
28 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Cardone, G., Corradi, A., Foschini, L., Ianniello, R. (2016). ParticipAct: A Large-Scale Crowdsensing
Platform. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 4(1), 21-32
[10.1109/TETC.2015.2433835].

Published Version:

ParticipAct: A Large-Scale Crowdsensing Platform

Published:
DOI: http://doi.org/10.1109/TETC.2015.2433835

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/554183 since: 2021-03-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TETC.2015.2433835
https://hdl.handle.net/11585/554183

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Cardone, G., et al. "ParticipAct: A Large-Scale Crowdsensing Platform." IEEE
Transactions on Emerging Topics in Computing, vol. 4, no. 1, 2016, pp. 21-32.

The final published version is available online at:
http://dx.doi.org/10.1109/TETC.2015.2433835

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTETC.2015.2433835

1

ParticipAct: a Large-Scale
Crowdsensing Platform

Giuseppe Cardone, Antonio Corradi, Member, IEEE, Luca Foschini, Member, IEEE,

and Raffaele Ianniello

Abstract—In recent years, the widespread availability of sensor-provided smartphones has enabled the possibility of harvesting

large quantities of data in urban areas exploiting user devices, so enabling the so-called crowdsensing that allows to realize

complex applications impossible without the involvement of the research community. While many efforts have been made to

improve specific techniques – spanning from signal processing to the assignment of data collection campaigns to users, and to

the entire data processing – to the best of our knowledge, there are no active experiments aimed to explore the challenging

issues raised by the management of large-scale crowdsensing campaigns as real-world experiments. This paper presents the

ParticipAct platform and its ParticipAct living lab, an ongoing experiment at University of Bologna that involves 170 students for

one year in several crowdsensing campaigns that can access passively smartphone sensors and also prompt for user active

collaboration. In this article, we describe the guidelines behind the design of ParticipAct, its features, its architecture, and report

quantitative results that assess and confirm the feasibility, obtained via intelligent coordination and management of

crowdsensing campaigns.

Index Terms—Crowdsensing, distributed systems, location-dependent and sensitive, pervasive computing

——————————  ——————————

1 INTRODUCTION

ONTINUOUS improvements in hardware manufac-
turing, CPU architectures, radio-communication

techniques, and software design have constantly lowered
the price of smartphones, thus fostering their far-reaching
availability. The inevitable tipping point has been reached
in 2013, when for the first time smartphones have outsold
feature phones [1]: smartphones, while getting cheaper,
are increasingly computationally powerful and equipped
with more sensors (e.g., accelerometer, microphone, gyro-
scope, etc.) [2]. This spontaneous, widespread diffusion of
Internet-connected sensor-equipped devices has enabled
to accurately trace world-related information and (physi-
cal) activities of citizens by taking advantage of people
willing to collaborate toward a continuous data harvest-
ing process, called crowdsensing. That is especially true in
smart cities areas where people bring almost constantly
their smartphones.

The crowdsensing perspective asks for a powerful
sensing platform where smartphones act as data sources
sparse over the city and continuously feeding fresh raw
sensing data. Moreover, recent advances in machine
learning and artificial intelligence, supported by powerful
computing resources available aboard, make
smartphones intelligent probes able to process and extract
high-level inferences from raw data (e.g., detecting user
physical activity, voice detection, speaker detection) [3-7].
Recently, users begin playing an active role in crowdsens-

ing, by enriching objective measurements taken via their
phones with their subjective impressions and different
actions. In addition, people can directly interact and co-
ordinate with other close people, such as moving to plac-
es and coordinating with buddies and asking opinions.

Employing both users and devices to collect data from
the real world poses significant social and technical chal-
lenges. From the social point of view, it is crucial to moti-
vate users to participate, for example by providing useful
crowdsensing-based services, handing out incentives, and
fostering a sense of participation in a community [8, 9]. It
is important not to overload users with duties over the
limit of what they can contribute in crowdsensing. From a
technical point of view, it is of paramount importance
that sensing software that exploit user devices does not
negatively impact on user experience, without reducing
too much the quantity and quality of collected data. In
any case, the boundary between social and technical chal-
lenges is not clear cut: for example, the minimization of
the global resource overhead by considering a minimal
subset of users in a crowdsensing campaign requires also
analyzing geo-social profiles, to identify and infer which
users are most likely to successfully harvest the required
data.

Although there are currently many studies about
crowdsensing, they mostly provide ad-hoc solutions and
do not provide a field-tested general architecture to be
customized for specific settings. Toward this goal, we
have designed ParticipAct, a socio/technical-aware
crowdsensing platform to investigate in a real-world sce-
nario the social and technical issues of crowdsensing. Par-
ticipAct started within the city of Bologna with students
of the University of Bologna. For the ParticipAct experi-

————————————————

 G. Cardone, A. Corradi, L. Foschini, and R. Ianniello are with the De-
partment of Computer Science and Engineering (DISI), Scuola di Ingegne-
ria, Università di Bologna, 40135 Bologna, Italy. E-mail: giusep-
pe.cardone@unibo.it; antonio.corradi@unibo.it; luca.foschini@unibo.it; raf-
faele.ianniello@unibo.it

C

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

ment, we enlisted 300 students (170 already active at the
time of writing) for one year of active participation: we
have selected students of different background belonging
to different colleges. We provided them with modern
smartphones, with unlimited data plan, asking them to
allow us to collect data from sensors on the devices and to
receive some tasks that require some form of active be-
havior, which they are free to accept or refuse.

To tackle that significant development effort, we dis-
tilled some guidelines from our experience with similar
systems [10, 11]:

 minimal intrusion on client devices: resource consump-
tion must be minimized to limit impact on user ex-
perience;

 fast processing and feedback: data collected from user
must be quickly stored and processed so to reduce
delay from data reception to data availability;

 data sharing: whenever possible, if the same data is
required by more different processes, the content
should be shared to minimize data duplication;

 openness: due to its long lasting nature and wide
numbers, the architecture must easily expand to in-
tegrate new crowdsensing mechanisms;

 security: crowdsensing data are sensitive and integ-
rity and confidentiality end-to-end must be granted;

 complete data management workflow: ParticipAct must
support the whole data management cycle, from
collection to transmission, from processing to min-
ing and result provisioning.

These features highlight the most important contribu-
tions of ParticipAct that address all relevant issues for
crowdsensing. Furthermore, we claim that a pure theoret-
ical approach to crowdsensing systems does not face
completely crowdsensing complexity. So, the contribution
of ParticipAct is also in the fact that it is under test on the
field by a large number of volunteers. In other words,
ParticipAct is an extraordinary living lab for smart city
managers: for example, by knowing that users in a par-
ticular area are moving by car and their speed is low, the
city manager can infer that an area is congested. Partici-
pAct can be useful to coordinate and experiment large-
scale crowdsensing activities:

i) it includes in the crowdsensing loop very different
people (their set can be differently determined);

ii) it allows to launch and coordinate parallel
crowdsensing campaigns over different groups of people;

iii) and it offers an easy-to-use interface for the genera-
tion and orchestration of new tasks to smart city manag-
ers.

