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Periodic Spectrum Sensing with Non-Continuous

Primary User Transmissions
Andrea Mariani, Member, IEEE, Sithamparanathan Kandeepan, Senior Member, IEEE, and

Andrea Giorgetti, Senior Member, IEEE

Abstract—In this paper we present a thorough study of
spectrum sensing performance in cognitive radio (CR) scenarios
where the primary user (PU) transmission is not continuous. In
particular, we consider a sensing scheme in which the spectrum is
monitored periodically for a fraction of time. In such a situation,
sensing is affected by common detection impairments, including
noise and fading, as well as by the PU temporal behavior. It is
thus necessary to properly design periodic sensing parameters
to balance between sensing overhead and detection performance.
In this context, we derive a comprehensive analytical framework
which accounts for detector performance, presence of noise and
fading, PU temporal statistics and periodic sensing. The analysis
allows to express the detection and false alarm probabilities in
closed-forms to capture an explicit relationship between the PU
temporal statistic and periodic sensing parameters. Our results
show that the temporal behavior of the PU have a significant
impact on the detection performance, and therefore a proper
design of the sensing parameters is important. Based on our
analysis we propose useful strategies to design effective periodic
sensing.

Index Terms—Cognitive radio, detection, periodic sensing,
spectral occupancy, spectrum sensing.

I. INTRODUCTION

THE SPECTRUM is a limited resource, and the ever

growing demand for frequency bands has brought about

the problems related to its shortage. Recent studies have

emphasized that the real problem does not lie in the scarcity

of resources available, but rather in the fact that they are

poorly managed [1]. These considerations have lead to the

development and evolution of the concept of cognitive radio

(CR), further supported by the radio regulatory bodies around

the world [1]–[3]. A CR device, by intelligently sensing and

learning from the radio environment, uses spectrum opportu-

nities as a secondary user (SU) whilst giving higher priority

to the primary users (PUs) of the spectrum.
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Spectrum sensing is one of the key functionalities for

opportunistic spectrum access, extensively studied in the recent

literature [3]–[12]. Many spectrum sensing algorithms have

been proposed, starting from most simple approaches, such

as the energy detector (ED), that estimates the received signal

energy and compares it to a decision threshold [1], [4], [5]. The

unique impairment of the ED is that it requires the estimation

of noise power level (see [5] for further details). If some

features of the PU signal to be detected are known, they can

be used for detection purposes, implementing algorithms such

as correlation-based detection or cyclostationary detectors [1].

Other algorithms exploit diversity strategies, such as multiple

antennas or cooperation among different nodes. In this context,

the most popular approaches are based on the observation of

the eigenvalues of the sample covariance matrix [6], [7]. For a

more complete overview on spectrum sensing algorithms refer

to [8] and [3, Chapter 1].

Considering the spectral occupancy in the time domain,

there are mainly two scenarios that may be considered. The

first one is in presence of continuous PU transmissions, such as

television broadcasting in TV white spaces, or non continuous

transmissions with high occupancy rates [32]. In these contexts

the SU typically senses the spectrum in order to discover

spectrum opportunities in the space and frequency domains.

A different situation occurs in presence of non-continuous PU

transmissions with a low occupancy rate such as wireless mi-

crophones, voice-based services in cellular systems, or packet-

based wireless communications. In these cases, the variability

of spectrum occupancy in time motivates the search for tem-

poral spectrum holes [13]–[15]. To cope with non-continuous

transmissions, periodic spectrum sensing has been proposed

and investigated in specific contexts. Spectrum occupancy

estimation in time-domain has been first analyzed in [16] using

an asymptotical approach. The sensing requirements and the

detection performance with periodic frequency scanning have

been derived in [17], and in [18] the authors study scheduling

for periodic sensing and the differences between the energy

and feature based techniques. In [19] periodic sensing has

been proposed in the practical context of the IEEE 802.22

standard with 1ms sensing duration every 40ms. In [15]

the problem of temporal spectrum holes discovery has been

studied addressing the problem of learning the PU channel

usage pattern, but assuming a sensing process with zero error

probability. However, a comprehensive and systematic analysis

of periodic sensing has not been addressed thoroughly.

In this paper, we formulate a general framework for tempo-

ral spectrum sensing, including PU non-continuous transmis-
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Fig. 1. Primary user temporal behavior and periodic spectrum sensing by
the CR.

sions, periodic sensing, noise, and fading. In particular, the

contributions of the paper are as follows.

• We provide general expressions of the temporal detection

and false alarm probabilities that capture the explicit

relationship between detector performance, noise effect,

fading impact, PU temporal statistic and periodic sensing

parameters.

• The analysis extends previously proposed studies, provid-

ing a formulation that can be applied to different detection

algorithms and different PU temporal statistics.

• To investigate different scenarios, we derive the per-

formance of three sensing tasks corresponding to the

detection of a specific PU transmission, the detection of

the PU using a single observation, and using multiple

scans.

• The case in which sensing is based on ED and the PU is

characterized by exponential inter-arrival and hold-time

distributions is discussed in detail providing closed-form

expressions for the probabilities of temporal detection and

false alarm.

Our results show that the temporal statistic of the PU has a

significant impact on the detection performance, and therefore

a proper design of periodic sensing parameters is crucial.

Finally, based on our analysis, we propose useful strategies

to design effective periodic sensing in the CR context.

The rest of the paper is organized as follows. In Section II

we present the temporal sensing framework providing general

forms of the detection metrics. In Section III we analyze

the case in which ED is adopted in presence of a PU with

exponential distributed arrival time. In Sections IV and V we

analyze periodic sensing based on the temporal statistic of

the PU for constant and random hold-time cases, while in

Section VI we present the design strategies, based on the

periodic sensing framework proposed, and some numerical

results. Finally, in Section VII we draw some concluding

remarks.

II. TEMPORAL SENSING FRAMEWORK

In this section, we present the system model considered

for the analysis of periodic sensing in the presence of non-

continuous PU transmissions, and the definition of the detec-

tion metrics adopted. The PU temporal behavior is statistically

modeled as a stationary ON-OFF random process with two

states, where the ON state represents the PU transmission and

the OFF state represents the PU inactivity. The ON and OFF

period durations are denoted with τn and ∆n, respectively,

with n ∈ N. Fig. 1 depicts an example of temporal scenario

with non-continuous PU transmission, where the SU asyn-

chronously observes the channel within sensing intervals of

duration δt. We refer to the period between the ending of two

consecutive sensing intervals, with duration Tw, as the sensing

scan.

