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Abstract

We extend a well known di¤erential oligopoly game to encompass the possibil-

ity for production to generate a negative environmental externality, regulated

through Pigouvian taxation and price caps. We show that, if the price cap

is set so as to �x the tolerable maximum amount of emissions, the result-

ing equilibrium investment in green R&D is indeed concave in the structure

of the industry. Our analysis appears to indicate that inverted-U-shaped

investment curves are generated by regulatory measures instead of being a

�natural�feature of �rms�decisions.

JEL Codes: C73, L13, O31

Keywords: dynamic games, oligopoly, environmental externality, R&D



1 Introduction

The departure point of the analysis illustrated in this paper lies at the in-

tersection between two di¤erent debates, one being centered upon the rela-

tion between competition and innovation, whose most recent development is

known as the Schumpeterian growth theory initiated by Aghion and Howitt

(1998), the other belonging to environmental economics and focussing on

the optimal design of policy instruments, such as environmental standards,

pollution rights and Pigouvian taxation, to stimulate �rms�investments in

abatement and/or replacement technologies (for an updated survey, see Lam-

bertini, 2013).

The acquired industrial organization approach to the bearings of market

power on the size and pace of technical progress can be traced back to the

indirect debate between Schumpeter (1934, 1942) and Arrow (1962) on the

so-called Schumpeterian hypothesis, which, in a nutshell, says that one should

expect to see an inverse relationship between innovation and the intensity of

competition or market structure. Irrespective of the nature of innovation

(either for cost reductions or for the introduction of new products), a large

theoretical literature attains either Schumpeterian or Arrovian conclusion

(for exhaustive accounts, see Tirole, 1988; and Reinganum, 1989).1 That is,

partial equilibrium theoretical IO models systematically predict a monotone

relationship, in either direction.

The picture drastically changes as soon as one takes instead the stand-

point of modern growth theory. In particular, Aghion et al. (2005) stress

1See also Gilbert (2006), Vives (2008) and Schmutzler (2010) for add-on�s on this

discussion, where still the Schumpeter vs Arrow argument is unresolved.
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that empirical evidence shows a non-monotone relationship between industry

concentration (or, the intensity of market competition) and aggregate R&D

e¤orts: this takes the form of an inverted-U curve, at odds with all exist-

ing theoretical IO models; in the same paper, the authors provide a model

yielding indeed such a concave result, and �tting the data. A thorough dis-

cussion, accompanied by an exhaustive review of the related lively debate,

can be found in Aghion et al. (2013).

One could say that the inverted-U emerging from data says that Arrow is

right for small numbers, while Schumpeter is right thereafter. Alternatively,

on the same basis one could also say that neither Arrow nor Schumpeter can

match reality, if our interpretation of their respective views is that �competi-

tion (resp., monopoly) outperforms monopoly (resp., competition) along the

R&D dimension�. Be that as it may, there arises the need of constructing

models delivering a non-monotone relationship between some form of R&D

(for process, product or environmental-friendly innovations) and the number

of �rms in the industry.

With this purpose in mind, here we extend a noncooperative di¤eren-

tial game model dating back to Leitmann and Schmitendorf (1978) and

Feichtinger (1983) to describe an industry in which �rms sell a homogeneous

good and accumulate capacity over time through costly investments; �rms�

activities entail polluting emissions hindering welfare, and the government

adopts a Pigouvian taxation policy aimed at providing them with an incent-

ive to internalise the environmental externality and therefore undertake R&D

projects for pollution abatement. As in the original model, the mark-up is

exogenously �xed, and here is though of as an additional regulatory tool in
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the hands of the public authority.

Our main results can be outlined as follows. First, we show that there

exists a unique open-loop equilibrium which is subgame perfect and saddle-

point stable, for any pair of policy instruments. Then, taking again the

mark-up and tax rate as given, we prove that the aggregate green R&D

e¤ort is monotonically increasing in the number of �rms, which is a de�nitely

Arrovian result. Subsequently, we endogenise the regulatory toolkit, allowing

�rst the policy-maker to set that Pigouvian tax rate so as to maximise steady

state social welfare; in such a case, the aggregate R&D e¤ort is strictly convex

in the number of �rms. If optimal taxation is accompanied by a mark-up

tailored on industry structure so as to limit the overall volume of emissions,

then there emerges a general condition on the shape of the price regulation

scheme whereby the industry investment is indeed concave w.r.t. the number

of �rms.