From the technological point of view, ParticipAct is a
complete crowdsensing platform consisting of an app
running on smartphones and a web application on the
back-end. Main supported functions include: management
of the crowdsensing requests (called tasks in ParticipAct);
sensing of data collected either passively (automatically via
smartphone sensors), actively (with direct user participa-
tion), or with a mix of these modes; and evaluating assign-
ment of tasks to users for future crowdsensing campaigns

based on accurate data post-processing and mining. To
realize these functions, ParticipAct traverses several dif-
ferent technological stacks, spanning from the
smartphone OS Android, to Web technologies, to distrib-
uted data processing.

ParticipAct is the first real-world crowdsensing de-
ployment that addresses not only technical issues, but
considers also human resources and their involvement.
ParticipAct is available to the community as an open-
source platform that allows for fast development and de-
ployment of large-scale experiments with minimal intru-
sion and resource usage on both smartphone and server
sides. This paper focuses, after presenting ParticipAct ar-
chitecture and main characteristics, on analyzing and
evaluating different algorithms for assigning tasks based
on user movements history. The main contribution is an
on-the-field comparison in a real scenario of these algo-
rithms in order to evaluate them and understand which is
better and in which situation.

The rest of the paper is structured as follows. In Sec-
tion II we describe our crowdsensing scenario, in Section
III we describe the architecture of the client site, in Section
IV we delve into the details of the platform back-end and
in Section V we describe some core functionalities that
make ParticipAct a customizable crowdsensing platform.
Section VI reports some of the experimental results col-
lected during the first deployment of ParticipAct. An
analysis of related work (Section VII) and an assessment
of the current state of the project and its future goals con-
clude the article.

2 CROWDSENSING MODEL

In general, the goal of crowdsensing is to coordinate a
(possibly large) group of people to gather a given – possi-
bly complex – type of data, either by accessing sensors on
user devices or asking users for active collaboration. Ex-
amples of possible crowdsensing campaigns are collect-
ing geolocation data, asking for a photo of a given target,
harvesting geotagged noise level, and so on.

There are several desirable features for a crowdsensing
model that should aim at minimizing the complexity for
participating users, while maximizing its expressiveness:

 user freedom protection: users should be able to ac-
cept/refuse any data collection campaign;

 user privacy: users should be able to stop and re-
sume sensing at any time;

 data transparency: users should be fully aware of the
kind of data collected in a crowdsensing campaign;

 focused user load: crowdsensing requests should go
only to people likely to execute them, sharing the
workload fairly among participating users;

 geographical and temporal expressiveness: crowdsens-
ing should provide fine-grained parameters to de-
fine geographical and temporal bounds.

Following these principles, we designed the Partici-
pAct crowdsensing model. We represent any crowdsens-
ing campaign as a task that is notified to users that may be

CARDONE ET AL.: PARTICIPACT: A LARGE-SCALE CROWDSENSING PLATFORM 3

available to collect requested data. This approach permits
the definition of fine-grained simple operations (more
likely to be completed by users) by dividing the burden
between users: this is a common choice between other
crowdsensing systems [11-14]. A task defines what, when,
where, and by whom data should be collected. What should
be collected is defined by fine-grained sensing actions that
identify unambiguously the desired to be collected data.
ParticipAct supports both data that can be automatically
collected without user intervention - such as accelerome-
ter, Wi-Fi scans, and ambient noise level (passive sensing
actions)- and data that requires active user contribution -
for example taking a photo, answering a survey, tagging a
place (active sensing actions). ParticipAct allows to freely
composing sensing actions, thus enabling the creation of
tasks tailored to the needs of the manager of the
crowdsensing campaign. The time metrics that dictate
when data should be collected is expressed by three
fields: availability window, task duration, and sensing dura-
tion. The availability window is the temporal interval
when the task is available to users either to accept it or to
refuse. Task duration represents the time users have to
complete the task. Sensing duration defines how much
sensing actions over sensors should be active to success-
fully complete the task. ParticipAct also allows defining
where a task should be executed via geonotification and
geoexecution. Geonotificated associates tasks to one or
more geographical areas that must be traversed by users
to receive the task notification. Geoexecuted, instead, as-
sociates tasks to one or more geographical areas and data
collection can occur only to users located within. Finally,
by whom is the set of people available for crowdsensing
that had tentatively assigned to the task to either accept
or refuse its execution.

We want to stress that ParticipAct tend to assign tasks
to people more likely to successfully complete them, but
workload should also be fairly distributed over users, to
avoid disaffection in participating. The possibility of se-
lectively choosing users for a task further enhances Partic-
ipAct flexibility, because it allows – for example – to
launch two campaigns (two tasks) with the same sensing
actions to two different categories of people (e.g., stu-
dents vs. employed, teen-agers vs. adults, etc.). The ex-
pressiveness of the crowdsensing model of ParticipAct
makes it an ideal platform for crowdsensing in smart city
scenarios, due to its capability of easily designing com-
plex tasks (e.g., collaborative journalism, urban mapping)
and quickly deploy it over a large population.

3 TASK LIFECYCLE AND DISTRIBUTED

ARCHITECTURE

Any feature in the task structure plays a different role in
the task lifecycle: this section describes all managing de-
tails of task lifecycle and its effects on the ParticipAct dis-
tributed architecture.

The task lifecycle is complex (Fig. 1) due to several nu-
ances of the ParticipAct crowdsensing model. In particu-

lar, it requires to grant some state coherency to keep the
task state synchronized between clients and the fixed
server infrastructure (e.g. state transitions on clients
should be completed if and only if the server acknowl-
edges them) and to decouple sensed data and task lifecy-
cle management (e.g., the uploading of sensed data
should run independently and in parallel to other task-
related communications). When a task is created, the serv-
er holds it back until it reaches its availability window,
then it makes available and notifies it to the assigned us-
ers. Geonotified tasks are pushed to assigned users but
they are set in a hidden state that withholds their availabil-
ity until the smartphone verifies that the user is within
the geonotification area. When a task is in the available
state, users are free to decide either to accept it or not,
based on task description. When a user refuses to run a
task, it goes to the refused state, while if a user fails to de-
cide to accept a task within the availability window, the
task is automatically flagged as ignored. When a task is
accepted, it goes to the running state that is the only state
that enables data collection. At any moment users are free
to temporarily pause data collection for the sake of priva-
cy: in that case, the task is temporarily switched to paused,
ready to be resumed later again. Tasks with geoexecution
periodically check the current location, pausing data col-
lection if outside the designed areas for data collection
(geostopped state) and resuming it when again within

Fig. 1. Task state lifecycle. Data collection is enabled only in the
running state. States with a bold stroke reached through transi-
tions represented with a bold arrow are kept in sync between cli-
ent and server.