A. Periodic Spectrum Sensing

The temporal spectrum sensing performance can be studied

starting from the definition of three temporal sensing tasks

(TSTs):

• TST-nm: detect the nth PU transmission within the mth

sensing scan;

• TST-S: detect any PU transmission within a single scan;

• TST-M: detect any PU transmission using multiple scans.

The first TST can be adopted for the design of the periodic

sensing parameters, and for quantifying the impact of periodic

sensing in terms of latency of the detection process, as

described in Section VI. Moreover, the TST-nm represents

an elementary task useful for the study of the latter two.

The TST-S aims at quantifying the overall sensing capability

to detect a PU within a single sensing scan. On the basis

of this single observation the SU decides which behavior to

adopt, such as, e.g., whether to transmit, and how to plan

future actions, such as sensing intervals scheduling.1 Another

relevant scenario is represented by the situation in which

the SU is interested in knowing if a PU is present to avoid

using the channel for a relatively long period (band dropping)

[1]. The SU performs sensing in different channels allocating

different sensing periods within the same scan in time-division,

but instead of making a decision at the end of each sensing

interval, consecutive M scans can be monitored and a unique

decision is made at the end. This situation is represented by

TST-M, where an higher detection probability is expected and

specific design rules are presented in the next sections. Note

that TST-S and TST-M can be also combined in such a way

that a first decision on whether to use a channel or not can be

performed with TST-M and then, on a scan-by-scan basis, the

selected channel can be monitored with TST-S. We remark

that TST-S and TST-M directly provide a decision on the

occupancy state of the channel, while TST-nm is useful for

the analysis of periodic sensing and to derive a design strategy

that accounts for detection latency.

Considering the presence of non-continuous PU transmis-

sions, the sensing process is affected by the fact that PU

transmissions are not always overlapped with the sensing

intervals. Thus, for studying this temporal sensing problem,

it is useful to define two events, S and T , associated to a PU

transmission:2

1Within the paper, we do not make assumptions on the SU behavior outside
the sensing intervals. The time between two sensing intervals could be used,
e.g., for transmitting SU data when the channel has been declared free, or,
alternatively, to sense other channels.

2In the following, we use the notations S and T to denote the corresponding
complementary events.
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Fig. 2. Temporal events related to the temporal sensing tasks.

• S: the PU transmission is overlapped with a sensing

interval;

• T : the PU transmission is in a scan period.

In particular, with reference to the TSTs defined above, we

adopt the notation:

• Sn,m and Tn,m, for the TST-nm, to indicate the presence

of the nth PU transmission within the mth sensing

interval, and the presence of the nth PU transmission

within the mth sensing scan, respectively;

• Sm and Tm, for the TST-S, to indicate the presence of at

least one PU transmission within the mth sensing interval,

and the presence of at least one PU transmission within

the mth sensing scan, respectively;

• SM and TM , for the TST-M, to indicate the presence of

at least one PU transmission within M sensing intervals,

and the presence of at least one PU transmission within

M sensing scans, respectively.

Throughout the paper we use the notation S and T to indicate

either Sn,m and Tn,m, or Sm and Tm, or SM and TM ,

to maintain a general approach and avoid repetitions, and

we specialize the analysis using the specific symbols, when

necessary. A graphical representation of the possible events

for TST-nm is provided in Fig. 2.

In analyzing the periodic sensing it is useful to consider

two situations: a transient phase and a steady-state regime.

The transient phase occurs when the SU starts monitoring

the channel and consists in a situation in which the detection

performance strongly depends on the sensing interval index

m, while in the steady-state regime the detection performance

is constant in time.

B. Detection Metrics

In this section, we discuss temporal sensing in a general

framework, defining proper performance metrics. In the fol-

lowing sections, we explicitly calculate the detection perfor-

mance in a specific case.

Signal detection is affected by noise, channel impairments

and also by the non-continuous transmission of the PU. It

is thus useful to separate their effects to better understand

their impact on detection performance and to derive a general

framework which accounts for PU temporal behavior and

periodic sensing parameters. In light of this approach, we

define two metrics namely, temporal sensing probability and

temporal detection probability.

Let us define the temporal sensing probability as PTS =
P {S|T }, which can be rewritten, using Bayes’ theorem, as

PTS = P {S ∩ T } /P {T }. Given that S ⊂ T , such probability

can be expressed as [20]

PTS =
P {S}

P {T }
. (1)

As can be seen, PTS only accounts for periodic sensing

and non-continuous transmission of the PU, not including

the detection process in the presence of noise and channel

impairments.3

In the presence of noise, considering a general detector

characterized by a decision statistic Λ and a threshold ξ, the

detection of a PU may occur in two cases: either because there

is an overlap between the PU transmission and the sensing

period with a correct detection (i.e., the event Λ > ξ|S) or

because there is a false alarm with no overlap between the PU

transmission and the sensing period (i.e., the event Λ > ξ|S).

Accordingly, we define the temporal detection probability as

PTD = P {Λ > ξ|T } =

P {Λ > ξ|S}P {S|T }+ P
{
Λ > ξ|S

}
P
{
S|T

}

= PD P {S} /P {T }+ PFA (1− P {S} /P {T }) (2a)

= PD PTS + PFA (1− PTS) (2b)

where P {Λ > ξ|S} and P
{
Λ > ξ|S

}
are, respectively, the

conventional probability of detection and probability of false

alarm of the specific detector considered.4 The above definition

of temporal detection incorporates both periodic sensing and

detection, and is by no means in conflict to the usual definition

of detection probability, where the event T corresponds to the

null hypothesis and T to the alternative hypothesis [29]. Note

that this is the main difference between simple detection and

temporal detection; the former wants to infer the occupancy

state in the observed interval given that there is a transmission

in that interval, while the latter wants to infer the occupancy

state accounting for the non-continuous nature of PU trans-

missions within a sensing scan.

If the PU transmission is continuous, then PTS = 1 and

PTD reduces to the detection probability, i.e., PTD = PD.5

On the other hand, when the detection probability is PD = 1
and the false alarm probability is PFA = 0 (a condition that

can be approached for high signal-to-noise ratios (SNRs)) PTD

in (2) reduces to PTS. Hence, temporal sensing probability

can be interpreted as an asymptotic performance in the high

3Such metric can be interpreted as the overlap probability among the
sensing periods and the PU transmissions.

