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ParticipAct: a Large-Scale 
Crowdsensing Platform 

Giuseppe Cardone, Antonio Corradi, Member, IEEE, Luca Foschini, Member, IEEE, 

and Raffaele Ianniello 

Abstract—In recent years, the widespread availability of sensor-provided smartphones has enabled the possibility of harvesting 

large quantities of data in urban areas exploiting user devices, so enabling the so-called crowdsensing that allows to realize 

complex applications impossible without the involvement of the research community. While many efforts have been made to 

improve specific techniques – spanning from signal processing to the assignment of data collection campaigns to users, and to 

the entire data processing – to the best of our knowledge, there are no active experiments aimed to explore the challenging 

issues raised by the management of large-scale crowdsensing campaigns as real-world experiments. This paper presents the 

ParticipAct platform and its ParticipAct living lab, an ongoing experiment at University of Bologna that involves 170 students for 

one year in several crowdsensing campaigns that can access passively smartphone sensors and also prompt for user active 

collaboration. In this article, we describe the guidelines behind the design of ParticipAct, its features, its architecture, and report 

quantitative results that assess and confirm the feasibility, obtained via intelligent coordination and management of 

crowdsensing campaigns. 

Index Terms—Crowdsensing, distributed systems, location-dependent and sensitive, pervasive computing 

——————————      —————————— 

1 INTRODUCTION

ONTINUOUS improvements in hardware manufac-
turing, CPU architectures, radio-communication

techniques, and software design have constantly lowered 
the price of smartphones, thus fostering their far-reaching 
availability. The inevitable tipping point has been reached 
in 2013, when for the first time smartphones have outsold 
feature phones [1]: smartphones, while getting cheaper, 
are increasingly computationally powerful and equipped 
with more sensors (e.g., accelerometer, microphone, gyro-
scope, etc.) [2]. This spontaneous, widespread diffusion of 
Internet-connected sensor-equipped devices has enabled 
to accurately trace world-related information and (physi-
cal) activities of citizens by taking advantage of people 
willing to collaborate toward a continuous data harvest-
ing process, called crowdsensing. That is especially true in 
smart cities areas where people bring almost constantly 
their smartphones. 

The crowdsensing perspective asks for a powerful 
sensing platform where smartphones act as data sources 
sparse over the city and continuously feeding fresh raw 
sensing data. Moreover, recent advances in machine 
learning and artificial intelligence, supported by powerful 
computing resources available aboard, make 
smartphones intelligent probes able to process and extract 
high-level inferences from raw data (e.g., detecting user 
physical activity, voice detection, speaker detection) [3-7]. 
Recently, users begin playing an active role in crowdsens-

ing, by enriching objective measurements taken via their 
phones with their subjective impressions and different 
actions. In addition, people can directly interact and co-
ordinate with other close people, such as moving to plac-
es and coordinating with buddies and asking opinions.  

Employing both users and devices to collect data from 
the real world poses significant social and technical chal-
lenges. From the social point of view, it is crucial to moti-
vate users to participate, for example by providing useful 
crowdsensing-based services, handing out incentives, and 
fostering a sense of participation in a community [8, 9]. It 
is important not to overload users with duties over the 
limit of what they can contribute in crowdsensing. From a 
technical point of view, it is of paramount importance 
that sensing software that exploit user devices does not 
negatively impact on user experience, without reducing 
too much the quantity and quality of collected data. In 
any case, the boundary between social and technical chal-
lenges is not clear cut: for example, the minimization of 
the global resource overhead by considering a minimal 
subset of users in a crowdsensing campaign requires also 
analyzing geo-social profiles, to identify and infer which 
users are most likely to successfully harvest the required 
data. 

Although there are currently many studies about 
crowdsensing, they mostly provide ad-hoc solutions and 
do not provide a field-tested general architecture to be 
customized for specific settings. Toward this goal, we 
have designed ParticipAct, a socio/technical-aware 
crowdsensing platform to investigate in a real-world sce-
nario the social and technical issues of crowdsensing. Par-
ticipAct started within the city of Bologna with students 
of the University of Bologna. For the ParticipAct experi-
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ment, we enlisted 300 students (170 already active at the 
time of writing) for one year of active participation: we 
have selected students of different background belonging 
to different colleges. We provided them with modern 
smartphones, with unlimited data plan, asking them to 
allow us to collect data from sensors on the devices and to 
receive some tasks that require some form of active be-
havior, which they are free to accept or refuse. 

To tackle that significant development effort, we dis-
tilled some guidelines from our experience with similar 
systems [10, 11]: 

 minimal intrusion on client devices: resource consump-
tion must be minimized to limit impact on user ex-
perience;

 fast processing and feedback: data collected from user
must be quickly stored and processed so to reduce
delay from data reception to data availability;

 data sharing: whenever possible, if the same data is
required by more different processes, the content
should be shared to minimize data duplication;

 openness: due to its long lasting nature and wide
numbers, the architecture must easily expand to in-
tegrate new crowdsensing mechanisms;

 security: crowdsensing data are sensitive and integ-
rity and confidentiality end-to-end must be granted;

 complete data management workflow: ParticipAct must
support the whole data management cycle, from
collection to transmission, from processing to min-
ing and result provisioning.

These features highlight the most important contribu-
tions of ParticipAct that address all relevant issues for 
crowdsensing. Furthermore, we claim that a pure theoret-
ical approach to crowdsensing systems does not face 
completely crowdsensing complexity. So, the contribution 
of ParticipAct is also in the fact that it is under test on the 
field by a large number of volunteers. In other words, 
ParticipAct is an extraordinary living lab for smart city 
managers: for example, by knowing that users in a par-
ticular area are moving by car and their speed is low, the 
city manager can infer that an area is congested. Partici-
pAct can be useful to coordinate and experiment large-
scale crowdsensing activities:  

i) it includes in the crowdsensing loop very different
people (their set can be differently determined); 

ii) it allows to launch and coordinate parallel
crowdsensing campaigns over different groups of people; 

iii) and it offers an easy-to-use interface for the genera-
tion and orchestration of new tasks to smart city manag-
ers. 