4

bounds. When task duration time expires, the task
switches to ended state, and evaluates data collection pro-
gress: if enough data has been collected, then the task
switches to the succeeded state, otherwise it switches to the
failed state. The evaluation whether a task has been suc-
cessful requires to check the successful status of all its ac-
tive and passive sensing actions: active actions are con-
sidered successfully completed whether the user carried
out all required sensing actions (e.g., taking a picture, an-
swering a survey), whereas passive actions are successful
if, during the task duration window, required sensors have
run for at least the sensing duration.

We argue that definition of ParticipAct tasks is flexible
enough to correctly describe a wide range of crowdsens-
ing campaigns. For example, by combining passive and
active sensing actions it is possible to design a wide range
of different crowdsensing campaigns focused either on
technical or social aspects, or a mix of both. For instance,
by combining geoexecution, geolocation, and cell signal
strength it is possible to measure what zones of a given
urban area could use one cell tower more (or less); com-
bining geonotification, geoexecution, and taking pictures,
it is possible to ask users to take a picture of a landmark.

The nature of ParticipAct requires a client-server archi-
tecture: a client runs on user devices to take care of receiv-
ing tasks and running them and sending results to a serv-
er that can store, analyze and use them. Thus, although
all task status changes happen on clients, they should be
shared with the server, so that crowdsensing managers
always have accurate, updated information about the
state of crowdsensing campaigns. To keep task state syn-
chronized between clients and server, state changes
should be allowed only when clients can communicate
them to the server, thus making state transitions very
costly, because network availability on mobile device is
often spotty, thus delaying sync operations. Conversely,
some state changes should not be synchronized between
clients and server infrastructure because they are useful
only on the client side (e.g., when a task is temporarily
paused). That is the motivation of the state machine in
Fig. 1: only important task state transitions are synchro-
nized between clients and the server. In particular, transi-
tions to available, refused, ignored, running, succeeded, and
failed states are always synchronized with the server. If
one of those transitions happens when there is no data
connection, to avoid stalling the client, task state is im-
plemented in a soft state that is finalized as soon as the
server acknowledges it. In the next two sections, we de-
scribe the client and server architecture, whose design has
been derived from these observations.

4 CLIENT ARCHITECTURE

The ParticipAct client is the component in charge of re-
ceiving tasks, asking users whether they want to run
them, managing data collection, and uploading results.
Functionally, the ParticipAct client consists of two macro-
components: the task management one and the sensing

management one (Fig. 2). These components orchestrate
the full lifecycle of tasks on user devices and are respon-
sible for interacting with users and accessing smartphone
sensors.

4.1 Task Management

The task management macro-component takes care of over-
seeing the whole task lifecycle on smartphones. It has five
main responsibilities realized by its components: i) receiv-
ing tasks from the server and keep their state synchro-
nized; ii) providing users with an interface to control task
execution; iii) implementing the Graphical User Interface
(GUI) for active sensing actions with user interaction; iv)
driving sensing actions; and v) uploading sensed data.

Task State Sync and Task State Management components
are in charge of the first duty, by taking care of receiving
new tasks and, in acceptance, by driving their full lifecy-
cle. As stated previously, only important state transitions
are communicated to the server and they occur only if the
server acknowledges them.

The Task State Management component gives users the
opportunity of completely controlling the sensing pro-
cess: whenever an available task is pushed to user devic-
es, the task management component gives users the op-
portunity to accept or refuse it, thus allowing different
level of engagement in crowdsensing campaigns.

The GUI component enables sensing actions that re-
quire active user participation according to the third re-
sponsibility. Currently, ParticipAct supports four active
sensing actions that allow to collect data available only
through explicit user collaboration, hence enabling
crowdsensing scenarios such as collaborative journalism,
urban photographic mapping, and geotagging. The active
sensing actions are survey, take a picture, tag a place, and
move to a place in a specific time. ParticipAct implements a
custom GUI for any of them.

Task Management also drives sensing actions: it
starts/stops passive actions based on the current state of

Fig. 2. Architecture of ParticipAct client.

CARDONE ET AL.: PARTICIPACT: A LARGE-SCALE CROWDSENSING PLATFORM 5

the task, i.e., when the user pauses data collection or
when the user moves outside the target area, for geoexe-
cuted task. Actual activation/deactivation of sensors is
demanded to the Passive Sensing component that sends
appropriate requests to the Sensing Management macro-
component.

Finally, the Data Uploading component is in charge of
retrieving sensed data and uploading them on the server.
This process has to balance between uploading data as
soon as possible to the server and minimizing the power
drawn by radio interfaces. According to the minimal in-
trusion principle, ParticipAct data upload is geared to-
wards minimizing its impact on battery lifetime. To ac-
complish this, ParticipAct batches data uploads and re-
quires a minimum interval of five minutes between two
consecutive uploads, which grants the radio interface
enough standby time [15]. The Local Database temporally
stores data until the server acknowledges their reception,
thus guaranteeing no data loss even in presence of unreli-
able data connections and client device shutdown.

4.2 Sensing Management

The sensing management component plays a pivotal role
in ParticipAct crowdsensing because it manages the ac-
cess to all sensors available on smartphones and the col-
lection and processing of their output. Sensing is a power-
hungry process that should be carefully driven to avoid
negative impact on user, again following the minimal in-
trusion principle; in ParticipAct we have distilled three
design guidelines. First, sensing should promote availabil-
ity of high-level inferences, meaning that while accessing
sensors on a smartphone (e.g., accelerometer) is a relative-
ly trivial process, providing high-level inferences (e.g., the
user is walking/running/standing) is a much more valu-
able feature; second, sensing should be resource aware:
sensing management should put effort in minimization of
resource consumption to both reduce impact on battery
lifetime and limit detrimental effects on the device per-

formance. Third, sensing system should be system aware:
the sensing system coexists with the Operating System
and other applications; with them it competes for un-
shareable resources (e.g., microphone and camera can be
used only by one application at the time); the sensing sys-
tem should resolve conflicts and promote a non-intrusive
approach.

These principles drove us in the development of our
sensing system, called MoST (Mobile Sensing Technolo-
gy). MoST is our open-source Android sensing library
that provides an uniform access layer to all physical and
logical sensors, that eases the burden on app developer
that want to use sensor data by providing data processing
and power management, while taking into account con-
currency issues due to access to shared resources, thus
making sensing un-intrusive and minimizing impact on
user experience. While MoST is a general-purpose library,
in ParticipAct it effectively implements all the passive
sensing actions1.