4Also note that the events S and S are often denoted as H1 and H0,
respectively.

5This fact implies that the sensing scan duration, Tw , does no longer play
any role, and periodic sensing looses its significance.
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SNR regime. This fact is intuitive, since when noise can be

neglected, the performance depends only on the PU temporal

behavior and periodic sensing parameters. Also note that in (2)

noise and temporal overlap are clearly separated. This aspect

is useful to understand temporal sensing dependence on PU

temporal behavior and to design periodic sensing parameters,

as discussed in the next sections.

Since T ⊂ S, the probability of false alarm in the presence

of non-continuous PU transmission can be written as

PFA = P
{
Λ > ξ|T

}
= P

{
Λ > ξ|S

}
(3)

which corresponds to the usual definition.

The detection probability over M scans depends on how

we combine the information collected from the M sensing

intervals. There are several data fusion strategies that can be

used, generally classified as hard fusion schemes, that combine

the results of hypothesis tests applied to each sensing interval,

and soft fusion techniques, that combine the observations of

different sensing intervals and use a global detection test.

Considering hard combining strategies, we adopt the OR

rule, in which the CR decides for the presence of the PU if it

is detected in any of the M sensing intervals.6 The probability

of detecting at least one transmission, given that at least one

has occurred in the M scans, can be written as

P FU
TD = P

{(
⋃

m∈ΩM

{Λm > ξ}

)
6= ∅

∣∣∣∣∣ TM

}
(4)

where Λm is the test statistic in the mth sensing interval and

ΩM is set of the indexes of M consecutive sensing periods.

Such expression can be simplified assuming the independence

among different sensing periods, which is verified in particular

when τ is small with respect to Tw.7 Due to the independence

assumption, P FU
TD can be expressed as

P FU
TD = 1−

∏

m∈ΩM

(
1− P {Λm > ξ|TM}

)
(5)

where the inner term P {Λm > ξ|TM} can be expanded simi-

larly to (2) as

P {Λm > ξ|TM} = PD P {Sm|TM}+ PFA (1−P {Sm|TM}) .
(6)

Now, let us denote with PS(m) = P {Sm} the probability

of an overlap between a PU transmission and the mth sensing

interval, and with PM
T = P {TM} the probability of at least one

transmission within the M scans. Considering that Sm ⊂ TM ,

P {Sm|TM} = P {Sm} /P {TM} and the temporal detection

probability (5) can be finally written in closed-form as

P FU
TD = 1−

∏

m∈ΩM

(
1− PD

PS(m)

PM
T

− PFA

(
1−

PS(m)

PM
T

))
.

(7)

6We choose the OR rule because it is the most conservative from the PU
protection perspective [1].

7As shown in Section VI, such approximation gives very good results
compared with simulations.

Considering the high SNR regime, the temporal sensing prob-

ability can be derived from (7) as

P FU
TS = P {SM |TM} = 1−

∏

m∈ΩM

(
1−

PS(m)

PM
T

)
. (8)

According to (3), the false alarm probability is not affected

by the PU temporal behavior, hence considering the OR-based

fusion rule we have

P FU
FA = 1− (1− PFA)

M. (9)

Considering the soft fusion schemes, the hypothesis test ΛSF

for the TST-M depends on the number of overlaps between

the PU transmissions and the sensing intervals, denoted in the

following as K . Thus the temporal detection probability for

ΛSF can be expressed as

P FU
TD = P {ΛSF > ξ|T } =

M∑

k=0

pk P {ΛSF > ξ|K = k} (10)

where ξ is the decision threshold and pk = P {K = k}, as

explained in Section III-B, is related to the temporal sensing

probability. In fact, in the high SNR regime, ΛSF is above the

threshold when K > 0, and thus from (10) we obtain the

corresponding temporal sensing probability P FU
TS =

∑M
k=1 pk.

The false alarm probability for the soft fusion schemes is given

by P FU
FA = P

{
ΛSF > ξ|T

}
. In the next section, we discuss in

detail the case where soft fusion is performed by equal gain

combining (EGC) with energy detection.

III. TEMPORAL DETECTION PROBABILITY WITH NOISE,

FADING AND NON-CONTINUOUS PU TRANSMISSION

The temporal sensing framework described in the previous

section can be used in different practical case studies, by

defining the PU ON-OFF statistics, the detector adopted and

the fading model. Note that these aspects have different effects

on the temporal detection metric. The PU temporal behavior,

indeed, affects the temporal sensing probabilities (PTS, P {S},

and P {T }), while the choice of the detector used and the

fading model impacts PD and PFA. In this section, we consider

the case study in which ED is adopted in presence of a PU

with exponential arrival time.

Let us model the OFF-periods duration ∆n as exponentially

distributed random variables (r.v.s) with mean E {∆n} =
∆̄ = 1/λ, where λ is the vacancy rate. For the ON-periods

we analyze two situations: 1) the constant hold-time case

where the occupancy times τn are deterministic and equal,

i.e., τn = τ ; and 2) the random hold-time case where the

occupancy times τn are exponentially distributed r.v.s with

mean E {τn} = τ̄ = 1/µ, where µ is the occupancy rate.

Such statistical description has been widely adopted to model

spectrum holes such as in [15], [20]–[27], also confirmed by

spectrum occupancy measurements in [27] and by monitored

HSDPA traffic in [28].

Although the temporal sensing analysis can consider, in

principle, any type of detection technique, we focus our

attention on the ED-based spectrum sensing. This choice is

motivated by the fact that ED is the reference detector adopted

in CR literature due to its simplicity and the fact that it does
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not require a priori knowledge of the PU signal characteristics

[1], [4], [5].

After bandpass filtering over a bandwidth W , the received

signal r(t), observed for δt seconds, is down converted and

sampled at frequency W , obtaining Ns = δtW complex

samples {yj}
Ns−1
j=0 .8 Hence, in the following we analyze the

discrete time detection problem

S : yj = nj

S : yj = xj + nj
(11)

with j = 0, . . . , Ns − 1, where {xj}
Ns−1
j=0 are the signal

samples and {nj}
Ns−1
j=0 is a set of independent, identically

distributed (i.i.d.) circularly symmetric complex Gaussian r.v.s

with zero mean and variance 2σ2, representing the additive

white Gaussian noise (AWGN). The test statistic for the ED

is given by [4]

Λ =
1

2σ2Ns

Ns−1∑

j=0

|yj |
2

S

≷
S

ξ (12)

where the SNR in the hypothesis S is defined as ρ =
1/
(
2σ2Ns

)∑Ns−1
j=0 |xj |2, and ξ is the decision threshold.