The remainder of the paper is organised as follows. The setup is laid

out in section 2, while the equilibrium analysis is in section 3. Section 4

illustrate the design of policy tools and its consequences on aggregate R&D

e¤orts. Concluding remarks are in section 5.

2 The game

As anticipated in the introduction, here we extend the model introduced by

Leitmann and Schmitendorf (1978) and further investigated by Feichtinger

(1983), to allow for the presence of an environmental externality and green

R&D investments. In the remainder, we will label this framework as the �LSF
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model�for brevity. The market exists over t 2 [0;1) ; and, as in Dragone et

al. (2010), it is served by N � 1 a priori symmetric �rms with individual

capacity xi (t) � 0.2 Given a �xed pro�t margin p � 0, the instantaneous

pro�t of �rm i is

�i(t) = pxi (t)�
u2i (t)

2
� ki(t)�

k2i (t)

2
� �si; (1)

where  > 0 is a parameter. Capacity xi(t) changes according to

_xi(t) = ui(t)� �xi(t); (2)

where ui(t) is the investment of �rm i at time t and � > 0 is the decay rate

of individual capacity. si(t) and ki(t) denote the �rm�s polluting emissions

and R&D e¤ort respectively, and � is the tax rate.

The emissions of a �rm follow the dynamics

_si(t) = xi(t)� zki � h
X
j 6=i

kj � �si(t) (3)

where z is a positive parameter, � > 0 is the natural decay rate of emissions,

and parameter h 2 [0; z) measures the spillover e¤ect received from rivals�

R&D activity.

The total instantaneous volume of emissions at the industry level is S(t) =PN
i=1 si(t). Therefore the social welfare function at any time can be de�ned

as

SW (t) =
NX
i=1

�i (t) + CS (t)� S (t) + �
NX
i=1

si (t) : (4)

2In the original formulation of the model, xi (t) is �rm i�s sales volume, and ui (t)

its advertising investment. However, one can think of these variables as representing,

respectively, installed capacity (with each �rm selling at full capacity at any time) and the

instantaneous investment to increase it.
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Each �rm has two control variables, investment in capacity ui(t) and

investment in green R&D ki(t). The policy maker has two instruments, the

Pigouvian tax rate � (which may be usefully thought of as incorporating

the price of emission rights) and the regulated mark-up p. To avoid time

inconsistency issues, we consider the policy menu applied onto the steady

state only. The structure of the model identi�es a linear state game (it

wouldn�t be so if either the policy were function of the state or the demand

function were endogenously determined). Therefore, the open-loop solution

is subgame perfect, respecting the original LSF formulation.

3 Equilibrium analysis

Firm i�s (i = 1; : : : ; N) current-value Hamiltonian (from now on we suppress

the time argument)3

Hi(s;x;k;u) = �i + �ii _xi +
X
j 6=i

�ij _xj + �ii _si +
X
j 6=i

�ij _sj (5)

generates the following �rst order conditions (inner solution) for �rm i�s

(i = 1; : : : ; N) controls

@Hi
@ui

= �ii � ui = 0 (6)

@Hi
@ki

= � � ki � z�ii � h
X
j 6=i

�ij = 0 (7)

3In this respect, a remark is in order: note that, in general, the objective functional �i

has to be multiplied by the general multiplier �0 to allow for the abnormal case (see e.g.

Leitmann (1981)). However, in the current model that abnormal case can be ruled out as

can be readily shown.
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Thus we obtain the following optimal controls of �rm i (i = 1; : : : ; N)

u�i (t) = �ii(t)

k�i (t) = � � z�ii(t)� h
X
j 6=i

�ij(t): (8)

Furthermore, each �rm i obtains the following dynamic equations for the

costates (i; j = 1; : : : ; N , i 6= j)

_�ii = (�+ �)�ii � p� �ii �
X
j 6=i

�ijv

_�ij = (�+ �)�ij �
X
j 6=i

�ij

_�ii = (�+ �)�ii + �

_�ij = (�+ �)�ij: (9)

