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Coded Slotted ALOHA: A Graph-Based Method for
Uncoordinated Multiple Access

Enrico Paolini, Member, IEEE, Gianluigi Liva, Senior Member, IEEE,
and Marco Chiani, Fellow, IEEE

Abstract—In this paper, a random access scheme is introduced
which relies on the combination of packet erasure correcting
codes and successive interference cancellation (SIC). The scheme
is named coded slotted ALOHA. A bipartite graph representation
of the SIC process, resembling iterative decoding of generalized
low-density parity-check codes over the erasure channel, is
exploited to optimize the selection probabilities of the component
erasure correcting codes via density evolution analysis. The
capacity (in packets per slot) of the scheme is then analyzed in
the context of the collision channel without feedback. Moreover,
a capacity bound is developed and component code distributions
tightly approaching the bound are derived.

Index Terms—Codes on graphs, collision channel, density
evolution, erasure channel, interference cancellation, iterative
decoding, random access.

I. INTRODUCTION

RANDOM multiple access has traditionally represented
a popular solution for wireless networks. The slotted

ALOHA protocol [1]–[4], for example, is still employed for
the initial access in both cellular terrestrial and satellite com-
munication networks [5]. As opposed to demand assignment
multiple access (DAMA) protocols, random access schemes
let a common channel to be dynamically and opportunistically
shared by a population of users, among whom only a low level
of coordination (or even no coordination at all) is permitted.
In practice, the impossibility to establish a sufficient level of
coordination among the users wishing to access the channel
may be due to several reasons, for instance, to a lack of global
information, to intolerable delays introduced by coordination
establishment, to a too large user population size, or to the
sporadic and unpredictable nature of users’ access activity. As
a result of the uncoordinated users’ transmissions packets may
experience collisions, traditionally requiring the retransmission
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of (some of) the involved packets, resulting in stability issues.
For a random multiple access system in which each user is
equipped with a buffer of infinite size to store packets that
have not yet been transmitted or correctly received, stability
is often intended as the property that all users’ queues admit
a limiting distribution (a formal definition may be found,
for instance, in [6]). The stability region of random multiple
access systems under different interacting queue settings has
been deeply investigated in several works, such as [7]–[10].

A new light on random access techniques has recently
been cast by the observation that iterative signal processing
can largely improve the transmission efficiency, rendering the
throughput achievable by random access schemes competitive
with that typical of coordinated protocols. In this respect,
successive interference cancellation (SIC) techniques turned
out to represent a major breakthrough, enabling collisions to
be favorably exploited instead of being regarded simply as
a waste. These techniques share the feature of cancelling the
interference caused by collided packets in the slots where they
have been transmitted whenever a clean (i.e., uncollided) copy
of them is detected. These advances have opened a completely
new perspective in uncoordinated protocols, paving the way to
dramatic performance improvements. ı

The contention resolution diversity slotted ALOHA
(CRDSA) scheme proposed in [11], for example, exploits
SIC in the framework of satellite access networks to re-
markably improve the performance of the diversity slotted
ALOHA (DSA) technique [12], consisting of transmitting each
packet twice over a medium access control (MAC) frame.
Almost contemporaneously to [11], interference cancellation
was employed within the SICTA protocol [13] and, slightly
later, within the ZigZag protocol [14]. The SICTA protocol
exhibits conspicuous performance gains over collision resolu-
tion algorithms working on trees [15]. The ZigZag technique,
combining packet repetitions and random packet jitters, was
proposed as an effective countermeasure to collisions due to
the hidden terminal problem in wireless local area networks.
More recently, irregular repetition slotted ALOHA (IRSA)
was introduced in [16] to provide a further throughput gain
over CRDSA, by allowing a variable and judiciously designed
repetition rate for each packet. (The IRSA scheme may be
regarded a special case of the access technique proposed in this
paper, as it will be explained later.) Moreover, an improvement
to the original ZigZag approach, exploiting soft message-
passing and named SigSag, was presented in [17]. Both [16]
and [17] identified a key connection between the SIC process
and iterative message-passing algorithms on sparse graphs.
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This connection was exploited in [16] to design via density
evolution [18] IRSA configurations with remarkably high peak
throughput values, and in [17] to interpret the original ZigZag
algorithm as an instance of the sum-product algorithm on
factor graphs [19] and, consequently, to develop a soft version
of it. Additional significant works in the area are [20], [21]
in which a “frameless” version of IRSA has been proposed in
analogy with rateless codes, [22] in which an IRSA configu-
ration based on the “soliton distribution” has been developed
achieving a throughput equal to 1 [packets/slot], and [23]
in which an unslotted version of CRDSA and IRSA was
investigated. It is worth observing that SIC techniques have
also been successfully exploited to enhance access protocols
beyond random access. An iterative receiver for asynchronous
code-division multiple access (CDMA) systems, exploiting
interference cancellation, was for example proposed in [24].
Based on an exchange of extrinsic information (in a turbo-
like fashion) between the interference canceller and the error
correcting decoders of individual users, the decoder exhibits
very good performances upon a careful design.

While in random access systems communication reliability
is typically achieved via retransmissions, the problem of
recovering from collisions may also be tackled from a different
perspective, i.e., from a forward error correction viewpoint. A
fundamental work in this research area is [25], in which the
capacity region of a “collision channel without feedback” (i.e.,
a multiple access channel on which collisions are unavoid-
able while reliability cannot be ensured by retransmissions
due to the lack of a feedback channel to notify success-
ful transmissions or collisions) was analyzed and a coding
scheme achieving capacity over such channel was developed.
In the setting considered in [25] collisions are caused by
asynchronous (either slot-aligned or unslotted) users’ trans-
missions and the multiaccess communication strategy is based
on erasure correcting codes and on assigning different periodic
protocol sequences to different users, each sequence speci-
fying the slots in which the corresponding user is allowed
to access the channel. In this way, a symmetric capacity1

equal to 1/e [packets/slot] is achieved as the number of users
accessing the channel tends to infinity, both in the slotted
and in the unslotted case. Although simple and effective,
the approach in [25] poses some coordination challenges,
especially for a large (and varying) number of users, since
user protocol sequences must be jointly assigned [26], [27].
Subsequent works elaborated on the system considered in [25].
In [28] the capacity region in the slot-synchronized case was
analyzed, under the more general setting in which collision
are not fully destructive due, for instance, to the adoption of
multiuser detection techniques [29]. Moreover, in [30] several
properties of shift-invariant protocol sequences (ensuring a
constant throughput to each user regardless transmissions
offsets) were exposed, along with design strategies for such
sequences.

In this paper an extension of the IRSA access strategy
proposed in [16], dubbed coded slotted ALOHA (CSA), is

1This is the maximum sum-rate for a point in the capacity region under
the hypothesis that all users have the same information rate.

proposed. As opposed to IRSA and to the above-reviewed
schemes exploiting SIC in the framework of random access, in
the new scheme user packets are encoded prior to transmission
in the MAC frame, instead of being simply repeated. The en-
coding operation is performed through local component codes
(all having the same dimension) randomly drawn by the users,
in an uncoordinated fashion, from a set of component codes.
This latter set together with the probability mass function
(p.m.f.) according to which users pick their codes represent
the design parameters of the proposed access scheme. On the
receiver side, SIC is combined with decoding of the local
component codes to recover from collisions. Exploiting a
bipartite graph representation, density evolution equations for
CSA on the collision channel are derived, allowing the analysis
of the SIC process in an asymptotic setting and leading to the
definition of the “capacity” of the scheme in a retransmission-
free context. It is proved that the scheme is asymptotically
reliable on the collision channel even without retransmissions.
More specifically, in the limit where the MAC frame length
and the user population size both tend to infinity (their ratio
remaining constant), a vanishing packet loss probability is
guaranteed for channel loads not greater than the asymptotic
throughput.

The IRSA access scheme can be seen as an instance of
CSA, where all local component codes are repetition codes.
For this reason, CSA retains all advantages of IRSA in terms
of uncoordinated access, equal medium access opportunities
for all users, and low complexity processing performed by
the users, while overcoming the main weakness of the IRSA
protocol. As discussed in the next section upon addressing the
system model, in fact, while the maximum rate2 for an IRSA
scheme able to reliably operate without retransmissions (up
to some value of the load) is 1/2, a reliable CSA scheme
can be designed for any rate between 0 and 1. If, on the
one hand, replacing repetition codes with generic linear block
codes may appear as the simplest generalization which allows
to overcome the IRSA limitation in terms of supportable
rates, on the other hand this change defines a framework
sufficiently general to include, as marginal variations, several
other related access schemes that may be obtained by relaxing
some of the conditions in the IRSA paradigm. Among them,
the introduction of mild forms of coordination among the
users aimed at improving the throughput, the introduction of
mechanisms for making the traffic generated by some users
priority with respect to the traffic generated by the other users,
and the introduction of forms of inter-frame processing to
resolve the collisions.

With respect to IRSA, the CSA access protocol is particu-
larly useful in those contexts in which efficiency in terms of
transmitted energy is required. In fact, the transmitted energy
per packet required by CSA is higher than that required by
pure slotted ALOHA by a factor that is equal to the ratio of the
expected length of the component code drawn by the generic
user to the (common) dimension of the component codes,
i.e., a factor equal to the inverse of the rate of the scheme.
Therefore, the use of local codes with low rates, as it is the case

2The rate of the access scheme is formally defined in Section II-B.
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for the repetition codes used in IRSA, results in low energy
efficiencies, as further discussed in Section II-B. Conversely,
CSA is able to overcome this limitation by admitting high-
rate erasure codes as local component codes, allowing in
principle rates of the access scheme arbitrarily close to 1 and
thus extending the trade-off between energy efficiency and
sustainable channel traffic.