Considering the AWGN scenario, it is well known that the

test statistic (12) follows a chi squared distribution with 2Ns

degrees of freedom and thus we have [4]9

PD(ρ) = P {Λ > ξ|S} = QNs

(√
2Ns ρ,

√
2Nsξ

)
(13)

PFA = P
{
Λ > ξ|S

}
= Γ̃ (Ns, Nsξ) (14)

where Qα(a, b) =
∫∞

b
uα exp(−(u2 +

a2)/2)Iα−1(au)/a
α−1du is the generalised Marcum

Q function with Iα−1(·) being the modified Bessel

function of first kind with order α − 1, and

Γ̃(a, z) , 1
Γ(a)

∫∞

z
xa−1 exp (−x) dx is the regularized

upper incomplete Gamma function with Γ (·) the Gamma

function. When the PU signal is subject to slow fading, the

SNR can be modelled by its probability density function

(p.d.f.) fρ(·|ρ) with mean value ρ = E {ρ}. Therefore, the

average detection probability can be computed as10

P̃D(ρ) =

∫ ∞

0

PD(h) fρ(h|ρ) dh. (15)

In Section VI we consider the Rayleigh fading case where the

corresponding detection probability can be found in closed-

form in [36, eq. (9)]. Similar expressions for Rice and Nak-

agami fading can be found in [36].

8Without loss of generality we consider δtW integer [4].
9Because of the PU temporal behavior, the hypothesis S does not necessar-

ily imply that the PU transmission is completely overlapped with the sensing
interval. Thus, in general, the energy captured by the ED is a r.v. that depends
on the amount of temporal overlap [32], [33]. However, since our interest
is in finding temporal spectrum holes with good temporal resolution, it is
reasonable to consider δt sufficiently small with respect to the PU transmission
duration. In this case, partial overlap can be neglected and the analysis can be
simplified considering, either total overlap or no overlap, respectively. This
approximation leads to a tractable performance analysis that matches very
well with numerical results.

10The same approach can also be considered to account for shadow fading.

TABLE I
EVALUATION OF PTD FOR TST-nm BASED ON (2a).

TST-nm
const. τ random τ

P {S} (23) (38)

P {T } (24) (39)

PD (13) or (15)

PFA (14)

TABLE II
EVALUATION OF PTD FOR TST-S BASED ON (2a).

TST-S
const. τ random τ

P {S} (26), (29) (40), (42)

P {T } (27), (28), (30) (41), (28), (43)

PD (13) or (15)

PFA (14)

A. Temporal Detection over a Single Scan

The temporal detection probability for the sensing tasks

TST-nm and TST-S can be derived from (2a) inserting the

expressions of the probability of detection corresponding to

the AWGN or fading scenario, i.e. (13) or (15), respectively,

and the specific probabilities P {S} and P {T } related to

the TST studied and the PU transmission statistic. Closed-

form expressions of P {Sn,m} and P {Tn,m} for TST-nm and

expressions for P {Sm} and P {Tm} for TST-S, are given in

Section IV and V for the constant and random ON-period

duration cases, respectively, considering both the transient

phase and the steady-state regime. Tables I and II summarize

the proper equations to be adopted in (2a) for the evaluation

of the temporal detection probability.

B. Temporal Detection over Multiple Scans

In this section, we describe the temporal detection proba-

bility for the TST-M case, considering the OR rule for hard

fusion and the EGC for soft fusion.

When the OR rule is applied, the temporal detection

probability can be computed from (7) using the proper PD

(corresponding to the AWGN or fading case) and the closed-

form expressions of PS(m) and PM
T that are presented in

Section IV and V for the constant and random ON-period

duration case, respectively.11 For convenience, in Table III we

recap the equations to be adopted for TST-M with the OR

rule.

For the soft fusion with EGC, we proceed, similarly to

(11), denoting the received samples in the mth sensing slot

as yj,m = xj,m + nj,m, described by a complex Gaussian

r.v. with mean xj,m and variance 2σ2. Note that in the S
hypothesis, i.e., when the PU transmission is not overlapped

with the sensing interval, we have xj,m = 0 and thus yj,m has

zero mean. With EGC, the decision statistic ΛSF is given by

ΛEGC =
∑

m∈Ωm

Ns∑

j=1

1

2σ2 Ns

|yj,m|2 . (16)

11Note that, adopting (15) in (7), we are implicitly assuming that the
channel fading is constant among the different scans.
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TABLE III
EVALUATION OF P FU

TD FOR THE OR FUSION RULE WITH ED, BASED ON (7).

TST-M for ED-OR
const. τ random τ

P {S} (26), (29) (40), (42)

P {T } (31), (33), (32) (44), (33), (45)

PD (13) or (15)

PFA (14)

TABLE IV
EVALUATION OF P FU

TD FOR THE EGC FUSION RULE WITH ED,
BASED ON (10).

TST-M for ED-EGC
const. τ random τ

P {S} (29) (42)

P {T } (33), (32) (33), (45)

P {ΛSF > ξ|K = k} (17)

Note that (16) is chi squared distributed with 2Ns M degrees

of freedom and non centrality parameter λEGC = Kρ.12

Thus for the ED-EGC strategy in AWGN the probability

P {ΛSF > ξ|K = k} in (10) becomes

P {ΛEGC > ξ|K = k} = QNs M

(√
2Ns K ρ,

√
2Nsξ

)
(17)

where ξ is the decision threshold. Note that, in the steady-state

regime, the probability of overlap among PU transmissions

and sensing intervals is constant ∀m ∈ ΩM, and thus K
follows a binomial distribution. Therefore, we have pk =(
M
k

)
pk (1−p)M−k with p = PS/P

M
T , where the equations for

PS and PM
T can be obtained from Table IV. In case in which

fading is considered, the average probability of detection can

be computed, similarly to (15), averaging (17) with respect to

the p.d.f. of ρ. When the PU is inactive, ΛEGC is a central chi

squared distributed r.v. with 2Ns M degrees of freedom, and

therefore the probability of false alarm can be written as

P FU
FA = Γ̃ (MNs,MNsξ) . (18)

IV. TEMPORAL SENSING PROBABILITY WITH RANDOM

ARRIVAL AND CONSTANT HOLD-TIME

In the previous section we derived the temporal detection

probabilities for TST-mn, TST-S, and TST-M. All the closed-

form expressions obtained require the evaluation of the tem-

poral sensing probabilities which depend on the PU temporal

behavior and periodic sensing parameters. In this section,

we calculate such probabilities when the PU has a temporal

behavior characterized by a constant hold-time τ .