MoST architecture is based on two building blocks: In-
puts and Pipelines. Inputs are any physical or logical
sources of sensing data (e.g., accelerometer, gyroscope,
GPS, app networking statistics, battery level), while Pipe-
lines are components that receive, process, and fuse
sensed data collected from one or more Inputs and for-
wards resulting data to client applications. MoST consists
of two main subsystems (Fig. 3): the Sensing subsystem
and the Management subsystem. The Sensing subsystem has
a two-layered architecture and manages all aspects of
sensing, from accessing Inputs, to wrapping them into
easy-to-manage local objects that are dispatched to Pipe-
lines. Pipelines then forward their results to client applica-
tions. The Management subsystem, instead, drives the sens-
ing process, providing an entry point to external apps to
request MoST services, resolving concurrency issues for
non-shareable resources (e.g., the microphone cannot be
physically used by MoST during a phone call), and con-
trolling power management. For more details on MoST,
we refer interested readers to [5].

5 SERVER ARCHITECTURE

The server side of ParticipAct provides management,
storage, and analysis of crowdsensed data. At the highest
level comprises two main parts, as shown in Fig. 4: the
Back-end and the Crowdsensing Manager. The Back-end
takes care of receiving, storing, and processing sensed da-
ta, while the Crowdsensing Manager provides the adminis-
trative interface to design, assign, and deploy sensing
tasks.

In a more detailed view, the Back-end consists of three
macro-components: Data Receiver, Post processor, and Data
Processor. The Data Receiver that receives data from the cli-
ent (namely, from Data Uploading component) via a Rep-
resentational State Transfer (REST) API [16]. Data Receiver

1 An updated list of sensors wrapped by MoST and the list of high-
level inferences on user activities is available at
http://participact.unibo.it.

Fig. 3. MoST architecture.

6

acknowledges each received data to allow data removal
from the local database at the client side. Data is then
cleaned up and prepared for long-term storage by Post-
processor components: Interpolation and Integration. Interpo-
lation improves data collection by filling in missing data
points that can be inferred with sufficient accuracy. A no-
table case is geolocation data that on Android devices are
available via Google geolocation API that dynamically
switches between different techniques to infer user posi-
tion (i.e., GPS, Wi-Fi, and cellular 3G) thus causes location
accuracy to range and suddenly change from few meters
(e.g., for GPS) to thousands of meters (e.g., for cellular 3G
only). Interpolation substitutes data outliers, whose accu-
racy is significantly worse than the ones of temporally
close data points, by substituting them with a linear in-
terpolation of the more accurate data points. Integration,
instead, aims at aggregating data in time and space. It col-
lapses all data of any type collected in the same 5 minute
window in a single row to enable time-based indexing of
all sensed data so to speed-up the execution of temporal
queries. It also aggregates data in space by creating a ge-
ographical view of sensed data, and storing it in a Geo-
graphic Information System database (GIS) for spatial
querying. Finally, the Data Processor exploits those time-
based and space-based views to tailor user profiles for
fast identification of users that are more likely to success-
fully execute a task according to ParticipAct assignment
policies detailed in the following Section 5.2.

The Crowdsensing Manager is the administrator-facing
part of ParticipAct. The Web Administration Interface (Fig.
5) allows smart city managers to interact with the Partici-
pAct system and supports full-administration of the
whole crowdsensing process, including management of
user profiles, design and assignment of tasks, and data
review. A core function of the Web Administration Inter-
face is its ability of tapping into results provided by the
Data Processor to automatically assign tasks to users that
are more likely to successfully execute them. The Task

State Sync, instead, is in charge of keeping task state syn-
chronized between clients and server by pushing new
tasks on designated clients and receiving all state change
updates (e.g., task accepted/refused, task completed with
success/failure). Among the several server functionali-
ties, in the next two sections we present two core features
that highlight unique challenges of the deployment of a
real-world crowdsensing system: data transport and task
assignment.

5.1 Data Transport

An essential feature of a crowdsensing system is power-
efficient, secure, and reliable data transport from clients to
the long-term storage hosted on the back-end.

Power efficiency is achieved on the client side (see also
Section 4.1) by batching data transfers to minimize the
number of times that network interfaces have to turn on
to transmit data. Another important factor to reduce
power consumption is limiting the amount of data that is
actually being transferred. To achieve this, ParticipAct
serializes the bulk of data using the highly efficient pro-
tobuf format [17], that greatly reduces the CPU consump-
tion and data memory footprint compared to native Java
serialization and verbose serialization formats such as Ja-
vaScript Object Notation (JSON) and eXtensible Markup
Language (XML). Moreover, sensed data has often a low
entropy (e.g., geolocation data points in a short time-span
are similar), which makes them highly compressible. Par-
ticipAct exploits this aspect by having clients compress-
ing all outgoing data with the lightweight – yet power-
effective – gzip algorithm [18].

As regards security, authentication is provided by en-
forcing the usage of HTTP Basic Authentication for all us-
er requests [19]. Data integrity and confidentiality is
guaranteed by industrial standards for encryption: all
REST and web requests are available only via HTTPS
over TLSv1 [20]. Moreover, HTTPS strengthens HTTP
Basic Authentication, which by itself is a weak authentica-

Fig. 5. Screen capture of the ParticipAct Web Administration Inter-
face. This figure shows the interactive page that allows to define
the geonotification area of a task.

Fig. 4. Architecture of ParticipAct server side.

CARDONE ET AL.: PARTICIPACT: A LARGE-SCALE CROWDSENSING PLATFORM 7

tion mechanism prone to network sniffing attacks, by
guaranteed that users and password are never sent in
plaintext over the Internet.

Finally, ParticipAct achieves reliability with a two-
phase commit protocol to grant that all data are trans-
ferred from clients and stored at the back-end.

5.2 Task Assignment

According to [21], a key factor to persuade users into exe-
cuting tasks is making them easy, i.e. minimizing the ef-
fort to complete them successfully. ParticipAct profiling
aims at identifying those users who are more likely to ac-
cept and complete a task without requiring them to modi-
fy their routines. At the current stage, ParticipAct task as-
signment policies mainly focus on geoexecuted tasks, that
are of special interest for smart city managers to enable
localized city surveillance and monitoring activities, by
trying to involve in the campaigns users who are more
likely to visit that area.

In particular, given a task with a geoexecution area,
ParticipAct provides four different policies to select users
that could be asked to run it: random, recency, frequency
[11], and dbscan.

The random policy simply selects a random subset of
all available users, regardless of their position history by
allowing to choose the user ratio defined as the percentage
of all available users to be assigned to the task, from 0%
up to 100%.

The recency policy assigns to the task to users that have
been recently in the geoexecution area under the assump-
tion that they might still be therein, or go back to the des-
ignated area without changing their path too much.
Moreover, the recency policy ranks all potential candi-
dates according to how recently they have been in the ge-
oexecution area, from the most to the least recent and,
similarly to the random policy, also allows to choose the
user ratio from 0% up to 100% defined as the portion of
candidates (starting from higher ranked ones) to select.

The frequency policy assumes that people that spent
more time in the geoexecution area in the past are the best
ones to select, because it is a place where they stay or reg-
ularly attend. Accordingly, it selects users that have been
in the target area in the past by ranking them accordingly
to the time that they spent there. In addition, like the re-
cency policy, the frequency policy supports the user ratio
to further limit the number of assigned candidates.