From the technological point of view, ParticipAct is a 
complete crowdsensing platform consisting of an app 
running on smartphones and a web application on the 
back-end. Main supported functions include: management 
of the crowdsensing requests (called tasks in ParticipAct); 
sensing of data collected either passively (automatically via 
smartphone sensors), actively (with direct user participa-
tion), or with a mix of these modes; and evaluating assign-
ment of tasks to users for future crowdsensing campaigns 

based on accurate data post-processing and mining. To 
realize these functions, ParticipAct traverses several dif-
ferent technological stacks, spanning from the 
smartphone OS Android, to Web technologies, to distrib-
uted data processing.  

ParticipAct is the first real-world crowdsensing de-
ployment that addresses not only technical issues, but 
considers also human resources and their involvement. 
ParticipAct is available to the community as an open-
source platform that allows for fast development and de-
ployment of large-scale experiments with minimal intru-
sion and resource usage on both smartphone and server 
sides. This paper focuses, after presenting ParticipAct ar-
chitecture and main characteristics, on analyzing and 
evaluating different algorithms for assigning tasks based 
on user movements history. The main contribution is an 
on-the-field comparison in a real scenario of these algo-
rithms in order to evaluate them and understand which is 
better and in which situation. 

The rest of the paper is structured as follows. In Sec-
tion II we describe our crowdsensing scenario, in Section 
III we describe the architecture of the client site, in Section 
IV we delve into the details of the platform back-end and 
in Section V we describe some core functionalities that 
make ParticipAct a customizable crowdsensing platform. 
Section VI reports some of the experimental results col-
lected during the first deployment of ParticipAct. An 
analysis of related work (Section VII) and an assessment 
of the current state of the project and its future goals con-
clude the article. 

2 CROWDSENSING MODEL 

In general, the goal of crowdsensing is to coordinate a 
(possibly large) group of people to gather a given – possi-
bly complex – type of data, either by accessing sensors on 
user devices or asking users for active collaboration. Ex-
amples of possible crowdsensing campaigns are collect-
ing geolocation data, asking for a photo of a given target, 
harvesting geotagged noise level, and so on. 

There are several desirable features for a crowdsensing 
model that should aim at minimizing the complexity for 
participating users, while maximizing its expressiveness: 

 user freedom protection: users should be able to ac-
cept/refuse any data collection campaign;

 user privacy: users should be able to stop and re-
sume sensing at any time;

 data transparency: users should be fully aware of the
kind of data collected in a crowdsensing campaign;

 focused user load: crowdsensing requests should go
only to people likely to execute them, sharing the
workload fairly among participating users;

 geographical and temporal expressiveness: crowdsens-
ing should provide fine-grained parameters to de-
fine geographical and temporal bounds.

Following these principles, we designed the Partici-
pAct crowdsensing model. We represent any crowdsens-
ing campaign as a task that is notified to users that may be 
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available to collect requested data. This approach permits 
the definition of fine-grained simple operations (more 
likely to be completed by users) by dividing the burden 
between users: this is a common choice between other 
crowdsensing systems [11-14]. A task defines what, when, 
where, and by whom data should be collected. What should 
be collected is defined by fine-grained sensing actions that 
identify unambiguously the desired to be collected data. 
ParticipAct supports both data that can be automatically 
collected without user intervention - such as accelerome-
ter, Wi-Fi scans, and ambient noise level (passive sensing 
actions)- and data that requires active user contribution -
for example taking a photo, answering a survey, tagging a 
place (active sensing actions). ParticipAct allows to freely 
composing sensing actions, thus enabling the creation of 
tasks tailored to the needs of the manager of the 
crowdsensing campaign. The time metrics that dictate 
when data should be collected is expressed by three 
fields: availability window, task duration, and sensing dura-
tion. The availability window is the temporal interval 
when the task is available to users either to accept it or to 
refuse. Task duration represents the time users have to 
complete the task. Sensing duration defines how much 
sensing actions over sensors should be active to success-
fully complete the task. ParticipAct also allows defining 
where a task should be executed via geonotification and 
geoexecution. Geonotificated associates tasks to one or 
more geographical areas that must be traversed by users 
to receive the task notification. Geoexecuted, instead, as-
sociates tasks to one or more geographical areas and data 
collection can occur only to users located within. Finally, 
by whom is the set of people available for crowdsensing 
that had tentatively assigned to the task to either accept 
or refuse its execution. 

We want to stress that ParticipAct tend to assign tasks 
to people more likely to successfully complete them, but 
workload should also be fairly distributed over users, to 
avoid disaffection in participating. The possibility of se-
lectively choosing users for a task further enhances Partic-
ipAct flexibility, because it allows – for example – to 
launch two campaigns (two tasks) with the same sensing 
actions to two different categories of people (e.g., stu-
dents vs. employed, teen-agers vs. adults, etc.). The ex-
pressiveness of the crowdsensing model of ParticipAct 
makes it an ideal platform for crowdsensing in smart city 
scenarios, due to its capability of easily designing com-
plex tasks (e.g., collaborative journalism, urban mapping) 
and quickly deploy it over a large population. 

3 TASK LIFECYCLE AND DISTRIBUTED

ARCHITECTURE 

Any feature in the task structure plays a different role in 
the task lifecycle: this section describes all managing de-
tails of task lifecycle and its effects on the ParticipAct dis-
tributed architecture. 