In this case, the nth transmission from the PU occurs at

time tn given by

tn = t0 +

n∑

i=1

∆i + (n− 1)τ, n ∈ N (19)

where t0 is an arbitrary time instant when the CR node starts

to sense the spectrum, and assumed to be zero hereafter,

without loss of generality. Since ∆i are exponentially i.i.d.

with parameter λ, the term Gn =
∑n

i=1 ∆i follows an Erlang

12Here we assume that the SNR, ρ, is constant in the different sensing
intervals.

distribution, denoted hereafter as Gn ∼ Erlang(n, λ), with

p.d.f. [30]

fGn
(x) =

λnxn−1 exp(−λx)

Γ(n)
u(x) (20)

where u(x) is the unit step function, and the gamma function

with integer parameter is Γ(n) = (n− 1)!. The start time for

the nth transmission is then given by tn = Gn + (n − 1)τ ,

and the corresponding p.d.f. is ftn(x) = fGn
(x − (n− 1)τ),

i.e.,

ftn(x) =
λn(x−(n−1)τ)n−1

Γ(n)
e−λ(x−(n−1)τ) u(x−(n−1)τ).

(21)

From (21) the cumulative distribution function (c.d.f.) of tn is

given by

Ftn(x) = γ̄(n, λ(x− (n− 1)τ)) (22)

where γ̄(a, z) , γ(a, z)u(z), and γ(a, z) =
1

Γ(a)

∫ z

0
ta−1 exp(−t)dt is the incomplete gamma function.

A. Probability of Sensing the nth Transmission During the

mth Scan

With a constant ON-period duration τ , the SU senses the

PU in the mth scan if a PU transmission time falls within

the interval [mTw − δt − τ, mTw). Hence, the probability

corresponding to the event Sn,m is P
(n)
S (m) = P {Sn,m} =

P {mTw − δt− τ ≤ tn < mTw}, and can be expressed in

closed-form by (22) as

P
(n)
S (m) = γ̄(n, λ(mTw − (n− 1)τ))

− γ̄(n, λ(mTw − δt− nτ)). (23)

Similarly to (23), the probability that the nth PU transmission

occurs within the mth scan (the event Tn,m) can be written as

P
(n)
T (m) = P {Tn,m} = γ̄(n, λ(mTw − (n− 1)τ))

− γ̄(n, λ((m− 1)Tw − nτ)). (24)

Note that P
(n)
S (m) in (23) and P

(n)
T (m) in (24) are zero when

n ≥ nmax, where nmax = ⌊ mTw/τ − 1 ⌋ is the maximum

number of possible PU transmissions up to the mth scan.13

According to Section II-B, the temporal sensing probability

P
(n)
TS (m) = P {Sn,m} /P {Tn,m} can be written in closed-

form as

P
(n)
TS (m)=

γ̄(n, λ(mTw−(n−1)τ))−γ̄(n, λ(mTw−δt−nτ))

γ̄(n, λ(mTw−(n−1)τ))−γ̄(n, λ((m−1)Tw−nτ))
.

(25)

From the above equation we observe that for continuous

sensing, i.e., as δt approaches Tw, the temporal sensing

probability becomes one, as expected.

13⌊x⌋ stands for the largest integer not greater than x.
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B. Probability of Sensing the PU During a Single Scan

1) Transient phase: The probability PS(m) = P {Sm} =
P {∃tn ∈ [mTw − δt− τ,mTw]} is derived in Appendix-A,

and can be expressed in closed form as

PS(m) = 1−
nmax∑

n=0

λn(mTw − δt− nτ)n

n!
e−λ(mTw−nτ).

(26)

For the derivation of PT(m) = P {Tm} =
P {∃tn ∈ [(m− 1)Tw − τ,mTw]}, for m > 1, we can

adopt the same approach, that leads to the expression

PT(m) = 1−
nmax∑

n=0

λn((m− 1)Tw − nτ)n

n!
e−λ(mTw−nτ)

(27)

while for m = 1 it is simply

PT(1) = P {0 ≤ t1 ≤ Tw} = γ̄ (1, λTw) . (28)

2) Steady-state regime: In the steady-state scenario, the

probability to capture any PU transmission in a sensing

interval, PS, can be derived considering that it can be written

as the sum of two terms: the first one is the probability of

having a transmission within the sensing interval conditioned

to the absence of a transmission at the beginning of the

sensing interval, and the second is the probability of having a

transmission present at the beginning of the sensing interval.

Hence,14

PS = 1− e−λδt λ−1

λ−1 + τ
= 1−

e−λδt

1 + λτ
. (29)

With the same approach, the probability to have any PU

transmission in a scan is

PT = 1−
e−λTw

1 + λτ
. (30)

In Fig. 3 an example of PS(m) as a function of m is

reported. As we can see, (26) matches the simulations and,

after the transient phase, it converges to (29).

C. Temporal Sensing Probability over Multiple Scans

In Section III-B, we derived the temporal detection proba-

bility over multiple scans considering independence between

sensing performed in the M sensing intervals. Considering

the OR fusion rule, to apply (8) it is necessary to adopt (26)

in the transient phase, and to adopt (29) for the steady-state

regime. Denoting with mmin and mmax the minimum and the

maximum indexes in ΩM , respectively, the probability that a

transmission occurs within M scans can be written using the

results obtained in Appendix-A, and is given by

PM
T = P {TM} = P {∃tn ∈ [(mmin − 1)Tw − τ,mmaxTw]}

= 1−
nmax∑

n=0

λn((mmin − 1)Tw − nτ)n

n!
e−λ(mmaxTw−nτ)

(31)

14Note that in the steady-state regime the temporal sensing probabilities are
independent on the particular sensing interval considered, and thus the index
m is omitted.