In order to characterize the optimal long run solution of the system we

have to derive the equilibria of the above de�ned system of di¤erential equa-

tions (i.e. state and costate equations of all �rms). In this model the equi-

librium is unique. For the adjoint variables we obtain (i; j = 1; : : : ; N , i 6= j)

�̂ii =
1

�+ �

�
p� �

�+ �

�
�̂ij = 0

�̂ii =
��
�+ �

�̂ij = 0: (10)

Inserting into (8) yields the following equilibrium controls (i = 1; : : : ; N)

û�i =
1

�+ �

�
p� �

�+ �

�
k̂�i =

z�

�+ �
� : (11)
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Using these expressions for the state equations we obtain (i = 1; : : : ; N)

x̂i =
1

�(�+ �)

�
p� �

�+ �

�
ŝi =

1

�

h 1

�(�+ �)

�
p� �

�+ �

�
�
� z�

�+ �
� 
�
(z + h(N � 1))

i
: (12)

Since all �rms are assumed to be a priori symmetric, we de�ne the steady

state values as û := ûi, k̂ := k̂i, x̂ := x̂i and ŝ := ŝi. Due to the economic

meaning of the model, we have to assume that the controls and the states are

non-negative for all t 2 [0;1). The following Lemma provides assumptions

such that the non-negativity is ful�lled in equilibrium.

Lemma 1 The steady state variables of the state and control variables of

every player i (i = 1; : : : ; N) are non-negative if the following assumptions

on the parameters are ful�lled

p(�+ �) � � � (�+ �)

z
(A1)

1

h

h 1

�(�+ �)

�
p� 1�

�+ �

�� z�

�+ �
� 
��1

� z
i
+ 1 � N (A2)

Condition (A1) guarantees non-negativity of the controls (see (11)). Non-

negativity of x̂i is implied by (A1) and that of ŝi by (A2). The analysis of

the Jacobian matrix of the system shows that

Proposition 2 The unique equilibrium (x̂; ŝ; û�; k̂�) is a saddle point.

From the adjoint equations it is easy to show that �ij(t) = �ij(t) = 0. Due

to the structure of the system it is possible to derive an analytical expression
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of the stable path, i.e.

xi(t) = x̂+ (xi0 � x̂)e��t

si(t) = ŝ� (xi0 � x̂)
1

� + �
(e��t � e��t) + (si0 � ŝ)e��t

�ii(t) = �̂ii

�ii(t) = �̂ii (13)

Now we are able to de�ne a su¢ cient assumption that the controls and the

states are positive for all t 2 [0;1).

Lemma 3 Let (A1) and (A2) hold. Then the following assumption is su¢ -

cient to ensure that all controls and states are positive over the whole planning

horizon.

xi0 � x̂; si0 � ŝ; � � �:

Proof: u�i (t) > 0 and k
�
i (t) > 0 are trivial by the signs of the adjoint variables

in (13). xi(t) > 0 is implied by xi0 � x̂ (see (13)). For si(t) we obtain from

(13)

si(t) = ŝ(1� e��t) + si0e��t + (x̂� xi0)
1

� + �
(e��t � e��t) (14)

Since � > 0 the �rst and the second term are trivially (strictly) positive.

� � � implies e��t�e��t � 0 for all t � 0 (equality is the case only for t = 0).

Thus also the third term of the above expression for si(t) is non-negative.

The foregoing analysis has a seemingly not-so-intriguing ancillary implic-

ation:

Corollary 4 Since K� = Nk� is everywhere increasing in N for all � >

(� + �) =z, the behaviour of aggregate R&D is Arrovian for any given Pigouvian

policy allowing for a positive investment.
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However, there is more to it, which can be shown to emerge as soon as

one admits the reasonable possibility for regulation to enter the picture along

two dimensions: one is obviously � ; as is usually the case in environmental

economics, the other is p, which is a speci�c feature of the present model.

Here, the mark-up is �xed, and this fact can be interpreted as a consequence

of a price cap imposed by a public authority. The research question we are

about to assess in the following section is the following: is the portfolio of

policy instruments fp; �g going to modify the apparently monotone behaviour

of aggregate R&D e¤orts K� outlined in Corollary 4? And, if so, in what

direction?