Finally, the dbscan policy uses the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) al-
gorithm to cluster past user location traces so to select us-
ers that actually spend a sizeable amount of time in the
target should be selected as potential candidates.
DBSCAN is a density-based clustering algorithm based
on the idea that the density of points inside a cluster is
much higher than that of the points outside and the den-
sity of points outside a cluster is much lower that the
density of any other cluster [22]. DBSCAN has several
properties that make it well-suited for the task assign-
ment problem: it does not require knowing the number of

clusters a priori, it can detect arbitrarily-shaped clusters,
it is robust to noise and outliers, and it is optimized to run
on GIS-enabled databases. The dbscan policy runs the
DBSCAN algorithm over all past user positions and se-
lects users that are in a cluster that intersects the geoexe-
cution area. Like all other policies, dbscan allows to select
a user ratio; however, differently from recency and fre-
quency policies, since DBSCAN does not provide a rank-
ing, the dbscan policy chooses assigned users randomly
among the subset of all candidates.

Let us conclude this section noting that all task as-
signment policies are sensible to the size of location histo-
ry used; to avoid this problem, ParticipAct considers only
a limited window of geolocation history of the last days
before task start for each user, which currently is set to
the two most recent weeks. At the same time, within that
time frame, our policies consider in the candidates selec-
tion process all available users, even those ones that visit-
ed once in a lifetime a foreign city, because in that time-
span they could be the most promising ones for certain
areas. For example, tourists tend to spend more time
downtown than local citizens for the duration of their vis-
it.

Choosing a policy to select users for a given task has
an impact on crowdsensing campaign results: since fewer
users are going to execute them there is the risk to collect
less data. Therefore, it is important to define some metrics
to assess the performances of user selection policies. Some
of the possible metrics are the number of users selected by
a policy, the ratio of users that successfully completed a
task compared over the count of selected users (preci-
sion), the ability of correctly predicting which users will
execute a task and which not (accuracy), the time neces-
sary to receive the first result, and the computational load
due to policy execution. In the following section we ex-
perimentally evaluate the performances of ParticipAct
policies according to these metrics.

6 EXPERIMENTAL RESULTS

The experimental assessment of a large scale crowdsens-
ing system in a realistic scenario poses significant social,
technical, and logistic challenges. In a long-running effort
to test ParticipAct, we have bootstrapped and we are cur-
rently maintaining a large deployment that involves 171
volunteers, all of them students of University of Bologna,
that are attending courses on either the Bologna campus
(121 students) or Cesena campus (50 students). Although,
as for other similar experiments, it is an open question if
obtained results could hold in a more general scenario,
we believe the ParticipAct dataset is large enough (in
time and space) to draw some first important observation,
and rather realistic for urban setting scenarios. In fact, it is
important to state that Bologna and Cesena university
campuses are not self-contained: they comprise several
dozens of different buildings spread over the metropoli-
tan area. For this reason, volunteers path and behavior
are not limited to a specific area, but related to the whole

8

urban territory that coincides with the same area of all cit-
izens living in the same smart city.

Of course, we cannot present all the tests we have done
in the first ParticipAct period, because we have triggered
many different campaigns. Hence, we present two main
sets of experimental results: the first one is completely fo-
cused on a quantitative assessment of our assignment
policies for geoexecuted tasks; the second one, instead, is
an analysis of acceptance ratio for different types of non-
geoexecuted tasks proposed to our volunteers. A discus-
sion of lessons learnt from the experiments conducted in
the ParticipAct living lab ends the section.

As regards deployment aspects, we provided each
volunteer with a Samsung I8190 S III mini with pre-
installed ParticipAct client and a SIM card with pre-paid
unlimited data plan that they are free to use as primary
mobile device. The ParticipAct client reports user geolo-
cation every 180 seconds, thus allowing us to have very
precise mobility traces. On the server side, ParticipAct
was developed as a Spring MVC web application hosted
on Apache Tomcat 7.0. The server hosting the web appli-
cation uses an Intel i5 3210M 2.5GHz CPU, with that 8
GiB of RAM, and is connected via a 100Mbit connection
to the server hosting the database that stores all
crowdsensed data. The database server uses an Intel Xeon
E31240 3.3GHz CPU and 8 GiB of RAM, and runs Post-
greSQL v9.1 DBMS, that has been enhanced with PostGIS
v1.5 to run geographical queries. All geolocation traces of
users have been stored in a GIS-enabled table to allow fast
geographical queries.

The first set of experimental results shows some per-
formance figures related to optimizing the strategies for
assigning tasks, maximizing success probability, and min-
imizing cost (i.e., involved candidates and computation
overhead). We sent to all volunteers four different geoex-
ecuted tasks over a period of a week, each of them asking
to take a picture of a different place: Santo Stefano square
in Bologna (task A), Bologna Opera House (task B), Cese-
na Train Station (task C), and Rocca Malatestiana castle in
Cesena (task D). Table 1 shows for every task how many
students accepted and successfully completed it on time,
how many accepted it but failed to complete it, how
many rejected to execute the task, and how many ignored
the task (i.e., they neither accepted nor refused it). After
receiving tasks results, we analyzed collected data to un-
derstand what performances would have been achieved if
users had been selected by different ParticipAct policies
and by using all possible user ratios from 10% to 100%. In

the following, all results have been averaged over the
four tasks, because they were executed by the same popu-
lation, they have comparable completion/failure rates,
and they were associated to urban areas with similar
characteristics. For policies that use a random user rank-
ing (i.e., random and dbscan policies), results were aver-
aged over 1000 random executions.

Fig. 6 shows the number of candidate users selected by
each policy. Obviously, the random policy has the worst
performances, indiscriminately selecting a large number
of users that have no chance to execute a task. Recency,
frequency, and dbscan policies always select about 20 us-
ers or less, with dbscan selecting about half the users
compared to the recency and frequency policies. All the
policies (except the random one) significantly limit the
number of users assigned to a task, thus reducing the
workload of users; this result is very significant, especial-
ly if considered together with the following results shown
in Figs. 7-9, that all refer to these limited sets of candi-
dates.

In addition, the number of selected users is related
with the rate of success, whether selected users where
those that actually executed successfully the tasks or not.
For this evaluation, we consider as true positives (TP) us-
ers that have been selected by a policy and actually car-
ried out the task, while false positives (FP) are users that
have been selected by a policy and did not execute the
task. Conversely, true negative (TN) users are the ones
that have not been selected and did not execute the task,
while false negatives (FN) the users that have not been
selected but did execute the task. The rate of success is
given by precision, calculated over the subset of selected
candidates, and more formally defined as the ratio be-
tween TP and TP+FP. Fig. 7 shows the precision for the
different policies implemented by ParticipAct. The ran-
dom policy has a very low precision regardless of the user
ratio while dbscan has a constant high precision (the
highest compared to all other policies), which means that
about half of the selected users actually executed the pro-
posed task. Let us also note that the very regular behavior

Task A Task B Task C Task D

Completed 8.2% (14) 11.7% (20) 8.2% (14) 6.4% (11)

Failed 16.4% (28) 12.3% (21) 11.7% (20) 8.8% (15)

Rejected 17.5% (30) 19.9% (34) 31.6% (54) 36.8% (63)

Ignored 57.9% (99) 56.1% (96) 48.5% (83) 48.0% (82)

Table 1. Percentage of users that completed, failed, rejected or
ignored the four test task. The number between parentheses is the
raw number of students.