The task lifecycle is complex (Fig. 1) due to several nu-
ances of the ParticipAct crowdsensing model. In particu-

lar, it requires to grant some state coherency to keep the 
task state synchronized between clients and the fixed 
server infrastructure (e.g. state transitions on clients 
should be completed if and only if the server acknowl-
edges them) and to decouple sensed data and task lifecy-
cle management (e.g., the uploading of sensed data 
should run independently and in parallel to other task-
related communications). When a task is created, the serv-
er holds it back until it reaches its availability window, 
then it makes available and notifies it to the assigned us-
ers. Geonotified tasks are pushed to assigned users but 
they are set in a hidden state that withholds their availabil-
ity until the smartphone verifies that the user is within 
the geonotification area. When a task is in the available 
state, users are free to decide either to accept it or not, 
based on task description. When a user refuses to run a 
task, it goes to the refused state, while if a user fails to de-
cide to accept a task within the availability window, the 
task is automatically flagged as ignored. When a task is 
accepted, it goes to the running state that is the only state 
that enables data collection. At any moment users are free 
to temporarily pause data collection for the sake of priva-
cy: in that case, the task is temporarily switched to paused, 
ready to be resumed later again. Tasks with geoexecution 
periodically check the current location, pausing data col-
lection if outside the designed areas for data collection 
(geostopped state) and resuming it when again within 

Fig. 1. Task state lifecycle. Data collection is enabled only in the 
running state. States with a bold stroke reached through transi-
tions represented with a bold arrow are kept in sync between cli-
ent and server. 
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bounds. When task duration time expires, the task 
switches to ended state, and evaluates data collection pro-
gress: if enough data has been collected, then the task 
switches to the succeeded state, otherwise it switches to the 
failed state. The evaluation whether a task has been suc-
cessful requires to check the successful status of all its ac-
tive and passive sensing actions: active actions are con-
sidered successfully completed whether the user carried 
out all required sensing actions (e.g., taking a picture, an-
swering a survey), whereas passive actions are successful 
if, during the task duration window, required sensors have 
run for at least the sensing duration. 

We argue that definition of ParticipAct tasks is flexible 
enough to correctly describe a wide range of crowdsens-
ing campaigns. For example, by combining passive and 
active sensing actions it is possible to design a wide range 
of different crowdsensing campaigns focused either on 
technical or social aspects, or a mix of both. For instance, 
by combining geoexecution, geolocation, and cell signal 
strength it is possible to measure what zones of a given 
urban area could use one cell tower more (or less); com-
bining geonotification, geoexecution, and taking pictures, 
it is possible to ask users to take a picture of a landmark. 

The nature of ParticipAct requires a client-server archi-
tecture: a client runs on user devices to take care of receiv-
ing tasks and running them and sending results to a serv-
er that can store, analyze and use them. Thus, although 
all task status changes happen on clients, they should be 
shared with the server, so that crowdsensing managers 
always have accurate, updated information about the 
state of crowdsensing campaigns. To keep task state syn-
chronized between clients and server, state changes 
should be allowed only when clients can communicate 
them to the server, thus making state transitions very 
costly, because network availability on mobile device is 
often spotty, thus delaying sync operations. Conversely, 
some state changes should not be synchronized between 
clients and server infrastructure because they are useful 
only on the client side (e.g., when a task is temporarily 
paused). That is the motivation of the state machine in 
Fig. 1: only important task state transitions are synchro-
nized between clients and the server. In particular, transi-
tions to available, refused, ignored, running, succeeded, and 
failed states are always synchronized with the server. If 
one of those transitions happens when there is no data 
connection, to avoid stalling the client, task state is im-
plemented in a soft state that is finalized as soon as the 
server acknowledges it. In the next two sections, we de-
scribe the client and server architecture, whose design has 
been derived from these observations. 

4 CLIENT ARCHITECTURE 

The ParticipAct client is the component in charge of re-
ceiving tasks, asking users whether they want to run 
them, managing data collection, and uploading results. 
Functionally, the ParticipAct client consists of two macro-
components: the task management one and the sensing 

management one (Fig. 2). These components orchestrate 
the full lifecycle of tasks on user devices and are respon-
sible for interacting with users and accessing smartphone 
sensors. 

4.1 Task Management 

The task management macro-component takes care of over-
seeing the whole task lifecycle on smartphones. It has five 
main responsibilities realized by its components: i) receiv-
ing tasks from the server and keep their state synchro-
nized; ii) providing users with an interface to control task 
execution; iii) implementing the Graphical User Interface 
(GUI) for active sensing actions with user interaction; iv) 
driving sensing actions; and v) uploading sensed data. 

Task State Sync and Task State Management components 
are in charge of the first duty, by taking care of receiving 
new tasks and, in acceptance, by driving their full lifecy-
cle. As stated previously, only important state transitions 
are communicated to the server and they occur only if the 
server acknowledges them. 

The Task State Management component gives users the 
opportunity of completely controlling the sensing pro-
cess: whenever an available task is pushed to user devic-
es, the task management component gives users the op-
portunity to accept or refuse it, thus allowing different 
level of engagement in crowdsensing campaigns. 

The GUI component enables sensing actions that re-
quire active user participation according to the third re-
sponsibility. Currently, ParticipAct supports four active 
sensing actions that allow to collect data available only 
through explicit user collaboration, hence enabling 
crowdsensing scenarios such as collaborative journalism, 
urban photographic mapping, and geotagging. The active 
sensing actions are survey, take a picture, tag a place, and 
move to a place in a specific time. ParticipAct implements a 
custom GUI for any of them. 

Task Management also drives sensing actions: it 
starts/stops passive actions based on the current state of 

Fig. 2. Architecture of ParticipAct client. 
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the task, i.e., when the user pauses data collection or 
when the user moves outside the target area, for geoexe-
cuted task. Actual activation/deactivation of sensors is 
demanded to the Passive Sensing component that sends 
appropriate requests to the Sensing Management macro-
component. 

Finally, the Data Uploading component is in charge of 
retrieving sensed data and uploading them on the server. 
This process has to balance between uploading data as 
soon as possible to the server and minimizing the power 
drawn by radio interfaces. According to the minimal in-
trusion principle, ParticipAct data upload is geared to-
wards minimizing its impact on battery lifetime. To ac-
complish this, ParticipAct batches data uploads and re-
quires a minimum interval of five minutes between two 
consecutive uploads, which grants the radio interface 
enough standby time [15]. The Local Database temporally 
stores data until the server acknowledges their reception, 
thus guaranteeing no data loss even in presence of unreli-
able data connections and client device shutdown. 