In the high rate regime, i.e., for rates of the access scheme
larger than 1/2, the CSA protocol must rely on component
codes with large enough dimension and high enough coding
rate. In the low rate regime, i.e., for rates of the access scheme
lower than 1/2, any CSA scheme has an IRSA counterpart.
Although advantages of CSA protocols over IRSA ones in
terms of peak throughput transpire from our results over the
whole range of low rates, these advantages are so small at
very low rates (e.g., rates less than 1/3) that IRSA protocols
should be preferred in this rate region due to their design
and to operational simplicity. On the contrary, when IRSA is
operated at rate 1/2 or close to it, the lack of freedom in the
definition of the probability with which a component repetition
code is selected results in visible performance degradation
[16]. Owing to its flexibility in selecting high-rate local codes,
CSA can rely on a broader set of component codes, allowing
a careful definition of the probability with which each of them
is picked at any target rate. As a result, for rates comprised
between 1/3 and 1/2, CSA outperforms IRSA remarkably,
even using very simple binary two-dimensional component
codes.

References [31]–[34] are particularly relevant to the present
work. Elaborating on some of the results developed in these
works, a complete characterization and a systematic design
methodology of CSA access schemes is presented and a
framework for the analysis of CSA-related schemes is defined.
In the process, an upper bound on the sustainable traffic for
a given rate of the scheme is developed elaborating on the
Area Theorem in the context of coding for erasure channels.
It is illustrated in the numerical result section how, moving
from CSA to IRSA, it is possible to perform closer to the
bound, as previously mentioned, and that this performance
advantage tends to become more evident as the dimension
of the component codes increases. Moreover, an interpretation
of the performance of various CSA schemes as a trade-off
between energy efficiency and sustainable traffic is proposed.

In terms of possible applications, the capability of CSA to
guarantee communication reliability even without retransmis-
sions makes it an interesting opportunity for multiple access
problems characterized by a potentially very large population
of users (in which case the level of coordination required by
DAMA protocols cannot be achieved) and in which the use
of retransmissions poses some problems. Examples of such
applications are wireless sensor networks with a high density
of sensor nodes or radio frequency identification (RFID)
systems with a high density of tags. Satellite networks are
also a potential application.

This paper is organized as follows. The CSA encoding and
decoding procedures, along with the adopted notation, are
introduced in Section II. An asymptotic analysis of the CSA
decoding process, based on an analogy with iterative decoding

of modern codes on graphs, is presented in Section III,
while in Section IV an upper bound on the capacity of the
scheme (to be defined later) is developed. Numerical results
are presented in Section V to illustrate the effectiveness of
the asymptotic analysis in designing CSA configurations for
a finite number of users. Conclusions follow in Section VI.
Results supporting some assumptions made during the analysis
and an alternative proof of the bound in Section IV are
presented in the appendices.

II. CSA SYSTEM MODEL

A. Preliminaries

We consider a slotted random access scheme where slots
are grouped in MAC frames, all with the same length M (in
slots). Each slot has a time duration Tslot, whereas the MAC
frame is of time duration Tframe, so M = Tframe/Tslot. The
total number of users in the system is N = αM , where α is
the normalized user population size.3 Each user is frame- and
slot-synchronous and attempts at most one burst (i.e., packet)
transmission per MAC frame. Neglecting guard times, the time
duration of a burst is Tslot.

At the beginning of a MAC frame each user generates a
burst to be transmitted within the frame with probability π,
where π is called the activation probability. Users attempting
the transmission within a MAC frame are referred to as the
active users for that frame. Since each user becomes active
independently of the other users, the number of active users for
a frame is modeled by a random variable Na (the subscript “a”
reminding the word “active”) which is binomially distributed
with mean value E[Na] = πN . The instantaneous channel load
is

Ga =
Na

M
(1)

while the expected channel load (representing the expected
number of burst transmissions per slot) is

G =
E[Na]

M
= πα . (2)

Clearly, for constant normalized population size α we have
Ga = G+ o(1) as M →∞.

B. Encoding and Decoding Procedures

The proposed access scheme works as follows. Prior to
transmission, the burst of an active user is divided into k
information (or data) segments, all of the same length in bits.
The k segments are then encoded by the user via a packet-
oriented linear block code generating nh encoded segments, all
of the same length as the data segments. For each transmission,
the (nh, k) code is chosen randomly by the user from a
set C = {C1,C2, . . . ,Cθ} of θ component codes. Note that
the set C is known also to the receiver. Unless explicitly

3Even if this is not mathematically necessary for the technical results
presented in the following, the population size should be thought as large with
respect to the number of available slots per frame, i.e., α� 1. Moreover, it
is useful (even if, again, not strictly necessary) to think of users characterized
by a sporadic activity, i.e., characterized by an activation probability (defined
later) π � 1. This justifies the use of random access schemes instead of
DAMA ones.
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stated, all component codes will be assumed to be binary. For
h ∈ {1, 2, . . . , θ} the code Ch has length nh, dimension k,
rate Rh = k/nh, and minimum distance dh ≥ 2. Moreover,
it has no idle symbols. At any transmission, each user draws
its local code from the set C independently of all its previous
choices and without any coordination with the other users. The
code is picked according to a probability mass function (p.m.f.)
Λ= {Λh}θh=1 which is the same for all users. A user adopting
code Ch for transmission in a MAC frame is referred to as a
type-h user for that frame and an encoded segment associated
with the user as a type-h segment. For h ∈ {1, . . . , θ}, a
type-h encoded segment is equipped with information about
the user it is associated with and about the component code
picked by the user. Moreover, it is equipped with pointers to
the other nh − 1 encoded segments.4

Encoded segments are further encoded via a physical layer
code before transmission over the multiple access channel.
The time duration of each transmitted segment is Tsegment =
Tslot/k. Every slot in the MAC frame is divided into k slices,
each of the same time duration Tsegment as encoded segments.
Hence, up to k segments may be accommodated in the same
slot and the MAC frame may be thought as composed of kM
slices.5 The nh segments are transmitted by a type-h active
user over nh slices picked uniformly at random. We define the
rate of the scheme as

R =
k

n̄
(3)

where

n̄ =

θ∑
h=1

Λhnh (4)

is the expected length of the code picked in C. Note that
∆E = 10 log10(n̄/k) = −10 log10R represents the increment
(in dB) of energy per burst with respect to pure SA without
retransmissions. Note also that, if all component codes in
the set C are repetition codes (k = 1), then the IRSA
scheme is obtained as a special case of CSA. While only rates
0 < R ≤ 1/2 can be obtained with IRSA, the CSA scheme
is more flexible in that all rates 0 < R < 1 are in principle
possible. In particular, to obtain a CSA scheme of rate R the
minimum dimension k of the component codes is given by
dR/(1−R)e.

Example 2.1: In Fig. 1 a pictorial representation of the
encoding and transmission process is provided for the case
of Na = 3 active users (indexed as user i, user j, and
user l) and kM = 10 slices (indexed from 1 to 10). Each
burst is split into k = 2 information segments. Out of the
three users, user i employs a (4, 2) linear block code (code
Ch ∈ C) while user j and user l employ (3, 2) linear block
codes. User i performs systematic encoding of its two data
segments, generating two parity segments. The four encoded

4In practical implementations, the overhead due to the inclusion of pointers
in the segment header may be reduced by adopting more efficient techniques.
For fixed k, one may include in the segment header the code index h together
with a random seed, out of which it is possible to reconstruct (by a pre-defined
pseudo-random number generator) the positions of the nh segments.

5The definition of MAC frame as sequence of M slots is instrumental to
the definition of instantaneous and expected loads Ga and G only. The actual
minimum units that can be allocated to a segment transmission are the slices.

MAC frame, kM slices

Encoder, Ch

i-th active user’s burst

i-th active user’s k data segments

i-th active user’s nh encoded segments

user i

user i + 1

user i + 2

Fig. 1. Model of the CSA access scheme. Each user being active at the
beginning of a MAC frame splits his bursts into k = 2 data segments. User i
encodes his data segments via a (4, 2) linear block systematic encoder, while
users j and l through (3, 2) linear block systematic encoders. The darkened
rectangles represent parity segments generated by the encoders.

segments are then transmitted into the MAC frame slices of
indexes 1, 4, 7, 9. The encoded segments of users j and l
(performing systematic encoding as well) are transmitted in
slices of indexes 2, 4, 10 and 2, 6, 9, respectively. In the
example physical layer coding is not represented.

In Example 2.1 all users perform systematic encoding
of their data segments. Indeed, as it will become clear in
Section III, the performance of the proposed access scheme
does not depend on the specific choice of the generator matrix
for each code Ch ∈ C, so that a systematic segment encoding
process may always been assumed.

On the receiver side decoding is performed as follows.
Segments that are received in clean slices (i.e., segments not
experiencing collisions) are first decoded at physical layer
and information about the relevant user, the code Ch ∈ C
adopted by the user, and the positions of the other nh − 1
segments in the MAC frame are extracted. For each active
user the receiver becomes aware of, maximum-a-posteriori
(MAP) erasure decoding of the code Ch ∈ C adopted by
the user is performed in order to recover as many encoded
segments as possible for the user. Recovered segments may
now be exploited in order to subtract their contribution of
interference in those slices where collisions occurred. This
procedure combining MAP erasure decoding of the codes
employed by active users to encode their data segments and
SIC is iterated until either all slices have been cleaned (and
then all bursts have been successfully decoded) or collisions
persist but no further encoded segments can be recovered
via MAP erasure decoding. Note that the receiver is not a
priori aware of the number of users becoming active and
transmitting a burst in the current MAC frame. Note also that
we have implicitly assumed that the receiver is always able to
discriminate between “empty” segments and segments where
users’ waveforms have been received, and that collisions are
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always detected by the receiver, even if information neither
about the number of users causing the collision nor about the
single colliding segments can be extracted from the waveform
received in the corresponding slice. This is reasonable, for
example, when the segment header comprises an integrity
control field that is checked, on the decoder side, after physical
layer decoding.