4 Environmental policy and aggregate invest-

ment

The bearings of p and � on aggregate R&D incentives can be appreciated

by addressing the issue in the following terms. It is already known (see

Benchekroun and Long, 1998, 2002, inter alia) that there exists a level of

Pigouvian taxation driving the industry to the �rst best which would be

obtained under social planning. Call this tax rate �SP (p;N). This tax rate

must maximise the steady state level of the social welfare function, de�ned

as

SW � (�) = N�� (�) + CS� (�)�N (1� �) s� (�) (15)

where

CS� (�) =
(a� p)Nx� (�)

2
(16)
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is consumer surplus, calculated postulating the existence of a linear and

decreasing market demand function bp = a�Nx� in which a > 0 is consumers�
reservation price; indeed, bp is the price that would prevail if the mark-up were
unregulated. Moreover, (15) accounts for the additional fact that the revenue

produced by Pigouvian taxation, N�s� (�) ; is redistributed to consumers as

a windfall.

Then, �SP (p;N) can be easily calculated by solving the necessary condi-

tion @SW � (�) =@� = 0; satis�ed by the unique tax rate:4

�SP (p;N) =
(� + �)

�
p (� � �) � � (� + �) (a� � 2) + 2� (� + �)2 (z + h (N � 1)) z

�
2��

�
1 + (� + �)2 z2

� :

(17)

Now observe that

@K� ��SP (p;N)�
@N

= 0 in N = max
n
1; bNo ; (18)

bN =
2��2 + 4c� (� + �)2 (� + h� z) + p (�� �) � + (� + �) (a� � 2)

4h� (� + �)2 z
;

and
@2K� ��SP (p;N)�

@N2
=

2h (� + �)2 z2

�
�
1 + (� + �)2 z2

� > 0; (19)

showing that, if bN � 2; then in correspondence of bN the aggregate R&D

level K� ��SP (p;N)� is indeed being minimised. Hence, in this scenario no
inverted-U may arise (at most, if bN is admissible, a U-shaped curve obtains),

since:
4The second order condition is satis�ed, as

@2SW � (�)

@�2
= �

N
�
1 + (� + �)

2
z2
�

(� + �)
2
(� + �)

2 < 0

always.
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Lemma 5 If p is given, the equilibrium aggregate R&D e¤ort is convex in

N .

On the basis of the above Lemma, it seems that Pigouvian taxation is

in itself insu¢ cient to deliver an inverted-U R&D curve: the opposite shape

does in fact appear if bN � 2 (if so, then for a limited number of �rms the

Schumpeterian hypothesis is con�rmed, while for su¢ ciently large number of

�rms the Arrovian position prevails).

What if p is set by the government for some purpose? Suppose �rst

that a public agency is in charge of regulating the mark-up of this industry

having in mind objectives such as the entry process, consumer surplus or the

volume of industry emissions. Be that as it may, the resulting regulatory

measure can be de�ned as p = p (N) ; so that the mark-up is a function of

industry structure. Substituting p (N) into �SP (p;N) ; the optimal tax rate

is then de�ned in terms of industry structure (as well as the parameters of

the model), and can be relabelled as �SP (N). Then, the aggregate R&D

e¤ort at the steady state equilibrium writes as follows:

K� ��SP (N)� = N
�
z�SP (N)�  (�+ �)

�
�+ �

with

@K� ��SP (N)�
@N

=
z�SP (N)�  (�+ �) +Nz � @�SP (N) =@N

�+ �
(20)

and

@2K� ��SP (N)�
@N2

=
z
�
2 � @�SP (N) =@N +N � @2�SP (N) =@N2

�
�+ �

(21)
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If there exists a value of N at which (20) is nil, this is implicitly identi�ed

by
@�SP (N)

@N
=
 (�+ �)� z�SP (N)

Nz
< 0 (22)

as z�SP (N) >  (�+ �) in order for the equilibrium R&D e¤ort to be posit-

ive. Looking back at (17), it appears that (i) as long as p is not a function

of industry structure, @�SP (p;N) =@N > 0; and (ii) the derivative of the

optimal tax w.r.t. N may become negative only if p is indeed a decreasing

function of N .