4.2 Sensing Management 

The sensing management component plays a pivotal role 
in ParticipAct crowdsensing because it manages the ac-
cess to all sensors available on smartphones and the col-
lection and processing of their output. Sensing is a power-
hungry process that should be carefully driven to avoid 
negative impact on user, again following the minimal in-
trusion principle; in ParticipAct we have distilled three 
design guidelines. First, sensing should promote availabil-
ity of high-level inferences, meaning that while accessing 
sensors on a smartphone (e.g., accelerometer) is a relative-
ly trivial process, providing high-level inferences (e.g., the 
user is walking/running/standing) is a much more valu-
able feature; second, sensing should be resource aware: 
sensing management should put effort in minimization of 
resource consumption to both reduce impact on battery 
lifetime and limit detrimental effects on the device per-

formance. Third, sensing system should be system aware: 
the sensing system coexists with the Operating System 
and other applications; with them it competes for un-
shareable resources (e.g., microphone and camera can be 
used only by one application at the time); the sensing sys-
tem should resolve conflicts and promote a non-intrusive 
approach. 

These principles drove us in the development of our 
sensing system, called MoST (Mobile Sensing Technolo-
gy). MoST is our open-source Android sensing library 
that provides an uniform access layer to all physical and 
logical sensors, that eases the burden on app developer 
that want to use sensor data by providing data processing 
and power management, while taking into account con-
currency issues due to access to shared resources, thus 
making sensing un-intrusive and minimizing impact on 
user experience. While MoST is a general-purpose library, 
in ParticipAct it effectively implements all the passive 
sensing actions1. 

MoST architecture is based on two building blocks: In-
puts and Pipelines. Inputs are any physical or logical 
sources of sensing data (e.g., accelerometer, gyroscope, 
GPS, app networking statistics, battery level), while Pipe-
lines are components that receive, process, and fuse 
sensed data collected from one or more Inputs and for-
wards resulting data to client applications. MoST consists 
of two main subsystems (Fig. 3): the Sensing subsystem 
and the Management subsystem. The Sensing subsystem has 
a two-layered architecture and manages all aspects of 
sensing, from accessing Inputs, to wrapping them into 
easy-to-manage local objects that are dispatched to Pipe-
lines. Pipelines then forward their results to client applica-
tions. The Management subsystem, instead, drives the sens-
ing process, providing an entry point to external apps to 
request MoST services, resolving concurrency issues for 
non-shareable resources (e.g., the microphone cannot be 
physically used by MoST during a phone call), and con-
trolling power management. For more details on MoST, 
we refer interested readers to [5]. 

5 SERVER ARCHITECTURE 

The server side of ParticipAct provides management, 
storage, and analysis of crowdsensed data. At the highest 
level comprises two main parts, as shown in Fig. 4: the 
Back-end and the Crowdsensing Manager. The Back-end 
takes care of receiving, storing, and processing sensed da-
ta, while the Crowdsensing Manager provides the adminis-
trative interface to design, assign, and deploy sensing 
tasks. 

In a more detailed view, the Back-end consists of three 
macro-components: Data Receiver, Post processor, and Data 
Processor. The Data Receiver that receives data from the cli-
ent (namely, from Data Uploading component) via a Rep-
resentational State Transfer (REST) API [16]. Data Receiver 

1 An updated list of sensors wrapped by MoST and the list of high-
level inferences on user activities is available at 
http://participact.unibo.it. 

Fig. 3. MoST architecture. 
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acknowledges each received data to allow data removal 
from the local database at the client side. Data is then 
cleaned up and prepared for long-term storage by Post-
processor components: Interpolation and Integration. Interpo-
lation improves data collection by filling in missing data 
points that can be inferred with sufficient accuracy. A no-
table case is geolocation data that on Android devices are 
available via Google geolocation API that dynamically 
switches between different techniques to infer user posi-
tion (i.e., GPS, Wi-Fi, and cellular 3G) thus causes location 
accuracy to range and suddenly change from few meters 
(e.g., for GPS) to thousands of meters (e.g., for cellular 3G 
only). Interpolation substitutes data outliers, whose accu-
racy is significantly worse than the ones of temporally 
close data points, by substituting them with a linear in-
terpolation of the more accurate data points. Integration, 
instead, aims at aggregating data in time and space. It col-
lapses all data of any type collected in the same 5 minute 
window in a single row to enable time-based indexing of 
all sensed data so to speed-up the execution of temporal 
queries. It also aggregates data in space by creating a ge-
ographical view of sensed data, and storing it in a Geo-
graphic Information System database (GIS) for spatial 
querying. Finally, the Data Processor exploits those time-
based and space-based views to tailor user profiles for 
fast identification of users that are more likely to success-
fully execute a task according to ParticipAct assignment 
policies detailed in the following Section 5.2. 

The Crowdsensing Manager is the administrator-facing 
part of ParticipAct. The Web Administration Interface (Fig. 
5) allows smart city managers to interact with the Partici-
pAct system and supports full-administration of the
whole crowdsensing process, including management of
user profiles, design and assignment of tasks, and data
review. A core function of the Web Administration Inter-
face is its ability of tapping into results provided by the
Data Processor to automatically assign tasks to users that
are more likely to successfully execute them. The Task

State Sync, instead, is in charge of keeping task state syn-
chronized between clients and server by pushing new 
tasks on designated clients and receiving all state change 
updates (e.g., task accepted/refused, task completed with 
success/failure). Among the several server functionali-
ties, in the next two sections we present two core features 
that highlight unique challenges of the deployment of a 
real-world crowdsensing system: data transport and task 
assignment. 

5.1 Data Transport 

An essential feature of a crowdsensing system is power-
efficient, secure, and reliable data transport from clients to 
the long-term storage hosted on the back-end. 

