

∑ ∑ ∑

∑ ∑
    (11) 

where fixed and random effects are estimated by GLS as usual and the correction 
factor ( )edsc  is calculated as the average of the residuals within area d. 

It is possible to show that the smearing predictor in (11) may be also obtained 
as: 

,

1

1

1

1 ˆˆ exp
ˆexp

U d

K
SMEARING dh

dj k kdj d K
j s j s k h sd

k kdh
k

yy y x n
N x

β
β

−

∈ ∉ = ∈

=

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪⎜ ⎟= + ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

∑ ∑ ∑ ∑
∑

.  (12) 

Also in this expression, as happened for RAST predictor in (10), the intercept 
and the specific effects of the model disappear, but their effect is taken into 
consideration in the estimation of the other coefficients. 

We note that the smearing method is based on the estimation of the 
distribution function of the study variable separately for each of the areas whose 
mean is being predicted. In general, these estimators will have good asymptotic 
properties but they may perform rather poorly when applied to small samples. 

4.2. The predictor based on the gamma linear mixed model for income 

Consider the following model: 

( )| , , /�dj d djy Gammaα β ν ν μ         (13) 

with = +xT
dj dj dμ β α . Since ( )| , =dj d djE y α β μ  and ( ) 2| , /=dj d djV y α β μ ν  we 

then have ( ) 1/ 2| , −=dj dCV y α β ν . 

As a consequence, in our Gamma model we assume a constant coefficient of 
variation. This assumption may be useful in situations where the variance of the 
observations increases with the mean (McCullagh and Nelder, 1989, p. 285). This 
hypothesis appears very sensible in our case. It does not allow for a direct and 
immediate comparison either with the benchmark model (equations 3 – 4 ) or with 
the model for the logarithm of income whose residuals are assumed 
homoschedastic, but the aim of this work is to compare predictors rather than their 
related models. 



STATISTICS IN TRANSITION-new series, December 2007 

 

433 

The predictor of ,U dy  associated with this model may be easily obtained as:  

( )ˆ ˆ
ˆ

xT
j d d

j s j s
d

d

y
y

N

β α
∈ ∉

+ +
=
∑ ∑

.         (14) 

The estimates β̂  and ˆdα  are obtained using the Maximum Likelihood 
method as implemented in the GLIMMIX procedure of SAS (SAS Institute, 
2006). We note that this estimator differs from the EBLUP derived under the 
normality distribution assumption only in the variance and covariance matrix used 
to estimate β  and dα . 

5. Results from the simulation study 

In summary, the predictors for the regional averages of the equivalized per-
capita income that we are going to compare in the simulation exercise are the 
following: i) the EBLUP obtained from the normal Linear Mixed Model of (3) 
and (4) (LMM); ii) the naïve and naïve lognormal predictors (respectively NAÏVE 
and NALOG); iii) the RAST and the SMEARING predictors obtained from the 
normal Linear Mixed Model for the logarithm of Y (say RAST and SMEAR); iv) 
the predictor obtained from the Linear Mixed Model for income with Gamma 
distributed observations (G). 

The performances of estimators will be evaluated by averaging not only over 
the Monte Carlo replicates but also over the small areas, following an approach 
common in the literature (see Rao, 2003, section 7.2.6). In particular we chose to 
show three measures: the average absolute relative bias (AARB), the average 
relative bias (AARB’) and the average relative mean squared error (ARMSE): 

1 1

,1 1

1 1

,1 1

2
1 1

,1 1

1

1

1

− −

= =

− −

= =

− −

= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

⎧ ⎫⎛ ⎞⎪ ⎪′ = −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪= −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑ ∑

∑ ∑

%

%

%

m R
dr

U dd r

m R
dr

U dd r

m R
dr

U dd r

yAARB m R
y

yAARB m R
y

yARMSE m R
y

       (15) 

where %dry  is the prediction of the pseudo-population small area mean ,U dy  

obtained from the rth  simulated sample. Both AARB and AARB′ summarize the 
bias of the predictors: AARB  averages the size of the relative bias over the areas, 
while AARB′, which considers the sign of this bias, is helpful to understand 
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whether there is a systematic tendency of the predictors to under or overestimate 
the actual ,U dy . The third indicator, ARMSE, is a measure of accuracy of the 
predictors. 

Results related to these indicators are reported in Table 1. Besides the 
indicators of (15), the average relative efficiency  

*=dir
dir

ARMSEAEFF
ARMSE

         (16) 

is also reported. Note that dirARMSE  pertains to the direct estimator (i.e. the 
Horwitz-Thompson estimator of ,U dy  based on the inverse inclusion 
probabilities) in order to make the evaluation of the advantages associated with 
the various model-based predictors more readily comparable. In (16), * stands for 
LMM, NAÏVE, NALOG, RAST, SMEAR or G. 