Then, using (22), (21) becomes:

@2K� ��SP (N)�
@N2

=
2
�
 (�+ �)� z�SP (N)

�
+ zN2 � @2�SP (N) =@N2

N (�+ �)
(23)

whose sign determines whether the solution to @K� ��SP (N)� =@N = 0 is a

maximum or a minimum.

A sensible way of modelling the role of price regulation rests on consid-

ering that, in general, �SP (p;N) - although maximising steady state social

welfare - does not ensure the minimization of the externality or the attain-

ment of any given cap �S targeted by the public agency in charge of the

environmental policy.

If indeed the government wants to reduce emissions to a given level �S, it

must set the regulated price at the level solving Ns� = �S; which is

pSP
�
�S
�
=
2�S�2�2 (1 + &2) +N [2 + 2� (h (N � 1) + z) (2& � ��)� a�	]

�N [1� �z ((� + 3�) z + h (N � 1) (�� �) z)]
(24)

where & � z (� + �), and

� � � + [� � h (N � 1)� z] &2;

	 � 1 + �& [h (N � 1) + z] :
(25)
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Price (24) is in fact a function of N and we may further investigate the

bearings of pSP
�
�S
�
on the equilibrium R&D e¤ort of the industry.

The adoption of such a regulated price delivers

K� ��SP �pSP � �S� ; N� ; pSP � �S�� =�
��2 (� � �) �S � � (az +  + 2z�&)N+

2z (1 + �& (z + h (N � 1)))N ] = (26)

� [1 + z� (z (� + 3�)� h (N � 1) (� � �))] :

Now we can di¤erentiate K� (�) w.r.t. N; obtaining:

@K� (�)
@N

=
(�1 +�2)�3 +�4 ��5

��23
(27)

where

�1 � z (2� a�)� �

�2 � 2z�& [z + h (N � 1)� N ]

�3 � [1 + z� (z (� + 3�)� h (N � 1) (� � �))] (28)

�4 � hz� (� � �)
�
�S��2 (� � �) + 2Nz (1 + z (h (N � 1) + z) � (� + �))

�
�5 � Nhz�� (� � �) [ + z (a+ 2�&)]

Then, di¤erentiating (27) w.r.t. N , we have the following:

@2K� (�)
@N2

=
�23�

0
2 � 2�03 (�4 ��5)��3 [(�1 +�2)�03 ��04 +�05]

��33
(29)

in which �0j � @�0j=@N; j = 2; 3; 4; 5.

The equation @K� (�) =@N = 0 has two roots:

N� = 1 +
1 + z2� (� + 3�)

hz� (� � �) �
p
&


hz2�
�
�2 � �2

�p
2

(30)
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where

N+ �N� =
p
2&


hz2�
�
�2 � �2

� > 0 (31)

for all � > �; provided 
 � 0 in such a way that N� 2 R, with


 � Shz�2�2 (� � �)2+ (32)

[1 + z� (h (� � �) + z (� + 3�))]��
4z�&2 � � (� � �) + z (a��� � (a� � 4))� 2z��&

�
�2 � �2

��
For future reference, de�ne � � 1 + z� (h (� � �) + z (� + 3�)) and

� � 4z�&2 � � (� � �) + z (a��� � (a� � 4))� 2z��&
�
�2 � �2

�
; (33)

which allw us to formulate the following

Lemma 6 If � > �; 
 � 0 for all

S � max
�
0; � � � �

hz�2�2 (� � �)2
�
:

If instead � 2 (0; �) ; 
 � 0 for all

S 2
�
0;

� � �
hz�2�2 (� � �)2

�
:

Lemma 6 says that (i) if the e¢ ciency of natural carbon sinks is higher

than the discount rate, the solutions N� to @K� (�) =@N = 0 are real if S is

large enough; (ii) if instead the opposite applies, S must be low enough in

order for N� 2 R.

The expressions N� can be substituted into (29) to verify that

@2K� (�)
@N2

����
N=N+

= �4
p
2hz�&2

�
p
&


< 0 (34)
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and
@2K� (�)
@N2

����
N=N�

=
4
p
2hz�&2

�
p
&


> 0 (35)

The foregoing analysis produces the following:

Proposition 7 If � 2 (0; �) and S 2
�
0; ��=

�
hz�2�2 (� � �)2

��
; then 
 � 0

and N+ < 0 < N�: In this parameter range, K� (�) is convex in N; taking its

unique minimum at N = N�.