Power efficiency is achieved on the client side (see also 
Section 4.1) by batching data transfers to minimize the 
number of times that network interfaces have to turn on 
to transmit data. Another important factor to reduce 
power consumption is limiting the amount of data that is 
actually being transferred. To achieve this, ParticipAct 
serializes the bulk of data using the highly efficient pro-
tobuf format [17], that greatly reduces the CPU consump-
tion and data memory footprint compared to native Java 
serialization and verbose serialization formats such as Ja-
vaScript Object Notation (JSON) and eXtensible Markup 
Language (XML). Moreover, sensed data has often a low 
entropy (e.g., geolocation data points in a short time-span 
are similar), which makes them highly compressible. Par-
ticipAct exploits this aspect by having clients compress-
ing all outgoing data with the lightweight – yet power-
effective – gzip algorithm [18]. 

As regards security, authentication is provided by en-
forcing the usage of HTTP Basic Authentication for all us-
er requests [19]. Data integrity and confidentiality is 
guaranteed by industrial standards for encryption: all 
REST and web requests are available only via HTTPS 
over TLSv1 [20]. Moreover, HTTPS strengthens HTTP 
Basic Authentication, which by itself is a weak authentica-

Fig. 5. Screen capture of the ParticipAct Web Administration Inter-
face. This figure shows the interactive page that allows to define 
the geonotification area of a task.  

Fig. 4. Architecture of ParticipAct server side. 
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tion mechanism prone to network sniffing attacks, by 
guaranteed that users and password are never sent in 
plaintext over the Internet.  

Finally, ParticipAct achieves reliability with a two-
phase commit protocol to grant that all data are trans-
ferred from clients and stored at the back-end. 

5.2 Task Assignment 

According to [21], a key factor to persuade users into exe-
cuting tasks is making them easy, i.e. minimizing the ef-
fort to complete them successfully. ParticipAct profiling 
aims at identifying those users who are more likely to ac-
cept and complete a task without requiring them to modi-
fy their routines. At the current stage, ParticipAct task as-
signment policies mainly focus on geoexecuted tasks, that 
are of special interest for smart city managers to enable 
localized city surveillance and monitoring activities, by 
trying to involve in the campaigns users who are more 
likely to visit that area. 

In particular, given a task with a geoexecution area, 
ParticipAct provides four different policies to select users 
that could be asked to run it: random, recency, frequency 
[11], and dbscan. 

The random policy simply selects a random subset of 
all available users, regardless of their position history by 
allowing to choose the user ratio defined as the percentage 
of all available users to be assigned to the task, from 0% 
up to 100%. 

The recency policy assigns to the task to users that have 
been recently in the geoexecution area under the assump-
tion that they might still be therein, or go back to the des-
ignated area without changing their path too much. 
Moreover, the recency policy ranks all potential candi-
dates according to how recently they have been in the ge-
oexecution area, from the most to the least recent and, 
similarly to the random policy, also allows to choose the 
user ratio from 0% up to 100% defined as the portion of 
candidates (starting from higher ranked ones) to select. 

The frequency policy assumes that people that spent 
more time in the geoexecution area in the past are the best 
ones to select, because it is a place where they stay or reg-
ularly attend. Accordingly, it selects users that have been 
in the target area in the past by ranking them accordingly 
to the time that they spent there. In addition, like the re-
cency policy, the frequency policy supports the user ratio 
to further limit the number of assigned candidates. 

Finally, the dbscan policy uses the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) al-
gorithm to cluster past user location traces so to select us-
ers that actually spend a sizeable amount of time in the 
target should be selected as potential candidates. 
DBSCAN is a density-based clustering algorithm based 
on the idea that the density of points inside a cluster is 
much higher than that of the points outside and the den-
sity of points outside a cluster is much lower that the 
density of any other cluster [22]. DBSCAN has several 
properties that make it well-suited for the task assign-
ment problem: it does not require knowing the number of 

clusters a priori, it can detect arbitrarily-shaped clusters, 
it is robust to noise and outliers, and it is optimized to run 
on GIS-enabled databases. The dbscan policy runs the 
DBSCAN algorithm over all past user positions and se-
lects users that are in a cluster that intersects the geoexe-
cution area. Like all other policies, dbscan allows to select 
a user ratio; however, differently from recency and fre-
quency policies, since DBSCAN does not provide a rank-
ing, the dbscan policy chooses assigned users randomly 
among the subset of all candidates.  

Let us conclude this section noting that all task as-
signment policies are sensible to the size of location histo-
ry used; to avoid this problem, ParticipAct considers only 
a limited window of geolocation history of the last days 
before task start for each user, which currently is set to 
the two most recent weeks. At the same time, within that 
time frame, our policies consider in the candidates selec-
tion process all available users, even those ones that visit-
ed once in a lifetime a foreign city, because in that time-
span they could be the most promising ones for certain 
areas. For example, tourists tend to spend more time 
downtown than local citizens for the duration of their vis-
it. 

Choosing a policy to select users for a given task has 
an impact on crowdsensing campaign results: since fewer 
users are going to execute them there is the risk to collect 
less data. Therefore, it is important to define some metrics 
to assess the performances of user selection policies. Some 
of the possible metrics are the number of users selected by 
a policy, the ratio of users that successfully completed a 
task compared over the count of selected users (preci-
sion), the ability of correctly predicting which users will 
execute a task and which not (accuracy), the time neces-
sary to receive the first result, and the computational load 
due to policy execution. In the following section we ex-
perimentally evaluate the performances of ParticipAct 
policies according to these metrics. 

6 EXPERIMENTAL RESULTS 

The experimental assessment of a large scale crowdsens-
ing system in a realistic scenario poses significant social, 
technical, and logistic challenges. In a long-running effort 
to test ParticipAct, we have bootstrapped and we are cur-
rently maintaining a large deployment that involves 171 
volunteers, all of them students of University of Bologna, 
that are attending courses on either the Bologna campus 
(121 students) or Cesena campus (50 students). Although, 
as for other similar experiments, it is an open question if 
obtained results could hold in a more general scenario, 
we believe the ParticipAct dataset is large enough (in 
time and space) to draw some first important observation, 
and rather realistic for urban setting scenarios. In fact, it is 
important to state that Bologna and Cesena university 
campuses are not self-contained: they comprise several 
dozens of different buildings spread over the metropoli-
tan area. For this reason, volunteers path and behavior 
are not limited to a specific area, but related to the whole 
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urban territory that coincides with the same area of all cit-
izens living in the same smart city.  