Fig. 6. Number of users assigned to tasks using different policies.

CARDONE ET AL.: PARTICIPACT: A LARGE-SCALE CROWDSENSING PLATFORM 9

of the random and dbscan curves is due to the fact that
since they do not rank users, as stated before we report
average values for the four tasks and multiple (i.e., 1000)
executions. As for the recency and frequency policies, in-
stead, they are able to rank users, and we preferred to re-
port the obtained values over the four executed tasks on-
ly. That is the main reason for the fluctuations and cross-
ings, especially for low user ratios below 30% (with a cor-
responding total number of assigned users very low, be-
low 7); for a higher number of executions, we expect these
curves stabilize and have a more regular trend. So, focus-
ing on the more significant [30-100]% user ration interval,
the recency policy shows an almost-constant precision
value, but performs worse than dbscan. The frequency
policy, instead, works better (similar to dbscan) when the
user ratio is between 30% and 60%, while selecting more
than 60% users it includes too many users that will not
cross again the target area in convenient time for task
completion.

Another important metric is accuracy: the proportion
of true results (both true positives and true negatives) in
the population. It can be expressed by the ratio between
TP+TN and TP+FP+TN+FN, that quantifies how good is
each policy in correctly classifying user behavior and
predicting whether they will (TP) or will not (TN) execute
a task. Fig. 8 shows accuracy rate for all different policies.
While the random policy has a bad accuracy, all other
ones have a comparably high accuracy. Let us note that
the denominator (TP+FP+TN+FN) is constant and equal
to the total number of users and TP is relatively small, be-
ing the subset including the 6-12% of the users that suc-
cessfully execute a task (see Table 1). That means that all
informed policies (apart random) are able to obtain a high
numerator (TP+TN) by correctly isolating those users that
will not execute the task (TN), which in turns causes a
high accuracy rate.

A negative impact of selecting only a subset of users
for a task is that the time to receive the first result may
increase. Fig. 9 shows that time for each policy to receive
the first result. Missing datapoints signal that in at least

one of the four tasks there were no results, thus making
impossible to measure the time necessary to collect the
first result; in addition, we use a logarithmic scale for the
sake of presentation. The value of the random policy with
a 100% user ratio is the lower bound: it is not possible to
receive a result earlier than that. The recency and fre-
quency policies have similar performances and quickly
approach the lowest possible time to collect the first re-
sult, which is a very desirable property. In particular, the
recency policy performs slightly better, but it is more at
risk of not receiving any result when the user ratio is less
than 50%. The dbscan policy always correctly selects at
least one user that will collect the required data, but it
approaches more slowly the lower bound. At the same
time, let us remind that the overall number of assigned
users selected by dbscan (at 100% user ratio) is nearly half
the number of candidates at the same ratio for frequency
and recency and dbscan grants also a higher precision
and accuracy.

Finally, it is important to measure the computational
time of different policies, in other words the CPU time
required to select users given a task. On our deployment,
running the random policy required on average 75ms to
run, because it has been realized as a simple random se-
lection on the table that stores users. The recency policy,
instead, requires on average 187ms. That is still a short
time because this policy requires to select geolocation da-
ta of users within the target area of the task and then to
sort them by date; both these selections are greatly sped
up by PostgreSQL and PostGIS indices. The frequency
policy requires on average 24s, two orders of magnitude
more than the recency policy. The main reason for that
longer time is that the frequency policy needs to access all
geolocation data for each user to evaluate the relative
probability of being in the target area, and this process
cannot be accelerated by database indices. Finally, the
dbscan policy requires on average 4257s (more than 1
hour and 10 minutes) to run. This is due to the complexity
of the DBSCAN algorithm, which needs to calculate the
distance of all geolocation data couples of each user to

Fig. 7. Precision rate for different policies. Fig. 8. Accuracy rate for different policies.

10

identify clusters.
This evaluation of the random, recency, frequency, and

dbscan policies shows that any policy has its strengths
and weaknesses: the recency policy has slightly worse
performances compared to the frequency policy, but it is
computationally very lightweight, making it more suita-
ble for very large scale deployments. On the other hand,
the frequency policy has a significantly better precision
and is less at risk of not having results with low user ratio
compared to the recency policy. In any case, it is im-
portant to notice that the list of assigned users produced
by recency and frequency contain the same users but they
are ranked differently: this is why at 100% they reach al-
ways the same results. The dbscan policy has a high pre-
cision and is able to select a low number of assigned users
due to its ability to capture and cluster user routinely be-
haviors, but it is computationally very expensive. In Par-
ticipAct we provide all these policies, because we believe
it is important to allow crowdsensing managers to strate-
gically select the policy that more closely satisfy their cur-
rent requirements depending on the geoexecuted task
they have to schedule.

The second set of experimental results, instead, show
some statistics about how our volunteers decide to accept
(and successfully complete or not) other different types of
non-geoexecuted tasks, that do not require to be in a place
for completing the task. Table 2 reports collected statis-
tics. Task E is a creativity test (we assigned three, report-
ed numbers in Table 2 are average values) used to deter-
mine a human’s creative potential, namely, a Remote As-
sociate Test (RAT). For this task, we also give a very tight
time limit to complete the riddle as required by this test
type. Task F, instead, refers to a much longer and com-
plex task. Users were requested to execute a task of City
Mapping. This kind of task demands to users to walk
through the city for 3 hours and, while phone sensors
gather position and activity recognition information as
passive sensing activities, take 5 photos of interesting
places and add a comment to each photo. Obtained re-
sults show that Task E, that is more gaming-oriented, but

especially much faster to complete, has been selected (in-
cluding both completed and failed, because not complet-
ed on time) by a high percentage of volunteers, namely
61.3%. Task F, instead, requiring more commitment and
being much more time consuming attracted a very low
number of volunteers (below 13%); in addition, many of
them failed to complete it, probably because they decided
to abandon the task due to either drop of interest or due
to some unpredicted event that interrupted them.

Recalling that ParticipAct has the main objective of fos-
tering new forms of participation for novel e-citizenship
models in the smart cities environments and local com-
munities governance, not only did we run several other
crowdsensing campaigns, but also collected many sur-
veys for feedback on user satisfaction and analyzed corre-
sponding data. That experience has given us many in-
sights and allowed us to draw some conclusions about
the socio-technical management aspects of crowdsensing,
which are very useful in designing new campaigns and
refining the whole crowdsensing process.