1 2 3 4 5 6 7 8 9 10
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0.4

0.45

0.5

0.55

0.6

m

P
S
(m

)

constant τ , eq. (26)

steady-state, eq.s (29) and (42)

simulated

random τ , eq. (40)

Fig. 3. Temporal sensing probability PS(m) as a function of m for Tw =
0.5 s, δt = 0.2 s, λ = 0.8 s−1 and τ = τ̄ = 1 s. Comparison between
simulations and the closed-form expressions (26) and (40) is also given.

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

P
F

U
T

S

τ̄ =0.3 s, λ=2 s−1

τ̄ =0.2 s, λ=1 s−1

τ =0.3 s, λ=1 s−1

τ =0.2 s, λ=0.5 s−1

constant τ , from (8) and (26)

random τ , from (8) and (40)

simulated

Fig. 4. Temporal sensing probability for multiple scans, with the OR rule, as
a function of the number of scans considered, M , with δt = 0.1 s, Tw = 1 s.
Comparison between simulations and the closed-form expressions (8) with
(26) and (40) is also given.

for the transient phase, and by

PM
T = 1−

e−λMTw

1 + λτ
(32)

for the steady-state regime. If we consider the first M sensing

periods, (31) reduces to

PM
T = γ̄(1, λMTw). (33)

To prove the validity of the derived temporal sensing

probability, in Fig. 4 we compare theoretical curves obtained

from (8) with (26) and simulations. As can be seen, despite the

approximations introduced, the theoretical probabilities match

very well the simulated curves.

Considering the EGC rule, assuming the steady-state

regime, P FU
TD is given in (10), where p is computed using (29)

for PS and (32) or (33) for PM
T , and the conditional probability

is given by (17).

V. TEMPORAL SENSING PROBABILITY WITH RANDOM

ARRIVAL AND RANDOM HOLD-TIME

In this section we derive the temporal sensing probabilities

for the three TSTs considering an exponentially distributed
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ON-period duration. In this case, the nth PU transmission

occurs at time tn given by

tn =

n∑

i=1

∆i +

n−1∑

i=1

τi = Gn +Hn, n ∈ N (34)

where Hn =
∑n−1

i=1 τi ∼ Erlang(n − 1, µ). Hence, tn is the

sum of two Erlang distributed r.v.s with parameters λ and µ,

respectively.

Using the results derived in [35], the complementary c.d.f.

of tn can be expressed as a linear combination of incomplete

gamma functions as

Qtn(x) = 1− Ftn(x)

=
n∑

p=1

c1p Γ̄ (n− p+1, λx) +
n−1∑

q=1

c2q Γ̄ (n−q, µx)

(35)

where Γ̄(a, b) = 1−γ̄(a, b) is the normalised upper incomplete

Gamma function, and

c1p = (−1)p−1 λp−1µn−1

(µ− λ)n+p−2

(
n+ p− 3

p− 1

)
(36)

c2q = (−1)q−1 λnµq−1

(λ − µ)n+q−1

(
n+ q − 2

q − 1

)
. (37)

A. Probability of Sensing the nth Transmission During the

mth Scan

The probability that the nth transmission falls into the

mth sensing interval can be computed as P
(n)
S (m) =

Eτ{P {(mTw − δt− τ) ≤ tn < mTw}}. From (35) and the

integral expressions derived in Appendix-B, we can express

P
(n)
S (m) in closed-form as in (38).

Similarly to (38), the probability P
(n)
T (m) can be expressed

as in (39). From (38) and (39) we obtain the temporal sensing

probability P
(n)
TS (m) which can be used in (2a) to calculate

P
(n)
TD (m).

B. Probability of Sensing the PU During a Single Scan

1) Transient phase: Similarly to (26) and (27), the prob-

abilities PS(m) and PT(m) can be derived, as detailed in

Appendix-A, as

PS(m) =1− e−λmTw

−
∞∑

n=0

P {tn+1 > mTw, tn < mTw−δt−τ} (40)

PT(m) =1− e−λmTw

−
∞∑

n=0

P {tn+1 > mTw, tn < (m−1)Tw−τ} (41)

that can be expressed in closed-form using (52) and (60).

In practice, the infinite summations in (40) and (41) can

be truncated to a finite number n∗
max, considering that, as

numerical simulations confirm, the arguments rapidly vanish

with n. Note that, for the m = 1 case, PT(m) is given by

(28).

0.4 0.6 0.8 1 1.2 1.4 1.6

0.01

0.1

1

δ
t

[s
]

Tw [s]

n̂ = 1

n̂ = 2

n̂ = 3

n̂ = 4

Fig. 5. Minimum sensing duration δt as a function of Tw for detecting the
nth transmission with PDES

TS
= 0.95. The shaded areas below the curves

indicate the regions where detection requirement, PTS > PDES
TS

, is not
satisfied.

2) Steady-state regime: In the steady-state scenario, it is

possible to derive the sensing probability, PS, and the transmis-

sion probability, PT, following the same approach presented

in Section IV-B, which leads to15

PS = 1−
e−λδt

1 + λτ̄
(42)

PT = 1−
e−λTw

1 + λτ̄
. (43)

In Fig. 3 we can see an example of PS(m) as a function of

m. The figure confirms also that (40) matches the simulated

curve and that after the transient phase it converges to (42).

C. Probability of Detection over Multiple Scans

To apply (8) it is necessary to adopt (40) to derive the

performance in the transient phase, or (42) for the steady-state

regime. Considering the generic set ΩM , similarly to (31) and

(41), the probability P {TM} is given by

PM
T =1− e−λmmaxTw

−
∞∑

n=0

P {tn+1 > mmaxTw, tn < (mmin−1)Tw−τ}

(44)

while considering the first M sensing periods it is given by

(33).

In the steady-state regime, P {TM} can be easily expressed

as

PM
T = 1−

e−λMTw

1 + λτ̄
. (45)

Note that if we consider the first M scans, P {TM} is given

by (33).

Considering the EGC rule, assuming the steady-state

regime, P FU
TD is given in (10), where p is computed using (42)

for PS and (45) or (33) for PM
T , and the conditional probability

is given by (17).