Of course, we cannot present all the tests we have done 
in the first ParticipAct period, because we have triggered 
many different campaigns. Hence, we present two main 
sets of experimental results: the first one is completely fo-
cused on a quantitative assessment of our assignment 
policies for geoexecuted tasks; the second one, instead, is 
an analysis of acceptance ratio for different types of non-
geoexecuted tasks proposed to our volunteers. A discus-
sion of lessons learnt from the experiments conducted in 
the ParticipAct living lab ends the section.  

As regards deployment aspects, we provided each 
volunteer with a Samsung I8190 S III mini with pre-
installed ParticipAct client and a SIM card with pre-paid 
unlimited data plan that they are free to use as primary 
mobile device. The ParticipAct client reports user geolo-
cation every 180 seconds, thus allowing us to have very 
precise mobility traces. On the server side, ParticipAct 
was developed as a Spring MVC web application hosted 
on Apache Tomcat 7.0. The server hosting the web appli-
cation uses an Intel i5 3210M 2.5GHz CPU, with that 8 
GiB of RAM, and is connected via a 100Mbit connection 
to the server hosting the database that stores all 
crowdsensed data. The database server uses an Intel Xeon 
E31240 3.3GHz CPU and 8 GiB of RAM, and runs Post-
greSQL v9.1 DBMS, that has been enhanced with PostGIS 
v1.5 to run geographical queries. All geolocation traces of 
users have been stored in a GIS-enabled table to allow fast 
geographical queries. 

The first set of experimental results shows some per-
formance figures related to optimizing the strategies for 
assigning tasks, maximizing success probability, and min-
imizing cost (i.e., involved candidates and computation 
overhead). We sent to all volunteers four different geoex-
ecuted tasks over a period of a week, each of them asking 
to take a picture of a different place: Santo Stefano square 
in Bologna (task A), Bologna Opera House (task B), Cese-
na Train Station (task C), and Rocca Malatestiana castle in 
Cesena (task D). Table 1 shows for every task how many 
students accepted and successfully completed it on time, 
how many accepted it but failed to complete it, how 
many rejected to execute the task, and how many ignored 
the task (i.e., they neither accepted nor refused it). After 
receiving tasks results, we analyzed collected data to un-
derstand what performances would have been achieved if 
users had been selected by different ParticipAct policies 
and by using all possible user ratios from 10% to 100%. In 

the following, all results have been averaged over the 
four tasks, because they were executed by the same popu-
lation, they have comparable completion/failure rates, 
and they were associated to urban areas with similar 
characteristics. For policies that use a random user rank-
ing (i.e., random and dbscan policies), results were aver-
aged over 1000 random executions. 

Fig. 6 shows the number of candidate users selected by 
each policy. Obviously, the random policy has the worst 
performances, indiscriminately selecting a large number 
of users that have no chance to execute a task. Recency, 
frequency, and dbscan policies always select about 20 us-
ers or less, with dbscan selecting about half the users 
compared to the recency and frequency policies. All the 
policies (except the random one) significantly limit the 
number of users assigned to a task, thus reducing the 
workload of users; this result is very significant, especial-
ly if considered together with the following results shown 
in Figs. 7-9, that all refer to these limited sets of candi-
dates. 

In addition, the number of selected users is related 
with the rate of success, whether selected users where 
those that actually executed successfully the tasks or not. 
For this evaluation, we consider as true positives (TP) us-
ers that have been selected by a policy and actually car-
ried out the task, while false positives (FP) are users that 
have been selected by a policy and did not execute the 
task. Conversely, true negative (TN) users are the ones 
that have not been selected and did not execute the task, 
while false negatives (FN) the users that have not been 
selected but did execute the task. The rate of success is 
given by precision, calculated over the subset of selected 
candidates, and more formally defined as the ratio be-
tween TP and TP+FP. Fig. 7 shows the precision for the 
different policies implemented by ParticipAct. The ran-
dom policy has a very low precision regardless of the user 
ratio while dbscan has a constant high precision (the 
highest compared to all other policies), which means that 
about half of the selected users actually executed the pro-
posed task. Let us also note that the very regular behavior 

Task A Task B Task C Task D 

Completed 8.2% (14) 11.7% (20) 8.2% (14) 6.4% (11) 

Failed 16.4% (28) 12.3% (21) 11.7% (20) 8.8% (15) 

Rejected 17.5% (30) 19.9% (34) 31.6% (54) 36.8% (63) 

Ignored 57.9% (99) 56.1% (96) 48.5% (83) 48.0% (82) 

Table 1. Percentage of users that completed, failed, rejected or 
ignored the four test task. The number between parentheses is the 
raw number of students.  

Fig. 6. Number of users assigned to tasks using different policies. 
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of the random and dbscan curves is due to the fact that 
since they do not rank users, as stated before we report 
average values for the four tasks and multiple (i.e., 1000) 
executions. As for the recency and frequency policies, in-
stead, they are able to rank users, and we preferred to re-
port the obtained values over the four executed tasks on-
ly. That is the main reason for the fluctuations and cross-
ings, especially for low user ratios below 30% (with a cor-
responding total number of assigned users very low, be-
low 7); for a higher number of executions, we expect these 
curves stabilize and have a more regular trend. So, focus-
ing on the more significant [30-100]% user ration interval, 
the recency policy shows an almost-constant precision 
value, but performs worse than dbscan. The frequency 
policy, instead, works better (similar to dbscan) when the 
user ratio is between 30% and 60%, while selecting more 
than 60% users it includes too many users that will not 
cross again the target area in convenient time for task 
completion. 