Example 2.2: With reference again to Fig. 1, assume that all
users employ binary linear block codes. Specifically, assume
that user i encodes its two data segments via a (4, 2) code
with generator matrix G = [1011, 0110], and that both user
j and user l employ a (3, 2) single parity-check (SPC) code.
A collision is detected by the receiver on slices with indexes
2, 4, and 9, while interference-free segments are received on
slices with indexes 1, 6, 7, and 10. It is easy to recognize that
MAP erasure decoding of the block code employed by user i
allows to recover the two missing segments of this user. The
contributions of interference of these two segments can then
be subtracted from the corresponding slices (of indexes 4 and
9), cleaning the segments transmitted by user j in slice 4 and
by user l in slice 9, respectively. Iterating the process, MAP
erasure decoding of the SPC codes employed by user j and
user l allows to recover all of the segments transmitted by the
two users.

C. Channel Model

When a segment of some user is recovered via MAP erasure
decoding, a correct implementation of interference cancella-
tion (i.e., cancellation of the contribution of interference of this
segment in the corresponding slice) imposes the estimation of
channel parameters such as the delay, the frequency offset,
and the phase offset. Algorithms to efficiently perform this
estimation have been discussed in [11], [16]. Nonetheless,
throughout the paper we will adopt a channel model in which
ideal interference cancellation is assumed. As discussed in
Section III, this model has the advantage to establish a direct
connection between the proposed random access scheme and
iterative erasure decoding of a generalization of low-density
parity-check (LDPC) codes. This bridge enables both a simple
analysis of the SIC process, leading to the definition of key
performance parameters such as the asymptotic threshold, and
a simple yet effective access scheme design, in terms of
selection of the component codes in C and of their p.m.f. Λ.

In each slice of the MAC frame the decoder may detect a
“silence” (no active user has transmitted in that segment), a
signal corresponding to a unique segment, or a signal being the
result of a collision. As discussed in the previous subsection, it
is assumed that the decoder can always discriminate between
these three events: In case a collision is detected, the observed
signal provides no information to the decoder about the num-
ber and the values of colliding segments.6 Moreover, segments
not experiencing collisions are always correctly received. This

6This is typical of “collision channel” models. A more general setting (not
addressed in this paper) is represented by a standard multipacket reception
(MPR) channel model [9], in which a packet has a certain probability of
being correctly received even in presence of interference from other packets
transmitted in the same slot.

is reasonable when a good physical layer channel code is used
to individually encode each segment and when the signal-to-
noise ratio (SNR) on the link is sufficiently high. We may
better summarize our simplifying assumptions as follows.

Assumption 1: Collisions are always detected by the
receiver.

Assumption 2: All users are within the range of detectabil-
ity and decodability of the receiver.

Assumption 3: Interference cancellation is ideal, as so is
the estimation of the channel parameters necessary to perform
it.

Due to Assumption 2 when a segment experiences no
collisions it is always correctly detected and decoded, and it
is useful for the purposes of interference cancellation process.
Moreover, when a segment is involved in a collision with other
d − 1 segments and the interference cancellation algorithm
is able to cancel the contribution of interference of these
d − 1 segments, the recovered segment is correctly detected
and decoded and, again, it becomes useful for the purposes
of interference cancellation process.7 Moreover, due to As-
sumption 3, hereafter we will use the terminology interference
subtraction instead of interference cancellation, as it suggests
perfect removal of a contribution of interference.

III. BIPARTITE GRAPH MODEL AND DENSITY EVOLUTION
ANALYSIS

Considering an instantaneous population of Na active users
and a MAC frame of M slots, the frame status can be
described by a bipartite graph, G = (B,S,E), consisting of a
set B of Na burst nodes (one for each active user), a set S of
M slice nodes (one for each slice in the frame), and a set E of
edges. An edge connects a burst node (BN) bi ∈ B to a slice
node (SN) sj ∈ S if and only if the j-th slice has been selected
by the i-th active user for transmission of a segment. Thus,
BNs are associated with active users, SNs with slices in the
frame, and edges with encoded segments. A BN corresponding
to a type-h user is called a type-h BN. An edge incident on
a type-h BN (and then corresponding to a type-h segment) is
called a type-h edge. The number of edges connected to a BN
or SN is the node degree. Therefore, a burst encoded via the
code Ch is represented as a degree-nh BN, and a slice where
d segments collide as a degree-d SN.

On the receiver side, according to the channel model in-
troduced in Section II-C segments experiencing collisions do
not provide any information while segments received in clean
slices are received reliably. Hence, after all active users have
transmitted their encoded segments in the MAC frame, any
BN may be thought as connected to “known” edges and to
“unknown” ones so that some of its encoded segments are
known, and the others unknown. At the generic BN (say of
type h), erasure decoding of code Ch may allow to recover
some of the unknown encoded segments. This enables to
subtract the interference contribution of the newly recovered
encoded segments from the symbol in the corresponding
slice. If d − 1 segments that collided in a SN of degree d

7A slightly more general channel model may be obtained by relaxing
Assumption 2, as it is done in [35].
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Pointer
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Fig. 2. On the left, a MAC frame made by kM = 4 slices, with Na = 3 active users. Each user is employing a repetition code. On the right, the bipartite
graph representation is provided.
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Fig. 3. Example of graph representation of the IIS process.

have been recovered by its neighboring BNs, the remaining
segment becomes known. The interference subtraction process
combined with local decoding at the BNs proceeds iteratively,
i.e., cleaned slices may allow solving other collisions.

Note that this procedure is equivalent to iterative decoding
of doubly-generalized low-density parity-check (D-GLDPC)
codes over the erasure channel [31], where the variable nodes
are generic linear block codes and the check nodes are single
parity-check (SPC) codes. Then, under the assumptions stated
in Section II-C the iterative interference subtraction (IIS) pro-
cess admits a representation as a message-passing procedure
along the edges of the above-introduced graph. Note also that
the bipartite graph is not a priori known to the decoder, which
“discovers” it during the iterative decoding process, based on
the information available in each cleaned slice as discussed in
Section II-B.

Example 3.1: In Fig. 2(a), an example of a MAC frame
composed by 4 slices with Na = 3 active users is displayed.
All three users adopt repetition codes (k = 1), thus the number
of slices corresponds to the number of slots in the frame.

The first and the third users encode their bursts with a (2, 1)
code, whereas the second user employs a (3, 1) repetition
code. Fig. 2(b) shows the corresponding bipartite graph model.
According to the collision pattern of Fig. 2(a), the first BN is
connected to the first and the second SNs, the second BN
connects to the last three SNs, and the third BN is connected
to the first and the fourth SNs. Fig. 3 illustrates how the
graph model can be used to describe the iterative interference
subtraction process. Observe the collision pattern of Fig. 2(a).
The third slice contains an uncollided segment from the second
user. Thus, the burst of the second user can be recovered and
its interference contribution can be cancelled from the second
and the fourth slice. This is shown through the graph model
of Fig. 3(a), where a degree-1 SN is detected (s3), allowing
the recovery of the second burst (b2). Following the model
of Fig. 3, at the second iteration (Fig. 3(b)) a degree-1 SN
is detected (s4) allowing the recovery of the third burst (b3).
Finally, b1 is recovered Fig. 3(c) since it is connected to two
SNs and they both have degree equal to 1 in the residual graph.

A. Asymptotic Analysis of Iterative Interference Subtraction

In this subsection we analyze the evolution of the interfer-
ence subtraction process in the CSA scheme, for given k and
normalized population size α, in the asymptotic case where M
(and correspondingly N = αM ) tends to infinity. We assume
that MAP erasure decoding is performed locally at each BN.

We start by recalling the definition of information function
of a linear block code [32]. Consider an (n, k) linear block
code C , where n is the codeword length and k the code
dimension, and let G be any generator matrix of C . Then,
the g-th un-normalized information function of C , denoted by
ẽg , is defined as the summation of the ranks of all possible
submatrices obtained selecting g columns (with 0 ≤ g ≤ n)
out of G, regardless their ordering.

Lemma 3.1: Let M → ∞ for constant normalized popula-
tion size α. Let ẽ(h)

g be the g-th un-normalized information
function for code Ch ∈ C. At the `-th iteration of the SIC
process, let p` be the probability that an edge is connected
to a SN associated with a segment where a collision persists.
Moreover, let q` be the probability that an edge is connected to
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a BN whose contribution of interference on the corresponding
SN cannot yet be cancelled, after MAP decoding has been
performed at each BN. Then we have

q` =
1

n̄

θ∑
h=1

Λh

nh−1∑
t=0

pt`−1(1− p`−1)nh−1−t

×
[
(nh − t)ẽ(h)

nh−t − (t+ 1)ẽ
(h)
nh−1−t

]
. (5)

Proof: Exploiting the analogy between the IIS process
and iterative decoding over the erasure channel, q` is equal to
the average extrinsic erasure probability (where the average is
taken over the edges of the bipartite graph) outgoing from
the BNs at the `-th IIS iteration. It may be computed as
the extrinsic information transfer (EXIT) function of the “BN
decoder” evaluated at the a priori erasure probability incoming
from the “SN decoder”, this latter probability being p`−1.
Denoting the EXIT function of the BN decoder under MAP
decoding by fb(·), we have

q` = fb(p`−1)

=

θ∑
h=1

λhf
(h)
b (p`−1) , (6)

where λh is the probability that an edge is of type h and where
we have denoted by f (h)

b (·) the EXIT function of a type-h BN.
It follows from [33] that, if the linear block code Ch has no
idle symbols, then the function f (h)

b (·) may be expressed as

f
(h)
b (p`−1) =

1

nh

nh−1∑
t=0

pt`−1(1− p`−1)nh−1−t

× [(nh − t)ẽ(h)
nh−t − (t+ 1)ẽ

(h)
nh−1−t] . (7)

The theorem statement follows by incorporating (7) into (6)
and by noting that λh = Λhnh

n̄ .