15Note that in the steady-state regime, the two probabilities (42) and (43)
have the same form as (29) and (30) where now τ̄ appears in place of τ .
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P
(n)
S (m) =

∫ ∞

0

Qtn(mTw − δt− τ)
1

τ̄
exp

(
−
τ

τ̄

)
dτ −Qtn(mTw)

=

n∑

p=1

c1p

(
γ̄ (n− p+ 1, λmTw)− γ̄ (n− p+ 1, λ(mTw − δt))

+γ
(
n− p+ 1, λ(mTw − δt)

(
1−

µ

λ

))( λ

λ− µ

)n−p+1

exp(−µ(mTw − δt))

)

+

n−1∑

q=1

c2q

(
γ̄ (n− q, µmTw)− γ̄ (n− q, µ(mTw − δt))

+
(µ(mTw − δt))n−q

(n− q)!
exp(−µ(mTw − δt))

)
. (38)

P
(n)
T (m) =

∫ ∞

0

Qtn((m− 1)Tw − τ)
1

τ̄
exp

(
−
τ

τ̄

)
dτ −Qtn(mTw)

=

n∑

p=1

c1p

(
γ̄ (n− p+ 1, λmTw)− γ̄ (n− p+ 1, λ((m− 1)Tw))

+γ
(
n− p+ 1, λ((m− 1)Tw)

(
1−

µ

λ

))( λ

λ− µ

)n−p+1

exp(−µ((m− 1)Tw))

)

+

n−1∑

q=1

c2q

(
γ̄ (n− q, µmTw)− γ̄ (n− q, µ((m− 1)Tw))

+
(µ((m− 1)Tw))

n−q

(n− q)!
exp(−µ((m− 1)Tw))

)
. (39)

VI. DESIGN STRATEGIES AND RESULTS

In this section we present some design strategies for periodic

sensing based on the derived temporal detection framework.

We start addressing the design of the sensing duration δt and

the sensing period Tw. We then derive the complementary

receiver operating characteristic (C-ROC) curves, and finally

we provide a case study for periodic sensing in which the PU

is represented by a Wi-Fi system.

A. Minimum Sensing Time to Guarantee a given Temporal

Detection Probability

Considering a PU adopting a packet-based transmission,

from the regulatory point of view as well as from the PU

perspective, it is important to quantify or control how many

PU packets are interfered by the SU. For instance, assume that

the PU may tolerate n̂− 1 undetected transmissions, and that

for n ≥ n̂ all transmissions are interfered with a probability

which cannot exceed Pmax
I , named maximum probability of

interference. A simple metric for quantifying the maximum

interference to the PU is the missed detection probability,

i.e. Pmax
I = 1 − PDES

TD where PDES
TD is the minimum desired

probability of detection.16 Then, considering m = 1, and, for

instance, a PU with fixed packet duration, we are interested in

designing the minimum sensing duration δt. If, for example,

16Note that the probability of missed detection is a worst case probability
of interference, derived assuming that the SU transmit whenever it declares
the channel free.

we consider the situation in which the SNR is high, the

temporal detection probability reduces to the temporal sensing

probability (PTD ≈ PTS), hence from (25) it is possible to

derive the following inequality

γ̄(n̂, λ(Tw − δt− n̂τ))

γ̄(n̂, λ(Tw − (n̂− 1)τ))
≤ 1− PDES

TD (46)

which can be inverted to derive17

δt ≥ Tw − n̂τ

+
1

λ
γ̄−1

(
n̂,
(
1− PDES

TD

)
γ̄(n̂, λ(Tw − (n̂− 1)τ))

)
.

(47)

The expression (47) allows the design of δt, given the PU

transmission parameters, λ, τ , and the scanning period Tw

to guarantee PDES
TD . As an example, in Fig. 5 we show the

minimum δt required to satisfy PDES
TD = 0.95 as a function of

Tw for different values of ñ. The shaded areas denote the

regions where the interference probability constraint is not

satisfied. Note that Fig. 5 can be also used for the design of

the sensing scan duration Tw, chosen a particular value of δt.
Similar design strategies can be derived for the random hold-

time case and/or considering the presence of noise through the

corresponding expressions for PTD.

17If γ̄ (a, z) = w, then the inverse lower incomplete gamma function is
defined as z = γ̄−1 (a, w). Note that this inverse expression can be easily
computed using standard mathematical software.
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Fig. 6. Minimum sensing duration δt required to reach a target PDES
TD = 0.9

with τ = 0.3 s and Tw = 1 s for different values of λ.
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Fig. 7. P FU
TD

(dotted lines) and P FU
TS

(dashed lines) as a function of the number
of mini-slots Kms with constant and random PU hold-time τ = τ̄ = 0.2 s,
sensing period Tw = 1 s, sensing duration δt = 0.1 s, and Ns = 84. For
P FU

TD an ED in the presence of AWGN with ρ = 15 dB, and with a decision

threshold set to guarantee a P FU
FA = 0.1, is considered.

The design of the sensing time required can be also per-

formed when multiple scans are considered. In this case, by

using equation (7), the minimum sensing interval duration,

δtmin, can be found as

δtmin = min
{
δt|P FU

TD ≥ PDES
TD

}
. (48)

For example, considering the OR fusion rule, in Fig. 6 we

show the minimum δtmin as a function of the number of scans

M with PDES
TD = 0.9, τ = 0.3 s and Tw = 1 s, for different

values of λ, when τ is constant and ρ → ∞. As can be seen, an

increase of λ, corresponding to a decrease of the OFF-period

duration, requires shorter sensing durations to guarantee the

same performance.

B. Periodic Sensing by means of Mini-slots

Assuming that the time dedicated to sensing for each scan

is d, an interesting aspect to investigate if it is better to adopt

a single sensing interval of duration δt = d or to divide it

into Kms shorter periods, called mini-slots, equally spaced in

the scan period by (Tw − d)/Kms and each with a sensing

window of duration δt = d/Kms. In Fig. 7 we show the
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1
−

P
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)

Fig. 8. Complementary ROC curves for various SNRs ρ in AWGN (con-
tinuous lines) and Rayleigh fading (dotted lines) scenarios, with Tw = 1 s,
δt = 0.1 s, τ̄ = τ = 0.2 s, Ns = 10 and λ = 8 s−1.

P FU
TS relative to Kms mini-slots when the OR rule is applied,

for different values of λ, whit random τ . It is clear that the

adoption of multiple shorter sensing windows within a scan

period provides an higher sensing probability. In the noisy case

we plot P FU
TD which confirms the same behavior. This fact is

explained by the ability of mini-slots to counteract the effect

of non-continuous PU transmission, increasing the chance to

have an overlap between a PU transmission and the sensing

period.