If instead � > � and S � max
�
0; ���=

�
hz�2�2 (� � �)2

�	
; then 
 � 0

and N� < 0 < N+: In this parameter range, K� (�) is concave in N and takes

its unique maximum at N = N+. In the remainder of the parameter space,

N� =2 R:

The above Proposition illustrate the existence of parameter constellations

wherein the aggregate advertising e¤ort in steady state is non-monotone in

the number of �rms, taking the form of either a U-shaped curve or an inverted

U-shaped curve w.r.t. the number of �rms in the industry. However, it is

also interesting to single out the regions in which the curve in question is

indeed monotone. These are identi�ed in the following:

Corollary 8 In the parameter regions where 
 < 0; N� =2 R; and therefore

@K� (�) =@N has the same sign as �� �: This entails that K� (�) is monotone

in N .

Proof. This result can be easily proved noting that the coe¢ cient of N2

the numerator of @K� (�) =@N in (27) is indeed 2h2z2�2& (�� �) ; while the

denominator of @K� (�) =@N; i.e., expression ��23; is positive. Hence, when


 < 0;
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� K� (�) decreases monotonically in N for all � > �;

� K� (�) decreases monotonically in N for all � 2 (0; �) :

This concludes the proof.

This amounts to saying that, when 
 < 0; aggregate green R&D has a

Schumpeterian (resp., Arrovian) �avour when discounting is low (resp., high)

enough.

A special case where K� (�) is monotone in N is the following. From (26),

we see that if h = 0, then

K� ��SP �pSP � �S� ; N� ; pSP � �S����
h=0

=

�
�Sz��2 (� � �) + 2Nz

�
1 + � (� + �) z2

�
� (36)

N�
�
az + 

�
1 + 2z2� (� + �)

���
=
�
�
�
1 + �z2 (� + 3�)

��
;

which is necessarily monotone in N . In particular:

Corollary 9 In the special case in which technological spillovers are absent,

take

�S > max

�
0;
N [� (az +  (1 + 2z2� (� + �)))� 2z (1 + z2� (� + �))]

z� (� � �) �2

�
to ensure K� (�)jh=0 > 0: Then,

@ K� (�)jh=0
@N

=
2z (1 + z2� (� + �))� � (az +  (1 + 2z2� (� + �)))

� (1 + z2� (� + 3�))
? 0

for all

� 7 b� � 2z (1 + z2� (� + �))

az +  (1 + 2z2� (� + �))
:
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Corollary 9 entails that, if the individual �rm�s abatement capability is

una¤ected by the rivals�, the behaviour of aggregate green R&D asN changes

is Arrovian (resp., Schumpeterian) if the environment�s recycling rate is suf-

�ciently low (resp., high). I.e., it is as if the industry were complementing

the natural absorption activities if the latter are not particurlarly e¤ective

(which corresponds to the Arrovian case), and conversely (which instead cor-

responds to the Schumpeterian case).

Now it is appropriate to provide a numerical example illustrating the

arising of an inverted U-shaped curve. Fixing parameter values

a = 150; h = 1=10; z = 2=5; �S = 12� 103;

� = 2=3;  = 3=2; � = 2; � = 1=10; (37)

aggregate R&D steady state investmentK� ��SP �pSP � �S� ; N� ; pSP � �S�� can
be drawn as in Figure 1, where the concavity of industry e¤ort emerges

clearly and K� ��SP �pSP � �S� ; N� ;SP � �S�� is maximised at N = N+ ' 822

(while N� < 0). In correspondence of these numerical values, @p
�
S
�
=@N '

�0:0097 and from (22-23) we have @�SP (N) =@N ' �0:0059 and @2K� (�) =@N2 '

�0:0938.