Equation (5) allows to update q` given p`−1. The depen-
dence of p` on q` is instead stated by the following lemma.

Lemma 3.2: Let M → ∞ for constant normalized popu-
lation size α. Let R be the rate of the scheme as defined in
(3). At the `-th iteration of the SIC process, let p` and q` be
defined as in the statement of Lemma 3.1. Then we have

p` = 1− exp
{
−πα
R
q`

}
. (8)

Proof: For 0 ≤ l ≤ M , the probability Ψl to receive l
encoded slices in a segment of the MAC frame is given by

Ψl =

(
M

l

)( n̄πα
kM

)l (
1− n̄πα

kM

)M−l
.

Defining Ψ(x) =
∑M
l=0 Ψlx

l and letting M →∞ for constant
α, yields

Ψ(x) = exp
{
−πα
R

(1− x)
}
. (9)

Next, define the polynomial ρ(x) =
∑
l≥1 ρlx

l−1, where ρl is
the probability that an edge in the bipartite graph is connected
to a SN of degree l. Note that ρ(x) is equivalent to the edge

oriented degree distribution polynomial for the check nodes of
an ordinary LDPC code. We then have

ρ(x) =
1

Ψ′(1)

dΨ(x)

dx
(10)

= Ψ(x)

and, from standard density evolution of LDPC codes over the
memoryless erasure channel,

p` = 1− ρ(1− q`)
which leads to (8).

The right-hand side of (8) represents the EXIT function of
the SN decoder. Hereafter, this function will be denoted by
fs(·), so

fs(q) = 1− exp
{
−πα
R
q
}
. (11)

From Lemma 3.1 and Lemma 3.2 we finally obtain a density
evolution recursion for the IIS process only involving the
probability p`.

Theorem 3.1 (Density evolution recursion for CSA): Let
M →∞ for constant normalized population size α. Let R be
the rate of the scheme as defined in (3) and ẽ(h)

g be the g-th
un-normalized information function for code Ch ∈ C. At the
`-th iteration of the SIC process, let p` be defined as in the
statement of Lemma 3.1. Then we have

p` = 1− exp

{
− πα

k

θ∑
h=1

Λh

nh−1∑
t=0

pt`−1(1− p`−1)nh−1−t

×
[
(nh − t)ẽ(h)

nh−t − (t+ 1)ẽ
(h)
nh−1−t

]}
(12)

with starting point p0 = 1− exp{−πα/R}.
Proof: The recursion (12) can be easily obtained as p` =

(fs ◦ fb)(p`−1), where fb(·) and fs(·) are defined in (6) and
(11), respectively, also noting that from (3) we have Rn̄ = k.
The starting point of the recursion is equal to p0 = fs(1), i.e.,
to the average extrinsic erasure probability outgoing from the
SN decoder, when no a priori information is available from
the BN decoder.

The density evolution recursion (12) captures both the
iterative cancellation of interference at the SNs and local MAP
decoding at the BNs. It may be specialized in the IRSA case,
in which all component codes in C are repetition codes. This
is expressed by the following corollary, in which we use
the convention that the h-th component code is a length-h
repetition code (hence nh = h) and that Λ1 = 0.

Corollary 3.1 (Density evolution recursion for IRSA): Let
M →∞ for constant normalized population size α. Let R be
the rate of the scheme as defined in (3) and assume that code
Ch ∈ C is a length-h repetition code, for h ∈ {2, . . . , θ}. At
the `-th iteration of the interference subtraction process, let p`
be defined as in the statement of Lemma 3.1. Then we have

p` = 1− exp

{
−πα

θ∑
h=2

hΛh p
h−1
`−1

}
(13)
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Fig. 4. EXIT chart for a regular coded random access scheme employing a
rate-1/3 repetition code at each BN, characterized by G∗ = 0.816.

with starting point p0 = 1− exp{−πα/R}.
Proof: The recursion (13) follows directly from (12) by

observing that, when the code Ch is a length-h repetition code,
k = 1 and the quantity [(nh − t)ẽ(h)

nh−t − (t + 1)ẽ
(h)
nh−1−t] is

equal to zero for all 0 ≤ t < h − 1 and is equal to h for
t = h− 1.

For a given set C of component codes, a given p.m.f.
Λ on C, and a given normalized population size α, the
asymptotic threshold of the CSA access scheme, denoted by
π∗ = π∗(C,Λ, α), is defined as

π∗(C,Λ, α) := sup{π ≥ 0 | p` → 0 as `→∞}
according to the recursion (12). The asymptotic threshold may
also be defined in terms of the expected channel load, as
G∗(C,Λ) := απ∗(C,Λ, α), this latter definition having the
advantage to be independent of the normalized population size.
In the asymptotic setting M →∞, for all G < G∗(C,Λ) the
throughput is S = G, i.e., all collisions are resolved even if
packet retransmissions are forbidden. In this sense, G∗(C,Λ)
represents the capacity of the CSA scheme on a slot-aligned
collision channel without feedback conditional to the specific
choice of C = {C1,C2, . . . ,Cθ} and Λ.

The recursion defined by (5) and (8) can be visualized in
an EXIT chart, which displays fb(p) vs. f−1

s (p). An example
of EXIT chart for an IRSA scheme in which C = {C1}
where C1 is (3, 1) repetition code is provided in Fig. 4.
As the iteration index ` increases, the evolution of the pair
of probabilities (p`, q`) traces a zig-zag pattern inside the
tunnel between the two curves. Whenever we operate the
scheme below its capacity, G < G∗(C,Λ), the two curves
do not intersect, leaving the tunnel open. This lets the pair of
probabilities (p`, q`) get arbitrarily close to the (0, 0) point.
On the contrary, if the scheme is operated above its capacity,
G > G∗(C,Λ), the two curves intersect (closing the tunnel) in
a point (p̂, q̂) with p̂ > 0, q̂ > 0, and the IIS process converges

to a fixed point corresponding to a non-zero residual erasure
probability. As it was pointed out right after Example 2.1 in
Section II-B, the performance of the CSA scheme does not
depend on the specific choice of the generator matrices for
the θ component codes. Note, in fact, that the information
functions ẽ(h)

g in (12) are independent of the representation of
code Ch, h ∈ {1, . . . , θ}, hence so are the EXIT functions and
the threshold π∗(C,Λ, α). The same holds for the performance
of finite-length CSA schemes, addressed in Section V.

B. Stability of Iterative Interference Subtraction Collision-
Free Point

Autonomous difference equations such as (12) are often
analyzed as regard to the stability of their solutions or, as
a particular case, of their fixed (steady-state equilibrium)
points. In this subsection we study the stability of the fixed
point p̂ = 0 of (12), representing the collision-free state.
We remark that stability is here intended as convergence,
i.e., as the property of an equilibrium point x̂ of a recursion
x` = F (x`−1) to attract (in the sense of convergence as
`→∞) the state x` when the initial state x0 is perturbed from
x̂. Under this acceptation, a solution x` = x̂ ∀` ≥ 0 of the
difference equation x` = F (x`−1) is said to be locally stable if
there exists δ > 0 such that |x0− x̂| < δ implies |x`− x̂| → 0
as ` → ∞. The following well-known result establishes a
necessary and sufficient condition for local stability.

Lemma 3.3: A solution x` = x̂ ∀` ≥ 0 of a difference
equation x` = F (x`−1), where F : R 7→ R is a differentiable
function, is locally stable if and only if |F ′(x̂)| < 1.

The application of Lemma 3.3 to (12) yields the follow-
ing result.

Theorem 3.2 (Stability condition for CSA): For h ∈
{1, . . . , θ}, let Ch be the (nh, k) linear block code with
minimum distance dh ≥ 2 and without idle symbols, employed
with probability Λh by the generic user to generate its encoded
segments. Let B(h)

w be the number of weight-w codewords of
Ch. Moreover, let

r = min
h∈{1,...,θ}

{dh}

and
H = {h : dh = r} .

If r = 2, then the solution p` = p̂ = 0 ∀` ≥ 0 of recursion
(12) is locally stable if and only if

π <
k

2αB2
(14)

where B2 =
∑
h∈H ΛhB

(h)
2 is the expected number of weight-

2 codewords in a code picked from C. Else, if r ≥ 3, the fixed
point p̂ = 0 of (12) is stable for any value of G.

Proof: Let us denote by G
(h)
g the generic k × g matrix

obtained by selecting g columns in (any representation of) the
generator matrix of code Ch, irrespective of the order of the
g columns, and by

∑
G

(h)
g

the summation over all
(
n
g

)
such

matrices. Moreover, let us define

a
(h)
t := (nh − t)ẽ(h)

nh−t − (t+ 1)ẽ
(h)
nh−1−t .
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We have:

(fs ◦ fb)′(0)

=
πα

k

θ∑
h=1

Λhe
−Ga

(h)
0
k

[
a

(h)
1 − (nh − 1)a

(h)
0

]
(a)
=
πα

k

θ∑
h=1

Λha
(h)
1

=
2πα

k

θ∑
h=1

Λh

[
(nh − 1)ẽ

(h)
nh−1

2
− ẽ(h)

nh−2

]
(b)
=

2πα

k

θ∑
h=1

Λh

[
k

(
nh

nh − 2

)
− ẽ(h)

nh−2

]

=
2πα

k

θ∑
h=1

Λh
∑

G
(h)
nh−2

(
k − rank(G

(h)
nh−2)

)
(c)
=

{
2πα
k B2 if r = 2

0 if r ≥ 3
(15)

In the previous equation list (a) and (b) follow from the
hypothesis r ≥ 2. In particular, (a) is due to a(h)

0 = nhẽnh
−

ẽnh−1 = nh k − nh k = 0 and (b) to ẽ
(h)
nh−1 = k nh,

both relying on r ≥ 2. Moreover, (c) is due to r ≥ 2
and to [34, Proposition 2]. Inequality (14) now follows from
|(fs ◦ fb)′(0)| < 1.