From Table 1, we note how all the considered small area strategies lead to 
more efficient estimates, on average, than the direct estimator, except for the 
NAÏVE estimator as was expected. The gain in efficiency, calculating from 

dirAEFF , is relevant for all the small area estimators and varies from 35% for the 
RAST predictor to 53% for the LMM estimator. Therefore, the EBLUP estimator 
derived from a normal Linear Mixed Model shows the best performance in terms 
of accuracy, followed by G. On the other hand, the approximation necessary to 
produce the parameters’ estimates in their actual scale, when the logarithmic 
transformation is applied, causes a greater instability in the results which makes 
the NALOG, RAST and SMEAR predictors less reliable than the other two. We 
also note that the simpler NALOG is more efficient than the two non parametric 
solutions, RAST and SMEARING, even though it is more biased. 

Table 1. Performance measures 

Estimator ARMSE% AARB% AARB′% AEFFDir % 
Direct 0.787 0.0 0.0 100.0 
NAÏVE 0.899 7.8 -7.8 114.2 
NALOG 0.428 3.2 2.7 54.4 
LMM 0.368 2.4 0.1 46.8 
RAST  0.513 0.2 0.0 65.2 
SMEAR 0.477 1.0 0.2 60.6 
G 0.386 2.8 -1.2 49.0 

Therefore, departure from normality seems to have a slight impact on punctual 
values of predictors. BLUP formulas can be derived without normality. Moreover, there 
are sound reasons to expect REML (and ML) estimators of variance components to 
perform well even if normality does not hold (see Jiang, 1996, for details). 
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Regarding the bias, very different results have been obtained for the different 
estimators. Looking at the AARB indicator, the least biased estimator is RAST 
even if, as we have already discussed, it is one of the less efficient ones. But this 
result is not surprising because, as explained in section 4, it is constructed as to 
control the transformation bias. Also the SMEAR estimator is not very biased, 
followed by LMM and then by G, which tends to underestimate the regional 
means (see AARB′ column). Evidently the Gamma distribution is not completely 
suitable for the empirical income distribution that we have, even though the 
EBLUP derived by the Gamma model has the lowest variance. But the naïve 
estimators are the most biased. As expected, NAÏVE tends to seriously 
underestimate the parameters while NALOG corrects this bias but generates a 
positive bias, even though less important then the NAÏVE’s one. 

In order to further investigate the performance of the two preferable 
estimators (LMM and G), we looked at what happens in each region. To this 
purpose, in Figure 1, the means of the simulation replications obtained for them in 
the 21 regions are shown. To have a better view of the eventual effect on 
estimates of the value of the parameter, regions are ordered increasingly from the 
left to the right with respect to their population mean. This arrangement 
corresponds approximately to the regions arrangement form the south to the north 
because of the well-known greater incidence of poverty in the south of the 
country. We observe that, while the regional averages of the normal EBLUP are 
sometimes higher and sometimes lower than the population means, those related 
to the Gamma model are almost always lower except for the lowest levels of the 
population means. This means that G estimator tends to underestimate the high 
levels of income and to overestimate the low ones. 
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Figure 1. Regional means (sample size in brackets) 
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6. Conclusions 

The main finding of the paper is that the empirical best predictor associated 
with the Battese Harter and Fuller model on the original scale of the study 
variable Y (given by equivalized household income) compares favourably to the 
back transformed predictors based on modelling the logarithmic transformation. 
On the one hand, this result is not completely surprising since, when obtaining the 
EBLUP, the normality assumption is used only in the REML estimation of the 
variance components, and this estimation method has been proven to be consistent 
even without normality (Jiang, 1996).  

On the other hand, the result is relevant because the prediction of area means 
and totals using a linear mixed model on the original scale of Y requires that only 
the area means of the auxiliary variables are known, whereas methods considering 
the logarithmic transformation (as any other nonlinear transformation) need 
individual values for all units outside the sample. Moreover, as already noted in 
the introduction, in Fabrizi et al. (2007), we showed how the jackknife MSE 
estimator proposed by Jiang et al. (2002) is a good estimator of the design based 
MSE of this predictor. Besides, the extension of the work of Prasad and Rao 
(1990) and Datta and Lahiri (2000) to the estimation of MSE of predictors based 
on the non-linear transformations of the study variables have not been fully 
developed yet (see Slud, 2006 for more details). 
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The predictor based on the Gamma Generalized Linear Model, although in the 
case of our analysis it was outperformed by the Normal Linear Mixed Model, 
offers, at least in principle, an interesting alternative, since it does not require 
back-transformations and the MSE estimator of Jiang et al. (2002) may be 
applied. 
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