First, crowdsensing platforms should ascertain and
manage data quality: crowdsensed data should be refined
by keeping into account also user trustworthiness (based
on her history and reputation) and enlarging the number
of selected users for the same time (to polish data via non-
minimal crowdsourcing). For instance, we have observed
a minor number of students trying to provide fake data:
in most cases, we were able to dynamically detect them,
for instance, when a user completes in a few minutes sev-
eral (non-geoexecuted) tasks that would require taking a
photo in places that are several kilometers away. In other
situations, only human checking could validate the con-
tent, such as when a user, asked to take a picture of a
monument, shoots a picture of her monitor that displays
the requested monument.

Second, tasks should be as simple as possible to en-
courage user participation. As shown by our second set of
experimental results, simple tasks are more easily accept-
ed than complex ones; hence, crowdsensing platforms
should avoid asking for big changes in user behavior by
soliciting complex and unacceptable tasks they are likely
to refuse. In particular, complex tasks can be difficult to
understand correctly, can break users’ daily routine or
require too much effort that user is not willing or capable
of reserve to them. An important topic is what kind of in-
centive can encourage users to execute more complex
tasks; gamification, as demonstrated also by the high ap-
preciation of the RAT test, can help as well.

Fig. 9. Time to receive the first result for different policies. Missing
datapoints mean that no user successfully completed the task for
at least one of the four tasks.

Task E Task F

Completed 48.0% (82) 2.9% (5)

Failed 13.3% (22.7) 9.4% (16)

Rejected 38.2% (65.3) 76.6% (131)

Ignored 0.6% (1) 11.1% (19)

Table 2. Percentage of users that completed, failed, rejected or
ignored the two non-geolocalized tasks. The number between
brackets is the raw number of students. For Task E, we report
average values collected over three tasks of the same type.

CARDONE ET AL.: PARTICIPACT: A LARGE-SCALE CROWDSENSING PLATFORM 11

Finally, although our task assignment policies are quite
effective, nonetheless users that accept a task tend to for-
get about it, thus failing. From surveys conducted on our
volunteers, they suggested us to remember them that
they agreed to do something. At the same time, it is also
important not to interfere too much. A possible solution,
with regards to geoexecuted tasks, is to remember the us-
ers, when nearby, that a task in that area was requested
and accepted.

7 RELATED WORK

Interest in crowdsensing has seen a tremendous growth
in the recent years thus promoting the development of
several crowdsensing systems. A complete crowdsensing
system covers several different research topics, including
signal processing, machine learning, distributed systems,
and social sciences. There are several research efforts fo-
cused on these aspects, considering each of them by
themselves, while ParticipAct tries to tackle the whole
stack of technical and social problems related to
crowdsensing, which poses significant challenges. In this
section, without pretension of completeness, we present
some of the works that are close to the ParticipAct ap-
proach to crowdsensing.

Ohmage is an healthcare-oriented system that exploits
smartphones to collect both passively and actively infor-
mation about users [23]. Ohmage system architecture,
similarly to ParticipAct, comprises an Android app to col-
lect data and a back-end that allows to administer data
requests and then visualizing and analyzing collected da-
ta. Differently from ParticipAct, Ohmage has no means to
tie data requests to a specific geographic area, thus reduc-
ing its usefulness for smart city scenarios that could re-
quire users to be in a specific place to execute a task. Vita
is a system that stresses the relevance of providing
crowdsensing as a service integrated with usual software
services and supports sensing task assignment based on
user profiles [13]. To achieve the first goal Vita relies on
BPEL4PEOPLE, a Business Process Execution Language
extension that enables orchestration of human-driven
sensing task within web services [24]. To achieve the sec-
ond goal Vita assigns to tasks and users a so called “social
vector”, which is a synthetic representation of user re-
sources and knowledge, and exploits it to assign a task to
users whose profile suggests that they may enjoy that
task and have enough resources to complete it successful-
ly. While Vita provides a nice support for non-
geoexecuted tasks, it completely lacks support for ad-
vanced task assignment policies for geoexecuted tasks
based on user movement history. Matador is a
crowdsensing software that focuses on context-awareness
to optimize task assignment while minimizing battery
consumption [14]. In particular, Matador assumes that a
task is defined by a geographical dimension and a tem-
poral dimension and should be assigned to users that are
within the given geographical area in the given temporal
window, and drives the sampling time of user positions

to minimize battery consumption, dynamically switching
between network-based geolocation, power-efficient but
inaccurate, and GPS, power-hungry but very accurate.
ParticipAct adopts a more proactive approach and, dif-
ferently from Matador, allows to assign geoexecuted tasks
to volunteers based on their past mobility history, with-
out assuming constant communications at runtime, but
only requiring lightweight and infrequent geolocalization
sampling at the client device. USense is a middleware for
community sensing that strongly decouples users collect-
ing data and managers that require crowdsensed data:
managers specify which kind of data they need and
USense matches them with people meeting the require-
ments [25]. A notable feature of USense is its flexible poli-
cies for smartphone sensors duty cycling, which allow to
minimize battery consumption of sensing activities. Simi-
larly to USense also the MoST sensing core of ParticipAct
support duty cycling of passive sensing activities. Finally,
the Medusa framework focuses on algorithms to define
crowdsensing tasks [12]. Medusa is based on a domain-
specific programming language that provides high-level
abstraction to define crowdsensing tasks, and employs a
distributed system that coordinates execution of those
tasks between smartphones and a cluster in the cloud. By
providing programming abstractions for the definition of
the tasks Medusa is complementary to our work, but at
the current stage it lacks task assignment management
support of geoexecuted tasks and, similarly to Matador
and Vita, it also lacks the signal processing and machine
learning support to automatically collect high-level infer-
ences about user activities. Let us conclude this section by
noting that compared to all above systems ParticipAct has
been tested on a much larger user base and for a signifi-
cantly longer duration.

8 CONCLUSION

This paper describes ParticipAct, an ongoing project of
the University of Bologna that involves 170 students that
participate to a large-scale crowdsensing experiment. Par-
ticipAct is the first real-world crowdsensing deployment
that addresses not only technical issues, but considers al-
so human resources, their use, and involvement. Partici-
pAct is available to the community as an open-source
platform that allows for fast development and deploy-
ment of large-scale experiments with minimal intrusion
and resource usage on both smartphone and server sides.

This work paves the way to a new generation of real-
world large-scale crowdsensing testbeds able to truly ver-
ify any step in the whole crowdsensing process, from task
scheduling to incentive, and mobile sensing, as an effec-
tive monitoring solution for future smarter cities.

ACKNOWLEDGEMENTS

This research was supported in part by CIRI, Center for
ICT technology transfer of the University of Bologna,
funded by POR FESR Emilia-Romagna 2007-2013.