The stability condition is a necessary, but in general not
sufficient condition for successful decoding in that, for given
C and Λ, values of the channel load may exist, fulfilling the
bound (14) but which are above the CSA capacity. This implies

G∗(C,Λ) ≤ k

2B2
(16)

which will be referred to as the stability upper bound and
whose right-hand side will be denoted by G∗sb(C,Λ). Note
that in the IRSA case (k = 1) we have B2 = Λ2, where Λ2 is
the probability to select the length-2 repetition code from the
set C, which yields8

G∗(C,Λ) ≤ 1

2Λ2
.

When r = 2, (16) may be achieved with equality, this
situation being equivalent to the well-known flatness condition
for LDPC codes [36]. This is the case, for example, when
θ = 1 and the binary linear block code employed by all users
is a (k+ 1, k) SPC code, as stated by the following corollary.

Corollary 3.2: Let C = {C } and the linear block code C
employed by all users be a (k + 1, k) SPC code. Then

G∗(C,Λ) =
1

k + 1
. (17)

Proof: If all users employ a (k+1, k) SPC code, then the
stability bound (16) becomes G∗(C,Λ) ≤ 1/(k+ 1). In order
to prove that the bound is achieved with equality, it suffices

8The stability condition for the IRSA scheme appears in [16, Eq. (7)].

to show that density evolution recursion (12), which assumes
the simple form9

p` = 1− exp

{
− (k + 1)πα

k

[
1− (1− p`−1)

k
]}

, (18)

converges to 0 as ` → ∞ for πα = 1/(k + 1). The result
follows by observing that the function

F (p) = 1− exp

{
−1

k
[1− (1− p)k]

}
fulfills F ′(0) = 1 (hence its graph is tangent to that of the
function I(p) = p in the (0, 0) point), F ′(p) = exp{− 1

k [1 −
(1 − p)k]}(1 − p)k−1 > 0 for all p ∈ [0, 1), and F ′′(p) =
− exp{− 1

k [1−(1−p)k]}[(1−p)2k−2 +(k−1)(1−p)k−2] < 0
for all p ∈ [0, 1).

C. Asymptotic Analysis Under a Random Component Code
Hypothesis

In the system model description provided in Section II, the
generic user has been assumed to encode its k information seg-
ments via an (nh, k) binary linear block code, with minimum
distance dh ≥ 2, picked randomly with p.m.f. Λ= {Λh}θh=1

from an ensemble of θ component codes. In this subsection,
we consider a slightly different setting. Specifically, we assume
that the generic user randomly picks a codeword length
ns > k from an ensemble N = {n1, . . . , nsmax

} with
p.m.f. Λ= {Λns

}smax
s=1 and encodes its k segments through a

binary k×ns generator matrix drawn randomly with uniform
probability from the set of all k×ns binary matrices with rank
k and representing (ns, k) linear block codes without idle bits
and with minimum distance at least 2. We are interested in
calculating the expected asymptotic threshold for this scheme,
where expectation is over all such generator matrices. The
advantage of this random code hypothesis is that it allows to
release the analysis from considering a specific set of θ codes.

With respect to the previous case, the definition (3) of
the rate R and the expressions (9) and (10) of Ψ(x) and
ρ(x), respectively, remain unchanged provided the definition
of n̄ is updated as n̄ =

∑smax

s=1 Λns
ns. Analogously, the

recursion (8) is not affected by the random code hypothesis.
On the other hand, the recursion (5) is updated as follows.
Denote by Gns,k the ensemble of all k × ns binary matrices
with rank k representing linear block codes without idle
bits and with minimum distance at least 2, and by EGns,k

[·]
the expectation operator over the set Gns,k (with a uniform
probability measure). Then we have

q` =
1

n̄

smax∑
s=1

Λns

ns−1∑
t=0

pt`−1(1− p`−1)ns−1−t

×
[
(ns − t)EGns,k

[ẽns−t]− (t+ 1)EGns,k
[ẽns−1−t]

]
(19)

9This form follows from the duality property proved in [33, Section IV-E].
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where again n̄ =
∑smax

s=1 Λns
ns. For 0 < k < ns and 0 ≤ g ≤

ns, the expected g-th unnormalized information EGns,k
[ẽg]

may be calculated using results from [31], in particular as

EGns,k
[ẽg] =

(
ns
g

)min{k,g}∑
u=1

u
K(k, ns, g, u, k)

J(k, ns, k)
(20)

where J(k, ns, k) denotes the number of k×ns binary matrices
with rank k, without all-zero columns and without independent
columns,10 and where K(k, ns, g, u, k) is the number of k×ns
binary matrices with rank k, without all-zero columns, without
independent columns and such that their left-most g columns
have rank u. The functions J(m,n, r) and K(m,n, g, u, r)
may be evaluated recursively, as detailed in [31, Theorem 4]
and [31, Theorem 5], respectively.

Density evolution recursion for CSA under the random code
hypothesis is then given by

p` = 1− exp

{
− πα

k

ns∑
s=1

Λns

ns−1∑
t=0

pt`−1(1− p`−1)ns−1−t

×
[
(ns − t)EGns,k

[ẽns−t]− (t+ 1)EGns,k
[ẽns−1−t]

]}
(21)

with starting point p0 = 1 − exp{−πα/R}. For given
N = {n1, . . . , nsmax

} and Λ= {Λns
}smax
s=1 , the expected

asymptotic threshold of the CSA scheme under the random
code hypothesis, denoted by G∗ = G∗(N ,Λ), is defined as
the supremum of the ensemble of all G ≥ 0 such that p` → 0
as `→∞ in recursion (21).

Using a proof technique analogous to that of Theorem 3.2,
it is easy to show that the stability upper bound is again given
by (16), where now B2 =

∑smax

s=1 ΛnsEGns,k
[B2] and

EGns,k
[B2] =

(
ns
2

)k −min{k,ns−2}∑
u=1

u
K(k, ns, ns − 2, u, k)

J(k, ns, k)


is the expected number of weight-2 codewords of an (ns, k)
linear block code whose generator matrix is picked uniformly
at random in the set Gns,k.

IV. CAPACITY LIMITS OF CSA SCHEMES

In this section, we develop an upper bound on the capacity
of the CSA scheme, for a given rate R. The upper bound is
established in the following theorem.

Theorem 4.1: For 0 < R ≤ 1, let G(R) be the unique
positive solution of the equation

G = 1− e−G/R (22)

in [0, 1). Then, the capacity G∗(C,Λ) of the CSA scheme
fulfills

G∗(C,Λ) ≤ G(R) (23)

for any choice of C = {C1,C2, . . . ,Cθ} and Λ corresponding
to a rate R.

10In this context, a column is called “independent” when it is linearly
independent of all the other matrix columns.

Proof: For given C = {C1,C2, . . . ,Cθ} and Λ, the
evolution of the probabilities (p`, q`) is governed by the
recursions q` = fb(p`−1) and p` = fs(q`) in (5) and (8),
for all ` ≥ 1 and with q1 = fb(0). Let us denote the areas
below the BN and the SN EXIT functions over the interval
[0, 1] by

Ab =

∫ 1

0

fb(p)dp

and

As =

∫ 1

0

fs(q)dq

respectively. (These two areas are highlighted in the example
EXIT chart depicted in Fig. 4.) A necessary and sufficient con-
dition for successful decoding is represented by the existence
of an “open tunnel” between the two curves in the EXIT chart,
which necessarily implies11

Ab +As ≤ 1 . (24)

In particular, (24) must be satisfied for G = G∗(C,Λ). The
area below the SN EXIT function (8) is given by

As = 1 +
R

G
e−

G
R − R

G
. (25)

Moreover, the area below the BN EXIT function (5) is given by

Ab =

θ∑
h=1

λh

∫ 1

0

f
(h)
b (p)dp

(a)
=

θ∑
h=1

λh
k

nh

(b)
= R (26)

where (a) follows from the Area Theorem [33] and holds
under the assumption of MAP erasure decoding at the burst
node12, and where (b) is due to λh = nhΛh

n̄ , to
∑θ
h=1 Λh = 1,

and to (3). By incorporating (25) and (26) in (24) we obtain

R+
R

G
e−G/R ≤ R

G

which may be recast as

R(G) ≥ − G

log(1−G)
. (27)

Next, define G(R) as the unique solution in (0, 1] of (22),
yielding R(G) = −G/ log(1 − G). Since (27) must hold
in particular for G = G∗(C,Λ) and since the function
y = −x/ log(1− x), x ∈ [0, 1), is monotonically decreasing,
we obtain (23).

Note that, while G∗(C,Λ) depends on R through C and Λ,
its upper bound G(R) depends solely on R. An alternative
proof of the upper bound (23) is proposed in Appendix B. It
is manifest from the alternative proof that, for any rate R, the

11Inequality (24) is a necessary but not sufficient condition for successful
decoding.

12The Area Theorem states that the area below the MAP EXIT function of
a linear block code without idle symbols equals its code rate.
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asymptotic throughput cannot exceed the value G(R) even
if a “genie-aided” decoding approach, consisting of solving
the linear system of equations via Gaussian elimination, is
followed.

V. DESIGN AND ANALYSIS OF CSA RANDOM ACCESS
SCHEMES

In this section, numerical results on CSA access schemes are
illustrated. The section is divided into two parts. The objective
of the first part (Section V-A) is to show that the asymptotic
tools developed in Section III may confidently be used to
design access schemes for a finite MAC frame size. In the
process, CSA schemes based on simple codes of dimensions
k = 2 and k = 3 are compared with IRSA schemes.
Purpose of Section V-A is also to highlight the rate region
in which CSA schemes provide advantages over IRSA ones
and the rate region in which IRSA protocols are preferable.
The second part of the section (Section V-B) is devoted to
the design of CSA probability distributions approaching the
bound established by Theorem 4.1.