Something more can be said about the e¤ects of the size of the population

of �rms. Concerning the supply side, we have

k�
�
�SP

�
pSP

�
�S
�
; N
�
;SP
�
�S
��
= 0 at N ' 7348

x�
�
�SP

�
pSP

�
�S
�
; N
�
;SP
�
�S
��
= 0 at N ' 7497

(38)

which implies that there exists a non-negligible range ofN; namely, (7349; 7389)

in which the individual R&D e¤ort drops to zero but �rms still produce and

sell to consumers. As instead to the welfare performance of this industry, one

17
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Figure 1: The inverted-U curve

18



can check that SW � ��SP �pSP � �S� ; N� ;SP � �S�� is maximised at N ' 3522:

This result (at least in the numerical example based on the above values)

illustrates a situation in which consumer surplus matters more than the en-

vironmental externality, so that the industry structure that maximises wel-

fare is a lot more fragmented than that maximising the aggregate volume of

green R&D.

The inverted-U is relatively stable with respect to the model parameters.

However, the level and the position of the curve di¤ers. Table 1 summarizes

the dependence. The �rst column includes the e¤ect on the peak, the second

collumn the e¤ect on the level of the curve and the third one links the whole

e¤ect to each of the �ve graphs in Figure 2, where the qualitative e¤ect on

the inverted-U shape is illustrated.

e¤ect on the peak e¤ect on curve level

� move to the right
ambiguous: increase for low N ,

decrease for high N
top left panel

� move to the right
ambiguous: decrease for low N ,

increase for high N
top right panel

 no/marginal increase middle left panel

a no/marginal increase middle left panel

z move to the left decrease middle right panel

S move to the right decrease low panel

� move to the right decrease low panel

h move to the left decrease middle right panel

Table 1: Dependence of the inverted-U curve on the model parameters
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Figure 2: Sensitivity of the inverted-U curve (curve shifts along the arrow

for the corresponding increasing parameter)

4.1 Discussion

Concerning the concavity of K� ��SP �pSP � �S� ; N� ;SP � �S�� with respect to
N; the foregoing analysis seems to imply that the arising of inverted-U curves

is the consequence of the pressure of regulatory policy (possibly, as is the

case in our model, of the adoption of multiple tools at the same time, to

pursue di¤erent although - in some way - related objectives). This could

be a plausible explanation for the lack of analogous outcomes in the vast
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literature discussing the bearings of industry structure on aggregate R&D,

that has been produced so far in IO.

The acquired wisdom on the matter, delivering monotone predictions in

one way or the other, can be quickly summarised as follows. The Schum-

peterian hypothesis claims that market power is the driver of innovation,

and therefore monopoly should be expected to stand out as the market form

producing the highest R&D incentives. This argument rests on the so-called

e¢ ciency e¤ect, whereby a monopolist can at least replicate the behaviour

of any oligopolistic or perfectly competitive industry. Adhering to this view,

one should expect to observe aggregate R&D to decrease monotonically in

the number of �rms. The opposite perspective is based on Arrow�s replace-

ment e¤ect, whereby a monopolist has a lower incentive to innovate than

a competitive industry (or any oligopoly in between) because, even if the

innovation is patentable, the monopolist�s bene�t reduces to replace itself by

acquiring the patent, while a smaller �rm operating initially under much less

favourable conditions might gain monopoly power by getting to the patent

o¢ ce before any of its rivals does.5 The large subsequent literature has al-

ternatively con�rmed one view or the other, with the exception of Aghion et

al. (2005), where the only available model showing a non-monotone result

accompanies an empirical evidence with analogous properties. It is worth

stressing that most, if not all of this literature relies on theoretical models

where policy instruments are either absent ot taken as exogenously given.

How can we justify or interpret the arising of a concave aggregate R&D

e¤ort in the presented model? The source of this e¤ect must be found in some

5A full account of this discussion is in Tirole (1988, ch. 10) and Reinganum (1989).
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aspect that the previous literature has overlooked, such that the outcome is

a non-monotone mixture of Arrow�s replacement e¤ect appearing �rst, to be

replaced by Schumpeter�s e¢ ciency e¤ect. The present model has several

special features. First of all, a patent system is left out of the picture.

Additionally (i) individual e¤orts spill over to rivals; and (ii) innovation is

green, which amounts to saying that R&D is spurred by emission taxation.