Another important metric is accuracy: the proportion 
of true results (both true positives and true negatives) in 
the population. It can be expressed by the ratio between 
TP+TN and TP+FP+TN+FN, that quantifies how good is 
each policy in correctly classifying user behavior and 
predicting whether they will (TP) or will not (TN) execute 
a task. Fig. 8 shows accuracy rate for all different policies. 
While the random policy has a bad accuracy, all other 
ones have a comparably high accuracy. Let us note that 
the denominator (TP+FP+TN+FN) is constant and equal 
to the total number of users and TP is relatively small, be-
ing the subset including the 6-12% of the users that suc-
cessfully execute a task (see Table 1). That means that all 
informed policies (apart random) are able to obtain a high 
numerator (TP+TN) by correctly isolating those users that 
will not execute the task (TN), which in turns causes a 
high accuracy rate. 

A negative impact of selecting only a subset of users 
for a task is that the time to receive the first result may 
increase. Fig. 9 shows that time for each policy to receive 
the first result. Missing datapoints signal that in at least 

one of the four tasks there were no results, thus making 
impossible to measure the time necessary to collect the 
first result; in addition, we use a logarithmic scale for the 
sake of presentation. The value of the random policy with 
a 100% user ratio is the lower bound: it is not possible to 
receive a result earlier than that. The recency and fre-
quency policies have similar performances and quickly 
approach the lowest possible time to collect the first re-
sult, which is a very desirable property. In particular, the 
recency policy performs slightly better, but it is more at 
risk of not receiving any result when the user ratio is less 
than 50%. The dbscan policy always correctly selects at 
least one user that will collect the required data, but it 
approaches more slowly the lower bound. At the same 
time, let us remind that the overall number of assigned 
users selected by dbscan (at 100% user ratio) is nearly half 
the number of candidates at the same ratio for frequency 
and recency and dbscan grants also a higher precision 
and accuracy. 

Finally, it is important to measure the computational 
time of different policies, in other words the CPU time 
required to select users given a task. On our deployment, 
running the random policy required on average 75ms to 
run, because it has been realized as a simple random se-
lection on the table that stores users. The recency policy, 
instead, requires on average 187ms. That is still a short 
time because this policy requires to select geolocation da-
ta of users within the target area of the task and then to 
sort them by date; both these selections are greatly sped 
up by PostgreSQL and PostGIS indices. The frequency 
policy requires on average 24s, two orders of magnitude 
more than the recency policy. The main reason for that 
longer time is that the frequency policy needs to access all 
geolocation data for each user to evaluate the relative 
probability of being in the target area, and this process 
cannot be accelerated by database indices. Finally, the 
dbscan policy requires on average 4257s (more than 1 
hour and 10 minutes) to run. This is due to the complexity 
of the DBSCAN algorithm, which needs to calculate the 
distance of all geolocation data couples of each user to 

Fig. 7. Precision rate for different policies. Fig. 8. Accuracy rate for different policies. 
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identify clusters. 
This evaluation of the random, recency, frequency, and 

dbscan policies shows that any policy has its strengths 
and weaknesses: the recency policy has slightly worse 
performances compared to the frequency policy, but it is 
computationally very lightweight, making it more suita-
ble for very large scale deployments. On the other hand, 
the frequency policy has a significantly better precision 
and is less at risk of not having results with low user ratio 
compared to the recency policy. In any case, it is im-
portant to notice that the list of assigned users produced 
by recency and frequency contain the same users but they 
are ranked differently: this is why at 100% they reach al-
ways the same results. The dbscan policy has a high pre-
cision and is able to select a low number of assigned users 
due to its ability to capture and cluster user routinely be-
haviors, but it is computationally very expensive. In Par-
ticipAct we provide all these policies, because we believe 
it is important to allow crowdsensing managers to strate-
gically select the policy that more closely satisfy their cur-
rent requirements depending on the geoexecuted task 
they have to schedule. 

The second set of experimental results, instead, show 
some statistics about how our volunteers decide to accept 
(and successfully complete or not) other different types of 
non-geoexecuted tasks, that do not require to be in a place 
for completing the task. Table 2 reports collected statis-
tics. Task E is a creativity test (we assigned three, report-
ed numbers in Table 2 are average values) used to deter-
mine a human’s creative potential, namely, a Remote As-
sociate Test (RAT). For this task, we also give a very tight 
time limit to complete the riddle as required by this test 
type. Task F, instead, refers to a much longer and com-
plex task. Users were requested to execute a task of City 
Mapping. This kind of task demands to users to walk 
through the city for 3 hours and, while phone sensors 
gather position and activity recognition information as 
passive sensing activities, take 5 photos of interesting 
places and add a comment to each photo. Obtained re-
sults show that Task E, that is more gaming-oriented, but 

especially much faster to complete, has been selected (in-
cluding both completed and failed, because not complet-
ed on time) by a high percentage of volunteers, namely 
61.3%. Task F, instead, requiring more commitment and 
being much more time consuming attracted a very low 
number of volunteers (below 13%); in addition, many of 
them failed to complete it, probably because they decided 
to abandon the task due to either drop of interest or due 
to some unpredicted event that interrupted them. 

Recalling that ParticipAct has the main objective of fos-
tering new forms of participation for novel e-citizenship 
models in the smart cities environments and local com-
munities governance, not only did we run several other 
crowdsensing campaigns, but also collected many sur-
veys for feedback on user satisfaction and analyzed corre-
sponding data. That experience has given us many in-
sights and allowed us to draw some conclusions about 
the socio-technical management aspects of crowdsensing, 
which are very useful in designing new campaigns and 
refining the whole crowdsensing process. 

First, crowdsensing platforms should ascertain and 
manage data quality: crowdsensed data should be refined 
by keeping into account also user trustworthiness (based 
on her history and reputation) and enlarging the number 
of selected users for the same time (to polish data via non-
minimal crowdsourcing). For instance, we have observed 
a minor number of students trying to provide fake data: 
in most cases, we were able to dynamically detect them, 
for instance, when a user completes in a few minutes sev-
eral (non-geoexecuted) tasks that would require taking a 
photo in places that are several kilometers away. In other 
situations, only human checking could validate the con-
tent, such as when a user, asked to take a picture of a 
monument, shoots a picture of her monitor that displays 
the requested monument. 