A. Performance Analysis of Finite-Length CSA Schemes

The analysis tool developed in Section III-A allows to
calculate the threshold G∗(C,Λ) for a given choice of the
θ linear block component codes Ch, h ∈ {1, . . . , θ}, and of
the p.m.f. Λ. Analogously, the tool developed in Section III-C
allows to evaluate the threshold G∗(N ,Λ) of a CSA scheme
under the random code hypothesis, for a given choice of the
codeword lengths ns, s ∈ {1, . . . , smax}, and of the p.m.f. Λ.
These tools can be exploited to derive optimal (in the sense of
maximizing the threshold) probability distributions Λ in the
two cases.

Some optimized probability distributions, obtained applying
the random code hypothesis, are shown in Table I. Among
the several possible algorithms available to find the global
maximum of a nonlinear function, differential evolution [37]
has been used (with the exception of the R = 1/2 IRSA
scheme, for which the only possibility is that all users employ
a (2, 1) repetition code). In the upper part of the table, p.m.f.s
Λ are reported for IRSA schemes with rates 1/2, 2/5, and
1/3, while in the lower part p.m.f.s Λ are detailed for CSA
schemes with k = 2 and k = 3 and with the same rates,
with the inclusion of R = 3/5. All distributions have been
optimized under the constraint that the smallest local rate
allowed for each user is 1/6. For each IRSA distribution the
threshold G∗(C,Λ) and the corresponding stability bound are
shown. On the other hand, for each CSA distribution both the
threshold G∗(N ,Λ) under the random code hypothesis and
the corresponding stability bound, are reported. For all rates
R, the value of the capacity bound G(R) is shown in the last
row of the table.

Table II shows the thresholds G∗(C,Λ) for CSA schemes
with k = 2 and characterized by the same p.m.f.s Λ as the
ones in Table I, but for a specific choice of the component
codes. More in detail, these thresholds have been obtained

TABLE I
IRSA P.M.F.S Λ WITH RATES 1/3, 2/5, AND 1/2, AND CSA P.M.F.S Λ FOR
k = 2, 3 WITH RATES 1/3, 2/5, 1/2, AND 3/5, UNDER THE RANDOM

CODE HYPOTHESIS.

IRSA
R = 1/3 R = 2/5 R = 1/2

(2, 1) 0.554016 0.622412 1.000000
(3, 1) 0.261312 0.255176
(4, 1) 0.122412
(6, 1) 0.184672

G∗(C,Λ) 0.8792 0.7825 0.5000
G∗

sb(C,Λ) 0.9025 0.8033 0.5000

CSA k = 2, random component codes
R = 1/3 R = 2/5 R = 1/2 R = 3/5

(3, 2) 0.259929 0.304961 0.666667
(4, 2) 0.053247 0.144152 1.000000 0.333333
(5, 2) 0.447058
(6, 2) 0.347701
(7, 2) 0.203186

(11, 2) 0.105258
(12, 2) 0.134509

G∗(N ,Λ) 0.9034 0.8185 0.6556 0.4091
G∗

sb(N ,Λ) 0.9035 0.8185 0.7500 0.4091

CSA k = 3, random component codes
R = 1/3 R = 2/5 R = 1/2 R = 3/5

(4, 3) 0.173572 0.045538
(5, 3) 0.010699 0.579066 1.000000
(6, 3) 0.183304 0.863386
(7, 3) 0.361921 0.091076
(8, 3) 0.025012

(10, 3) 0.025606
(11, 3) 0.395328
(18, 3) 0.245492

G∗(N ,Λ) 0.9107 0.8386 0.6868 0.5078
G∗

sb(N ,Λ) 0.9143 0.8918 0.9227 0.5250

G(R) 0.9405 0.8926 0.7968 0.6758

TABLE II
CSA P.M.F.S Λ FOR k = 2 WITH RATES 1/3, 2/5, 1/2, AND 3/5, FOR A

SPECIFIC CHOICE OF THE COMPONENT CODES.

CSA k = 2, specific component codes
R = 1/3 R = 2/5 R = 1/2 R = 3/5

(3, 2) 0.259929 0.304961 0.666667
(4, 2)(a) 0.053247 0.144152
(4, 2)(b) 1.000000 0.333333
(5, 2)(a) 0.259293
(5, 2)(b) 0.098353
(5, 2)(c) 0.089412
(6, 2) 0.347701
(7, 2) 0.203186

(11, 2) 0.105258
(12, 2) 0.134509
G∗(C,Λ) 0.9030 0.8229 0.6793 0.4286
G∗

sb(C,Λ) 0.9241 0.8311 1.0000 0.4286

using linear block component codes generated by the following
generator matrices:

G(3,2) = [110, 011]

G
(a)
(4,2) = [1100, 1111]

G
(b)
(4,2) = [1100, 0111]

G
(a)
(5,2) = [11100, 00111]

G
(b)
(5,2) = [11110, 00011]
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G
(c)
(5,2) = [11111, 00011]

G(6,2) = [111000, 001111]

G(7,2) = [1111000, 0011111]

G(11,2) = [11110000000, 00111111111]

G(12,2) = [111111110000, 000001111111] . (28)

Note that this specific choice of the codes Ch leads to
thresholds G∗(C,Λ) which are either slightly larger than the
corresponding ones in Table I or practically coincident with
them (as it is the case for the the rate-1/3 scheme). Also note
that in CSA, it is possible to combine different component
codes having the same dimension and length. This is the case,
for instance, of the R = 1/3 scheme in Table II in which three
different (5, 2) component codes are combined. The sum of
the probabilities with which these three codes are picked by
each user is equal to 0.447058, the value in Table I designed
using the random code approach. For completeness, the EXIT
charts relevant to the R = 1/3 IRSA configuration in Table I
and to the R = 1/3 CSA scheme in Table II are depicted in
Fig. 5(a) and Fig. 5(b), respectively.

As it was previously highlighted, CSA allows to construct
uncoordinated access schemes with any rate 0 < R < 1,
whereas only rates 0 < R ≤ 1/2 can be obtained with IRSA,
unless some users transmit their burst in the MAC frame
with no repetition.13 (This is the reason for the optimized
CSA distributions of rate R = 3/5 in Table I have no
IRSA counterpart.) Furthermore, from Table I and Table II
we see that CSA is capable to achieve better performance
than IRSA, in terms of asymptotic thresholds, over the whole
range of rates 1/3 ≤ R ≤ 1/2, and that the threshold values
achieved by CSA schemes are substantially better than the
ones achieved by IRSA for values of R that are close to 1/2.
For example, for R = 1/3 a threshold G∗(N ,Λ) = 0.9143
is achieved by the best found CSA scheme with k = 3
(under the random code approach), whereas the best found
IRSA threshold is G∗(C,Λ) = 0.8792. For rate R = 1/2
the improvement is much more pronounced, the threshold
achieved by the best found CSA scheme with k = 3 (under
the random code approach) being G∗(N ,Λ) = 0.6868 and
the one achieved by IRSA being G∗(C,Λ) = 0.5000.

For all tested values of R we have observed improvements
in terms of asymptotic threshold when the dimension k of the
component codes increases. This improvement becomes how-
ever almost negligible for low rates R (equivalently, for high
values of the excess energy ∆E = −10 log10R), a regime in
which it is possible to design IRSA schemes based on simple
repetition codes, with thresholds very close to the upper bound
G(R) (an example is represented by the distribution Λ1(x)
that will be presented in Section V-B). Simplifying, we may
conclude that for rates R < 1/3 the IRSA protocols should be
preferred to CSA ones, as their design is simpler and the gain
provided by CSA is limited. On the other hand, CSA protocols

13In case the set C for an IRSA scheme includes repetition codes of length
1, however, successful IIS can never be guaranteed due to the impossibility
to subtract the interference of two bursts colliding in a slot and that have no
replicas in other slots. As a consequence, density evolution recursion (13) will
not converge to zero for any value of π always yielding G(C,Λ)∗ = 0.
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Fig. 5. EXIT charts for the R = 1/3 IRSA scheme in Table I and for the
R = 1/3 CSA scheme with k = 2 in Table II. The EXIT chart of the CSA
scheme is obtained with the choice (28) of the component code generator
matrices.

are more appealing and effective than IRSA ones in the range
1/3 ≤ R ≤ 1/2 (where a higher energy efficiency is required)
due to their better thresholds exhibited by the corresponding
optimized distributions. CSA schemes are a mandatory choice
for R > 1/2. For CSA protocols, higher values of k are
effective in improving the threshold, as discussed further in
Section V-B.

To validate our design approach based on the asymp-
totic analysis, we performed numerical simulations for finite
frame size M and user population size N . In Fig. 6(a) and
Fig. 6(b), the throughput curves without retransmissions of
IRSA schemes in Table I and of CSA (k = 2) schemes in
Table II are depicted as functions of the expected channel
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Fig. 6. Throughput S versus (a) the expected and (b) the instantaneous
channel load for IRSA and CSA (k = 2) configurations with p.m.f.s Λ
in Table I and Table II, respectively. The linear block codes whose generator
matrices are detailed in (28) are employed for the CSA case.

load G and of the instantaneous channel load Ga, respectively,
for R ∈ {1/3, 1/2, 3/5}. In our simulations for the CSA
schemes, we used the linear block component codes generated
by the generator matrices detailed in (28). For the sake of
fairness, we compared CSA (k = 2) and IRSA schemes
for the same frame duration Tframe which implies Tslot =
2Tsegment, i.e., a number of slices twice the number of slots.
Specifically, the simulations are for Tframe/Tsegment = 1000
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Fig. 7. Asymptotic throughput curve for the R = 1/3 CSA configuration
in Table II and throughput curves for the same configuration under different
lengths (in slices) of the MAC frame. Population size N = 20000.

slices and Tframe/Tslot = 500 slots.14 All simulations have
been conducted for a population N = 20000 users. The
activation probability π corresponding to each value of the
expected channel load G in Fig. 6(a) may be obtained as
π = GM/N , while the number of active users for each value
of the instantaneous load Ga in Fig. 6(b) as Na = GaM .
We can observe how the trend of the peak throughput values
measured in the finite length case follow the same trend
predicted by the asymptotic analysis. In particular, the slightly
larger peak throughput exhibited by CSA (for the specific
choice of the component codes) for R = 1/3 is in agreement
with the thresholds reported in Table I and Table II.