12

REFERENCES

[1] A. Gupta, R. Cozza, and C. Lu, "Market share analysis: mobile

phones, worldwide, 4Q13 and 2013," Gartner Inc., 2014.

[2] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A.

T. Campbell, "A survey of mobile phone sensing," IEEE

Communications Magazine, vol. 48, no. 9, pp. 140-150, 2010.

[3] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.

Campbell, "The Jigsaw Continuous Sensing Engine for Mobile

Phone Applications," in SenSys '10: Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, 2010, pp. 71-84.

[4] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z.

Liu, and A. T. Campbell, "Darwin phones: the evolution of

sensing and inference on mobile phones," in MobiSys '10:

Proceedings of the 8th international conference on Mobile systems,

applications, and services, 2010, pp. 5-20.

[5] G. Cardone, A. Cirri, A. Corradi, L. Foschini, and D. Maio, "MSF:

An Efficient Mobile Phone Sensing Framework," International

Journal of Distributed Sensor Networks, no. 2013.

[6] G. Cardone, A. Cirri, A. Corradi, L. Foschini, and R. Montanari,

"Activity recognition for Smart City scenarios: Google Play

Services vs. MoST facilities," in ISCC '14: Proceedings of the 19th

IEEE Symposium on Computers and Communications, 2014.

[7] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, "A survey

on smartphone-based systems for opportunistic user context

recognition," ACM Computing Surveys, vol. 45, no. 3, pp. 1-51,

2013.

[8] B. J. Fogg, "Persuasive computers: perspectives and research

directions," in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 1998, pp. 225-232.

[9] B. J. Fogg, "Persuasive technology: using computers to change

what we think and do," Ubiquity, vol. 2002, no. December, p. 2,

2002.

[10] G. Cardone, A. Corradi, L. Foschini, and R. Montanari, "Socio-

technical Awareness to Support Recommendation and Efficient

Delivery of IMS-enabled Mobile Services," IEEE Communications

Magazine, vol. 50, no. 6, pp. 82-90, 2012.

[11] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M.

Talasila, et al., "Fostering Participaction in Smart Cities: a Geo-

Social Crowdsensing Platform," IEEE Communications Magazine,

vol. 51, no. 6, pp. 112-119, 2013.

[12] M.-R. Ra, B. Liu, T. La Porta, and R. Govindan, "Medusa: A

Programming Framework for Crowd-Sensing Applications," in

MobiSys '12: Proceedings of the 10th International Conference on

Mobile Systems, Applications, and Services, 2012, pp. 337-350.

[13] H. Xiping, T. H. S. Chu, H. C. B. Chan, and V. C. M. Leung,

"Vita: A Crowdsensing-Oriented Mobile Cyber-Physical

System," IEEE Transactions on Emerging Topics in Computing, vol.

1, no. 1, pp. 148-165, 2013.

[14] I. Carreras, D. Miorandi, A. Tamilin, E. R. Ssebaggala, and N.

Conci, "Matador: Mobile task detector for context-aware crowd-

sensing campaigns," in PERCOM Workshops '13: Proceedings of the

IEEE International Conference on Pervasive Computing and

Communications Workshops, 2013, pp. 212-17.

[15] N. Balasubramanian, A. Balasubramanian, and A.

Venkataramani, "Energy consumption in mobile phones: a

measurement study and implications for network applications,"

in IMC '09: Proceedings of the 9th ACM SIGCOMM conference on

Internet Measurement Conference, 2009, pp. 280-293.

[16] R. T. Fielding and R. N. Taylor, "Principled design of the modern

Web architecture," ACM Transactions on Internet Technology, vol.

2, no. 2, pp. 115-150, 2002.

[17] N. Gligoric, I. Dejanovic, and S. Krco, "Performance evaluation

of compact binary XML representation for constrained devices,"

in DCOSS '11: Proceedings of the IEEE International Conference on

Distributed Computing in Sensor Systems and Workshops 2011, pp.

1-5.

[18] Y. Chen, A. Ganapathi, and R. H. Katz, "To compress or not to

compress - compute vs. IO tradeoffs for mapreduce energy

efficiency," in Green Networking '10: Proceedings of the 1st ACM

SIGCOMM workshop on Green networking, 2010, pp. 23-28.

[19] T. Berners-Lee, R. Fielding, and H. Frystyk. (1996). Hypertext

Transfer Protocol - HTTP/1.0. Available:

http://tools.ietf.org/html/rfc1945

[20] E. Rescorla. (2000). HTTP over TLS. Available:

http://tools.ietf.org/html/rfc2818

[21] B. J. Fogg, "A behavior model for persuasive design," in

Persuasive '09: Proceedings of the 4th International Conference on

Persuasive Technology, 2009, pp. 1-7.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based

algorithm for discovering clusters in large spatial databases with

noise," in KDD '96: Proceedings of the 2nd International Conference

on Knowledge Discovery and Data Mining, 1996, pp. 226-231.

[23] N. Ramanathan, F. Alquaddoomi, H. Falaki, D. George, C.

Hsieh, J. Jenkins, et al., "ohmage: An open mobile system for

activity and experience sampling," in PervasiveHealth '12:

Proceedings of the 6th International Conference on Pervasive

Computing Technologies for Healthcare, 2012, pp. 203-204.

[24] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen,

C. von Riegen, et al., "Ws-bpel extension for people–

bpel4people," Joint white paper, IBM and SAP, vol. 183, no. p. 184,

2005.

[25] V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal, "USense

- A Smartphone Middleware for Community Sensing," in MDM

'14: Proceedings of the 14th IEEE International Conference on Mobile

Data Management, 2013, pp. 56-65.

Giuseppe Cardone (M’10) graduated from the University of Bolo-

gna, Italy, where he received a Ph.D. degree in in computer engi-

neering in 2013. He is now a site reliability engineer at Google, Lon-

don. His interests include performance and scalability issues of dis-

tributed systems, urban mobile sensing, and power-aware middle-

ware solutions.

Antonio Corradi (M’77) graduated from University of Bologna, Ita-

ly, and received MS in electrical engineering from Cornell Universi-

ty, USA. He is a full professor of computer engineering at the Uni-

versity of Bologna. His research interests include middleware for

pervasive and heterogeneous computing, infrastructure support for

context-aware multimodal services, and network management. He is

member of IEEE and ACM.

Luca Foschini (M’04) graduated from University of Bologna, Italy,

where he received PhD degree in computer science engineering in

2007. He is now an assistant professor of computer engineering at

the University of Bologna. His interests include distributed systems

for pervasive computing environments, system and service man-

agement, and Cloud computing. He is member of IEEE and ACM.

Raffaele Ianniello graduated from the University of Bologna, Italy,

where he received a Master degree in computer engineering in 2013.

He is now a research assistant at the same university. His interests

include distributed systems, spatial analysis, semantic web, and mo-

bile sensing.

	Copertina_postprint_IRIS_UNIBO
	postprint_tetc_ foschini