That is, we are treating a particular type of investment which would be

altogether nil without an equally speci�c policy. Yet, Pigouvian taxation per

se is not an explanation of the arising of an inverted-U curve, as we know

from Corollary 4 and Lemma 5. In particular, the latter would imply a U-

shaped curve, not the opposite. Hence, the responsibility of our result must

be imputed to the remaining policy instrument, the regulated price pSP
�
�S
�
.

From (11), we have that the aggregate e¤ort is

K� = N

�
z�

�+ �
� 
�

(39)

In (39) we can plug � = �SP (p;N) from (17); however, �SP (p;N) being

linear and increasing in N; this yields a convex relationship between K� and

N: Therefore, the source of the inverted-U curve is not Pigouvian taxation.

What creates it is the additional policy measure regulating price, i.e., pSP
�
�S
�

from (24), using which we can rewrite (39) as follows:

K� = N

�
z� (p (N) ; N)

�+ �
� 
�

(40)

Now observe that

@K�

@N
=
z [� +N (@�=@n+ @�=@p � @p=@n)]

�+ �
�  (41)
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and

@2K�

@N2
=

z

"
2

�
@�

@n
+
@�

@p

@p

@n

�
+N

 
@2�

@n2
+ 2

@2�

@n@p

@p

@n
+
@2�

@p2

�
@p

@n

�2
+
@2p

@n2
@�

@p

!#
�+ �

(42)

Setting (41) equal to zero, we obtain

@�

@N
=
 (� + �)� z (� +N � @�=@p � @p=@n)

Nz
(43)

This can be substituted into (42), which can also be further simpli�ed us-

ing additional pieces of information that we can draw from expression (17),

whereby
@2�

@N2
=

@2�

@N@p
=
@2�

@p2
= 0: (44)

Hence, (42) simpli�es as follows:

@2K�

@N2
=
2 [ (� + �)� z� ] + zN2 � @�=@p � @2p=@n2

N (�+ �)
(45)

Observing (45), we may note that

 (� + �)� z� = � (� + �) k� < 0 (46)

and @�=@p ? 0 for all � ? � - which again can be easily deduced from (17).

Accordingly, we may take a �nal step and rewrite (45) in a more intuitive

form:
@2K�

@N2
=
zN2 � @�=@p � @2p=@n2 � 2 (� + �) k�

N (�+ �)
(47)

which is negative for all

k� > max

�
zN2 � @�=@p � @2p=@n2

2 (� + �)
; 0

�
: (48)
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If we con�ne our attention to the parameter region de�ned by � > �; which

is what we have done to generate the inverted-U curve appearing in Figure

1 - then @�=@p > 0; therefore, in this range @2p=@N2 < 0 su¢ ces to ensure

that K� is indeed concave w.r.t. N for all k� > 0:

Having said that, two natural questions arises, namely, (i) should we

conclude that it is altogether impossible to reproduce the same result if reg-

ulation is assumed away in di¤erential games investigating some form of

R&D for either process or product innovation? The few existing examples

(see Cellini and Lambertini, 2002, 2009, for instance)6 indeed yield mono-

tone outcomes, but are by no means general; (ii) shall we deem the usual

assumption of a linear market demand responsible for monotone outcomes?

In fact, empirical research (Hausman, 1981; Varian, 1982, 1990, inter alia)

has shown that most markets are characterised by non linear demand func-

tions, which are best approximated by isoelastic curves. These extensions

are left for future research.

5 Concluding remarks

We have characterised green R&D incentives for �rms operating in an in-

dustry where production pollutes the environment the government regulates

the mark up and adopts a Pigouvian tax policy to decrease emissions and

stimulate the introduction of clean technologies. The model delivers a thus

far rare result, in the form of an inverted-U aggregate R&D expenditure at

6One could also address in the same spirit other dynamic models whose focus is on the

investment in advertising to expand the demand level or goodwill stock, as in Cellini and

Lambertini (2003a,b) and the references therein.
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equilibrium. The implication of our analysis seems to be that the empirical

evidence concerning the emergence of inverted-U curves is a consequence of

some form of regulation that modi�es the aggregate behaviour of the in-

dustry as compared to the predictions of theoretical models where regulation

is either totally exogenous or just assumed away. Whether ours is a special

(and fortunate) case or instead an indication of some general rule previously

overlooked, is a question left for future research.
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