For a given set C of component codes and a given p.m.f.
Λ, the threshold G∗(C,Λ) represents the asymptotic peak
throughput of the corresponding CSA scheme (in the limit
where M tends to infinity). In Fig. 7 the asymptotic through-
put curve (versus the expected channel load G) of the rate
R = 1/3 CSA scheme from Table II, with the component
codes detailed in (28), is compared with the throughput curves
obtained by numerical simulation for the same (C,Λ) pair, for
M = 100, 500, and 2500 slots (corresponding, for k = 2, to
200, 1000, and 5000 slices, respectively), always assuming
N = 20000 users. From this figure it is possible to appreciate
how the curves for a finite number of slots tend to better and
better fit the asymptotic curve as the number of slots increases.

B. Approaching the Capacity Bound

In this subsection we consider the problem of designing
CSA configurations whose asymptotic thresholds approach

14It should be considered that each segment has to be encoded via a physical
layer error correcting code before transmission on the MAC channel, and that
the physical layer code for CSA is k times shorter than the corresponding
code for IRSA. Thus, CSA may require working at slightly higher SNRs than
IRSA, especially when short segments (and then short physical layer codes)
are used. This aspect is not captured by our collision channel model.
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Fig. 8. Upper bound to the capacity vs. rate R. Thresholds G∗ are reported
for selected distributions. Distributions Λi(x), i = 1, . . . , 5 (∗) are IRSA
configurations based on repetition codes (k = 1). Distribution Λ6(x) (�) is
based on MDS codes with k = 2. Distributions Λi(x), i = 7, 8, 9 (M) are
based on MDS codes with k = 3. Distributions Λi(x), i = 10, 11 (+) are
based on MDS codes with k = 4. Distributions based on (k + 1, k) SPC
codes are also displayed (◦).

the upper bound in Theorem 4.1. To do so, for a given
k, a given set C = {C1,C2, . . . ,Cθ} of component codes,
and a given target rate R, we search (again via differential
evolution optimization) the distribution Λ which maximizes
G∗(C,Λ). In order to limit the search space, we focus on
schemes based on codes of moderate-low length. We resort
on a compact polynomial notation to specify the developed
p.m.f.s Λ = {Λh}θh=1. This notation is introduced for each
specific case before its usage.

Based on the observations in Section V-A, we start by
designing some low-rate IRSA schemes, in which case we
define Λ(x) =

∑
h Λhx

h, where Ch is the (h, 1) repetition
code. Selecting a rate R = 1/5 and limiting the maximum
length of the repetition component codes to 30 (i.e., consider-
ing only repetition codes with rate down to 1/30), we obtain
the distribution

Λ1(x) = 0.494155x2 + 0.159085x3 + 0.107372x4

+ 0.070336x5 + 0.045493x6 + 0.019898x7

+ 0.024098x11 + 0.008636x12 + 0.005940x13

+ 0.008749x15 + 0.002225x18 + 0.001261x20

+ 0.002607x22 + 0.008092x23 + 0.002287x24

+ 0.012274x25 + 0.002530x26 + 0.003094x27

+ 0.002558x28 + 0.005891x29 + 0.013419x30

whose threshold is G∗(C1,Λ1) = 0.977. The corresponding
point on the G versus R plane is reported in Fig. 8 and
compared with the bound given by Theorem 4.1. On the
same chart the points corresponding to IRSA distributions
with different rates, denoted by Λi(x) for i ∈ {2, . . . , 5}, are
reported. Whereas for low rates R repetition-based configura-
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Fig. 9. Packet loss rate for the CSA scheme based on the distribution Λ1(x).
N = 5000, 1000, 500, maximum iteration count set to 100.

tions approach the bound quite tightly, for rates close to 1/2
they show visible losses. For example, the distribution

Λ5(x) = 0.8x2 + 0.2x3

(obtained constraining the maximum length of the component
codes to nh = 5) is characterized by a rate R = 5/11 and
attains a threshold G∗(C5,Λ5) = 0.625, whereas G(5/11) =
0.843. This effect if somehow expected since in the limiting
case of R = 1/2, in which each user employs a (2, 1)
repetition code, the corresponding threshold is limited to 0.5.

Fig. 9 shows the packet loss rate (PLR) achieved by the
scheme employing the distribution Λ1(x) without retrans-
missions. The results have been derived via Monte Carlo
simulations for MAC frames of size M = 5000, 1000,
and 500 slots, and are compared with the capacity of the
scheme, G∗(C1,Λ1) = 0.977. For the M = 5000 case,
a PLR close to 2 × 10−3 is achieved at a channel traffic
G = 0.94 [packets/slot], only 0.05 [packets/slot] away from
the bound established by Theorem 4.1 (' 0.99 [packets/slot]).

As observed in Section V-A, when the rate R is not too low,
e.g., R ≥ 1/3, it becomes convenient to adopt component
codes with k > 1. To this purpose, we designed CSA
schemes where each Ch ∈ C is an MDS code constructed
on an appropriate non-binary finite field,15 for component code
dimensions k = 2, 3, and 4. It is assumed that each burst node
locally adopts a bounded-distance decoding strategy at each
iteration, consisting of recovering the lost encoded segments
connected to it only if the current number of its collision-
free received segments is at least k. Under this assumption,
the EXIT function of a BN using an (nh, k) MDS codes is

15Imposing limits on nh, this approach is realistic. For instance, (general-
ized) Reed-Solomon codes on finite fields of moderate order may be used.
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TABLE III
CSA DISTRIBUTIONS FOR k ∈ {2, 3, 4} AND CORRESPONDING ASYMPTOTIC THRESHOLDS. ALL CONFIGURATIONS ARE BASED ON MDS CODES.

R Λ(x) G∗(C,Λ) G(R)
k = 2 0.400 Λ6(x) = 0.276023x+ 0.366641x2 + 0.127979x3 + 0.229357x7 0.830 0.893

k = 3
0.502 Λ7(x) = 0.3222x+ 0.2305x2 + 0.0491x4 + 0.3983x5 0.746 0.795
0.599 Λ8(x) = 0.2589x+ 0.4826x2 + 0.2586x3 0.594 0.677
0.667 Λ9(x) = 0.5005x+ 0.4995x2 0.465 0.582

k = 4
0.667 Λ10(x) = 0.1892x+ 0.6240x2 + 0.1868x3 0.505 0.582
0.727 Λ11(x) = 0.5000x+ 0.5000x2 0.381 0.491

given by

f
(h)
b (p) =

k−1∑
l=0

(
nh − 1

l

)
(1− p)lpnh−l−1. (29)

In this case, we specify the CSA p.m.f.s Λ via the compact
polynomial notation Λ(x) =

∑
h Λhx

h, where Ch is an (h+
k, k) MDS code. The obtained CSA distributions are reported
in Table III.

For k = 2 and R = 0.4 we designed the distribution Λ6(x)
characterized by a threshold G∗(C6,Λ6) = 0.830. For the
same rate, the best found IRSA configuration for a maximum
nh set to 10 (Λ4(x) in Fig. 8), achieves G∗(C4,Λ4) = 0.791
while the best found CSA (k = 2) scheme based on binary
codes in Table II achieves G∗(C,Λ) = 0.8229. Moving to
the moderate-rate regime, we observed that, also employing
MDS codes under bounded distance decoding as component
codes, for the same rate R the bound G(R) can be better
approached resorting on CSA distributions based on higher
code dimensions k (see Fig. 8), at the expense of a higher local
decoding complexity. For example, for R = 0.667 the distri-
bution Λ9(x) (based on k = 3) achieves G∗(C9,Λ9) = 0.465,
whereas G∗(C10,Λ10) = 0.505 is achieved by the distribution
Λ10(x) (based on k = 4). In Fig. 8 the thresholds achieved by
regular schemes based on SPC codes of increasing rates are
also shown. As k grows the rate of these scheme approaches 1
and the corresponding threshold 1/(k+1) tends to 0. For large
k, the scheme tends to operate close to the capacity bound for
very high rates.

VI. CONCLUSIONS

In this paper, a coding approach relying on iterative inter-
ference subtraction for the collision channel without feedback
has been proposed and analyzed. The scheme, dubbed CSA,
can be seen as an extension of the IRSA scheme, where
the extension consists of splitting packets into segments and
encoding the segments via randomly picked local component
codes. A bridge between erasure decoding for graph-based
codes and the iterative interference cancellation process of
CSA has been established, allowing an elegant analysis of
the access scheme performance. Exploiting this graphical
representation, density evolution equations for CSA on the
collision channel have been obtained and used to analyze the
iterative interference subtraction process. The “capacity” of
the CSA scheme without retransmissions has been defined
and, in the process, it has been shown that the scheme is
asymptotically reliable even if retransmissions are forbidden.

A throughput as high as 1 [packets/slot] has been shown to
be tightly approachable when sufficiently low coding rates are
employed for the component codes. Furthermore, a technique
to design CSA schemes with arbitrarily high coding rates has
been developed which allows approaching the capacity bound
over the whole range of rates. Numerical results have been
presented to validate the proposed analytical framework.