Second, tasks should be as simple as possible to en-
courage user participation. As shown by our second set of 
experimental results, simple tasks are more easily accept-
ed than complex ones; hence, crowdsensing platforms 
should avoid asking for big changes in user behavior by 
soliciting complex and unacceptable tasks they are likely 
to refuse. In particular, complex tasks can be difficult to 
understand correctly, can break users’ daily routine or 
require too much effort that user is not willing or capable 
of reserve to them. An important topic is what kind of in-
centive can encourage users to execute more complex 
tasks; gamification, as demonstrated also by the high ap-
preciation of the RAT test, can help as well. 

Fig. 9. Time to receive the first result for different policies. Missing 
datapoints mean that no user successfully completed the task for 
at least one of the four tasks. 

Task E Task F 

Completed 48.0% (82) 2.9% (5) 

Failed 13.3% (22.7) 9.4% (16) 

Rejected 38.2% (65.3) 76.6% (131) 

Ignored 0.6% (1) 11.1% (19) 

Table 2. Percentage of users that completed, failed, rejected or 
ignored the two non-geolocalized tasks. The number between 
brackets is the raw number of students. For Task E, we report 
average values collected over three tasks of the same type. 
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Finally, although our task assignment policies are quite 
effective, nonetheless users that accept a task tend to for-
get about it, thus failing. From surveys conducted on our 
volunteers, they suggested us to remember them that 
they agreed to do something. At the same time, it is also 
important not to interfere too much. A possible solution, 
with regards to geoexecuted tasks, is to remember the us-
ers, when nearby, that a task in that area was requested 
and accepted. 

7 RELATED WORK 

Interest in crowdsensing has seen a tremendous growth 
in the recent years thus promoting the development of 
several crowdsensing systems. A complete crowdsensing 
system covers several different research topics, including 
signal processing, machine learning, distributed systems, 
and social sciences. There are several research efforts fo-
cused on these aspects, considering each of them by 
themselves, while ParticipAct tries to tackle the whole 
stack of technical and social problems related to 
crowdsensing, which poses significant challenges. In this 
section, without pretension of completeness, we present 
some of the works that are close to the ParticipAct ap-
proach to crowdsensing. 

Ohmage is an healthcare-oriented system that exploits 
smartphones to collect both passively and actively infor-
mation about users [23]. Ohmage system architecture, 
similarly to ParticipAct, comprises an Android app to col-
lect data and a back-end that allows to administer data 
requests and then visualizing and analyzing collected da-
ta. Differently from ParticipAct, Ohmage has no means to 
tie data requests to a specific geographic area, thus reduc-
ing its usefulness for smart city scenarios that could re-
quire users to be in a specific place to execute a task. Vita 
is a system that stresses the relevance of providing 
crowdsensing as a service integrated with usual software 
services and supports sensing task assignment based on 
user profiles [13]. To achieve the first goal Vita relies on 
BPEL4PEOPLE, a Business Process Execution Language 
extension that enables orchestration of human-driven 
sensing task within web services [24]. To achieve the sec-
ond goal Vita assigns to tasks and users a so called “social 
vector”, which is a synthetic representation of user re-
sources and knowledge, and exploits it to assign a task to 
users whose profile suggests that they may enjoy that 
task and have enough resources to complete it successful-
ly. While Vita provides a nice support for non-
geoexecuted tasks, it completely lacks support for ad-
vanced task assignment policies for geoexecuted tasks 
based on user movement history. Matador is a 
crowdsensing software that focuses on context-awareness 
to optimize task assignment while minimizing battery 
consumption [14]. In particular, Matador assumes that a 
task is defined by a geographical dimension and a tem-
poral dimension and should be assigned to users that are 
within the given geographical area in the given temporal 
window, and drives the sampling time of user positions 

to minimize battery consumption, dynamically switching 
between network-based geolocation, power-efficient but 
inaccurate, and GPS, power-hungry but very accurate. 
ParticipAct adopts a more proactive approach and, dif-
ferently from Matador, allows to assign geoexecuted tasks 
to volunteers based on their past mobility history, with-
out assuming constant communications at runtime, but 
only requiring lightweight and infrequent geolocalization 
sampling at the client device. USense is a middleware for 
community sensing that strongly decouples users collect-
ing data and managers that require crowdsensed data: 
managers specify which kind of data they need and 
USense matches them with people meeting the require-
ments [25]. A notable feature of USense is its flexible poli-
cies for smartphone sensors duty cycling, which allow to 
minimize battery consumption of sensing activities. Simi-
larly to USense also the MoST sensing core of ParticipAct 
support duty cycling of passive sensing activities. Finally, 
the Medusa framework focuses on algorithms to define 
crowdsensing tasks [12]. Medusa is based on a domain-
specific programming language that provides high-level 
abstraction to define crowdsensing tasks, and employs a 
distributed system that coordinates execution of those 
tasks between smartphones and a cluster in the cloud. By 
providing programming abstractions for the definition of 
the tasks Medusa is complementary to our work, but at 
the current stage it lacks task assignment management 
support of geoexecuted tasks and, similarly to Matador 
and Vita, it also lacks the signal processing and machine 
learning support to automatically collect high-level infer-
ences about user activities. Let us conclude this section by 
noting that compared to all above systems ParticipAct has 
been tested on a much larger user base and for a signifi-
cantly longer duration. 

8 CONCLUSION 

This paper describes ParticipAct, an ongoing project of 
the University of Bologna that involves 170 students that 
participate to a large-scale crowdsensing experiment. Par-
ticipAct is the first real-world crowdsensing deployment 
that addresses not only technical issues, but considers al-
so human resources, their use, and involvement. Partici-
pAct is available to the community as an open-source 
platform that allows for fast development and deploy-
ment of large-scale experiments with minimal intrusion 
and resource usage on both smartphone and server sides.  

This work paves the way to a new generation of real-
world large-scale crowdsensing testbeds able to truly ver-
ify any step in the whole crowdsensing process, from task 
scheduling to incentive, and mobile sensing, as an effec-
tive monitoring solution for future smarter cities. 
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