We conclude this paper by discussing some possible di-
rections of further investigation emerging from the presented
results. Considering the same collision channel model adopted
in the present paper, for example, the analogy with iterative
decoding on the erasure channel suggests that it might be pos-
sible to develop sequences of CSA configurations achieving
the capacity bound (23) for any value of the rate R, simi-
larly to the well-known LDPC “capacity-achieving sequences”
[36]. We conjecture that, provided such sequences exist, their
construction requires an increasing value of the component
codes dimension k. Considering again the collision channel,
the extra-ordinary performances obtained in the LDPC coding
context by exploiting spatial coupling [38] prompt the adoption
of this paradigm toward the design of “convolutional” CSA
schemes. (The only paper we are aware of in this context
is [39] in which, however, only spatially coupled IRSA
configurations have been addressed.) Interesting directions of
investigation also arise both from introducing spatial diversity
through the assumption of availability of multiple receivers
(as was done in [40] for pure slotted ALOHA) and from
abandoning the simple collision channel model to consider
the more general MPR model. Some work in this sense has
already been carried out in [41], in the framework of CRDSA
exploiting the capture effect, and in [42], in the framework of
IRSA with multiuser detection.

APPENDIX A
RESULTS ON SUCCESSIVE INTERFERENCE CANCELLATION

In this appendix we address the actual performance achiev-
able under a realistic SIC scheme. More specifically, we
intend to validate the assumption that, after removing l − 1
interfering segments from a slice in which l segments collided,
the remaining segment can be decoded correctly with very
high probability. In practice, this turns into verifying that the
residual interference after interference cancellation (due to
imperfect channel estimation) does not degrade considerably
the performance of the error correcting code used to protect
the segments.

To this purpose, let’s consider the case where l users
attempt a segment transmission within the same slice. We



16

stick to the case of perfect power control and equal channel
condition (gain) among the users. We denote by u(i)(t) the
complex baseband pulse amplitude modulation (PAM) signal
transmitted by the i-th user, i.e.,

u(i)(t) =

Ns∑
v=1

b(i)v γ(t− vTs)

where Ns is the number of symbols per segment, {b(i)v } is
the sequence of such symbols and Ts is the symbol period.
By γ(t) = F−1

{√
RC(f)

}
we denote the pulse shape, where

RC(f) the frequency response of the raised-cosine filter.
Each contribution is received with a random delay εi, a

random frequency offset fi ∼ U [−fmax, fmax] and a random
phase offset φi ∼ U [0, 2π). The received signal after the
matched filter (MF) is given by r(t) =

∑l
i=1 z

(i)(t) ∗
h(t) + n(t) where n(t) is the Gaussian noise contribution,
h(t) = γ∗(−t) is the MF impulse response and z(i)(t) =∑Ns

v=1 b
(i)
v γ(t − vTs − εi) exp(j2πfit + jφi). Assuming fre-

quency shifts that are small w.r.t. the signal bandwidth (i.e.,
fmaxTs � 1), the received signal may be approximated by

r(t) ≈
l∑
i=1

ũ(i)(t− εi)ej2πfit+jφi + n(t) (30)

where ũ(i)(t) is the response of the MF to u(i)(t). In
the following we regard ũ(1)(t) as the useful term and
ũ(2)(t), ũ(3)(t), . . . , ũ(l)(t) as the interference to be cancelled.
These latter l − 1 terms are assumed to have been success-
fully recovered via MAP erasure decoding of the associated
component code.

To proceed with SIC, it is necessary to estimate the set of
parameters {εi, fi, φi}, for i ∈ {2, . . . , l}. As suggested in
[11], we consider the case where εi and fi can be accurately
estimated on the segments of the same burst that have already
been recovered, and that their values remain constant through
the frame. As pointed out in [11], this argument does not hold
for the phase rotation terms φi, which may not be stable from
a slice to another one. As such, we need to estimate φi for
each segment individually and directly on the slice where we
want to eliminate its contribution. A fine phase estimation can
be obtained by a data aided approach. Recall in fact that the
symbol sequences {b(i)v } (for i ∈ {2 . . . l}) are known at the
receiver, since they can be reconstructed after MAP erasure
decoding of the associated component code. The SIC works
as follows. We denote by y(i)(t) the signal at the input of the
phase estimator for the i-th contribution. In the first step, the
input signal is given by y(2)(t) = r(t) and the phase of the
first interfering user (i = 2) is estimated as

φ̂2 = arg

{
Ns∑
v=1

y(2)
v

(
b(2)
v

)∗}
with

y(2)
v = y(2)(vTs + ε2)e−j2πf2(vTs+ε2).

After the estimation of the phase offset for the first in-
terferer, the corresponding signal can be reconstructed as

ũ(2)(t − ε2)ej2πf2t+jφ̂2 and its contribution can be removed
from (30), i.e.

y(3)(t) = y(2)(t)− ũ(2)(t− ε2)ej2πf2t+jφ̂2 .

The SIC proceeds serially. For the generic i-th contribution
we have

φ̂i = arg

{
Ns∑
v=1

y(i)
v

(
b(i)v

)∗}
(31)

with y(i)
v = y(i)(vTs + εi) exp (−j2πfi(vTs + εi)) and

y(i)(t) = y(i−1)(t)− ũ(i−1)(t− εi−1)ej2πfi−1t+jφ̂i−1 .

After the cancellation of the l − 1 contributions the residual
signal, denoted by y(1)(t), is given by the 1-st user’s contribu-
tion, the noise n(t), and a residual interference term ν(t) due
to the imperfect estimation of the interferers’ phases (causing
imperfect SIC), i.e.,

y(1)(t) = ũ(1)(t− ε1)ej2πf1t+jφ1 + n(t) + ν(t). (32)

The estimation of {ε1, f1, φ1} is then performed on the signal
in (32). After sampling, soft-demodulation takes place, and the
log-likelihood ratios for the codeword bits are derived. This
data aided approach works if the cross-correlation between
the sequences {b(i)v }, i ∈ {1 . . . l}, is on average low, which
is the case if each user encodes segments whose bits can
be modeled as independent and identically distributed (i.i.d.)
random variables.

We simulated the SIC process with various numbers of
collisions. The information sequences were randomly gener-
ated, then encoded through a (512, 256) cycle code from [43]
over F256. Quadrature phase-shift keying (QPSK) modulation
was considered for the simulations. For each transmission
attempt we generated the parameters {εi, fi, φi} according to
the distributions presented before, with maximum frequency
shift fmax = 0.01/Ts. The received signal r(t) has then been
oversampled at a rate Ms/Ts with Ms = 8, and the SIC
algorithm has been applied to the oversampled digital signal.

Once the l − 1 interference contributions have been can-
celled, log-likelihood ratios for the codeword bits have been
input to the channel decoder. In Fig. 10 the impact of the SIC
process on the block error rate for the segment to be recovered
(i.e., the signal corresponding to i = 1) is shown in terms of
block error rate vs. Eb/N0 for l = 2, 4, 6, 8 segment collisions
(i.e., 1, 3, 5, 7 interferers). The performance on the additive
white Gaussian noise (AWGN) channel without collisions is
provided as reference. Note that, up to l = 8 collisions, the
performance degradation due to the imperfect estimation of the
phase offsets is small, namely, less than 1 dB at block error
rate ' 10−3. Considering Eb/N0 = 2.5 dB, after removing
l−1 = 7 interference contributions we have a block error rate
close to 10−2.

APPENDIX B
AN ALTERNATIVE PROOF OF THE CAPACITY BOUND (23)

In this appendix, we propose an alternative proof of the up-
per bound (23). This proof is based on adopting an equivalent
channel model that is addressed next.
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Fig. 10. Block error rate vs. Eb/N0 for a (512, 256) cycle code with QPSK
modulation, 50 iterations of the belief propagation algorithm. Various number
of interferers.

Encoded segments are packets of bits that can be mapped
onto the elements of a finite field GF(2l), for appropriate
integer l. We model collisions between segments as sums
of symbols in GF(2l). In each slice of the MAC frame the
decoder is capable to discriminate between a “silence” (no
active user has transmitted in that segment), a symbol in
GF(2l) corresponding to a unique slice, or a symbol in GF(2l)
being the result of a collision. In this latter case, the observed
symbol in GF(2l) provides no information to the decoder
about the number and the values of colliding segments.

As such, with respect to the channel model discussed in
Section II-C, Assumption 1 and Assumption 2 remain valid,
while Assumption 3 is replaced by the following equivalent
assumption (in that all developed results still hold):

Assumption 4: If a collision occurs between d > 1 slices
s1, s2, . . . , sd ∈ GF(2l), the symbol s = s1 + s2 + · · · +
sd ∈ GF(2l) is generated in the corresponding segment of
the frame. Cancellation of the interference contribution of
a segment consists of adding the corresponding element of
GF(2l) to the current symbol in the associated slice of the
frame.

This channel model is then similar to an F -adder channel
[44], with the difference that collisions may or may not occur
and that, when collisions take place, the decoder can detect
them.16

The upper bound (23) may now be derived as a simple
consequence of the Rouché-Capelli Theorem. Regarding the
information segments of the active users as the unknowns
of a linear system of equations17 and the symbol in GF(2l)

16It is worth pointing out that this simplified setting also represents a
possible channel model for shared memories, provided some mechanism is
employed to discriminate between memory locations in which the data of a
single users are stored and memory locations in which the data of several
users are XORed.

17Recall, in fact, that each encoded segment may be expressed as a linear
combination of the associated information segments.

available in a non-empty slice as the known term of the
corresponding equation, the system admits no unique solution
whenever the number of unknowns exceeds the number of
available equations. As M →∞ the expected fraction of non-
empty slices is 1−Ψ0 = 1−exp{−G/R}, while the expected
number of unknowns per slice is equal to the expected channel
load G which yields

G ≤ 1− e−G/R

as a necessary condition for successful decoding. This in-
equality is equivalent to (27), the proof remaining the same
hereafter.

It is pointed out that a similar proof technique was adopted
in [20, Section II-D] to upper bound the success probability of
the frameless scheme there considered. As it was recognized
in [20], the bound there obtained represents a special instance
of the capacity bound presented in this paper.
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