C. Receiver Operating Characteristics for Periodic Sensing

In this section, we show some examples of ROC for tem-

poral detection. We choose in particular to adopt the C-ROC

curves to highlight the probability 1−PTD which, as discussed

above, can be interpreted as a probability of interfering the PU.

Fig. 8 depicts the C-ROC curves varying the SNR for AWGN

and Rayleigh fading scenarios. From the figure we observe

that for high values of ρ the PU temporal behavior dominates

the detection performance, which is poor compared to the

scenario with a continuous PU transmission (i.e. λ → ∞).

This confirms that the performance of periodic sensing are

severely degraded by the PU temporal behavior. For low SNR,

instead, the dependence on λ is smaller, and thus the noise

is the dominant effect in the detection performance. Also

note that the presence of Rayleigh fading results in a strong

decrease in the detection probability. In this case the effects of

fading is dominant with respect to the PU temporal behavior.

Fig. 9 shows the C-ROC curves for multiple scans based on

the OR rule, corresponding to equation (7) and (9), and the

EGC approach described by (17). As expected, the detection

performance improves with increasing M . Note, in particular,

that soft fusion EGC always provides better performance with

respect to the hard fusion based on the OR rule, especially for

low PFA. This result suggests that soft fusion strategies should

be preferred to hard fusion approaches.

In all cases, and for the parameters considered, the perfor-

mance with random and constant hold-time, with τ = τ̄ , are

very similar, indicating a small dependence of the hold-time

statistic on the SU detection performance.
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δt = 0.1 s, Tw = 1 s, and Ns = 10, and ρ = 3 dB have been considered.
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Fig. 10. Complementary ROC curves in AWGN (continuous lines) and
Rayleigh fading (dotted lines) scenarios, with τ̄ = 1ms, ∆̄ = 1/λ = 4.2ms,
Ns = 10, and ρ = 5 dB. The PU parameters adopted are typical for Wi-Fi
signals.

D. Case study: detection of a Wi-Fi signal

As a case study we propose the analysis of periodic sensing

of a Wi-Fi signal considering the TST-S for the first sensing

scan for different choices of δt and Tw. In order to consider

a realistic scenario, we adopt the measured parameter values

presented in [13], [14]. In Fig. 10 we show the C-ROC for the

AWGN and Rayleigh fading cases, considering τ = τ̄ = 1ms

and ∆̄ = 4.2ms, typical of a VoIP application [13]. In [14]

it has been shown that the statistic of the idle time noticeably

depends on the amount of traffic, which also impacts the tem-

poral detection probability. In Fig. 11 we show the detection

performance considering ∆̄ = 2.45, 4.2 and 10ms, which

corresponds to the traffic scenarios with 100, 75 and 25 pkts/s

[14].

A second aspect investigated is the evaluation of the latency

of periodic sensing, defined as the minimum number of PU

transmissions for which the probability of interference is below

Pmax
I . This number, denoted with ñ, is given by

ñ , argmin
n

{
PI = 1−

P
(n)
S (1)

P
(n)
T (1)

∣∣∣∣∣ PI ≤ Pmax
I

}
. (49)
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Fig. 11. Complementary ROC curves Rayleigh fading scenarios, with δt =
100µs, τ̄ = 1ms, Ns = 10, and ρ = 5 dB. The PU parameters adopted are
typical for Wi-Fi signals and VoIP-like traffic.

TABLE V
EXAMPLES OF ñ AND R FOR THE WI-FI SIGNAL DETECTION CONSIDERED

IN FIG. 10. P DES
TD = 0.9 AND P DES

FA
= 0.1.

δt = 50 µs δt = 100µs δt = 100µs
Tw = 5ms Tw = 5 ms Tw = 10ms

ñ 4 4 8
R 0.696 0.676 0.752

Note that when n < ñ, the constraint on PI is not guaranteed,

and thus the sensing process requires at least ñ transmissions

to provide the required performance, i.e., PTD > PDES
TD .

Finally, it is interesting to calculate simple metrics for quan-

tifying the impact of periodic sensing on the performance of

the SU, such as, for example, the maximum SU rate. We adopt,

in particular, the maximum normalised achievable throughput,

considered in [20], [37], [38], defined as R = Tw−δt
Tw

PTX,

where PTX is the maximum SU transmission probability. In

accordance with [37], we assume that the SU successfully

transmits every time the sensing task decides for the absence

of the PU, and thus we have

R =
Tw − δt

Tw

(1− PTD) . (50)

In Table V we report some numerical examples of ñ and R,

corresponding to the scenario considered in Fig. 10. As can

be seen, an increase in Tw from 5ms to 10ms corresponds to

an increase in the latency and in the maximum SU rate. These

results reveal the trade-off between the PU protection and the

SU throughput.

VII. CONCLUSIONS

In this paper we presented a general analytical framework

for the study of the detection performance in CR contexts, tak-

ing into account, in particular, the presence of non-continuous

PU transmissions and the adoption of periodic spectrum sens-

ing. The analysis allows to study the sensing task in its entirety,

but at the same time is able to separate the effects of detection

impairments, such as noise, fading, and non-continuous PU

transmissions, and to show their respective impact on the

overall performance. Numerical results prove that the PU

temporal behavior has a very strong impact on detection
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performance. Moreover, the relationship among arrival rate,

occupancy duration, sensing period and sensing duration are

revealed. The analysis is general enough to describe several

practical scenarios considering both scan-by-scan sensing as

well as sensing based on multiple scans. As a case study, the

energy detector was chosen to derive numerical results. Based

on the analysis developed, we then proposed some design

strategies to set up periodic sensing parameters in different

scenarios.

APPENDIX A

Constant τ case: computation of P {∃ tn ∈ [a, b]}

With the notation P {∃ tn ∈ [a, b]} we indicate the proba-

bility that at least one transmission, represented by its starting

time tn, ∀n ∈ N, falls in the interval (a, b). This probability

is computed in this section considering that tn is distributed

as in (21), where a and b are constants. Note that, given the

definition in (19), we can write

P {∃ tn ∈ [a, b]} = 1−P {6∃ tn ∈ [a, b]}

= 1−P

{
t1 > b or

nmax⋃

n=1

{tn+1 > b, tn < a}

}

= 1−P {t1 > b}−
nmax∑

n=1

P {tn+1 > b, tn < a}

(51)

where the last equality is given by the union of mutually

exclusive events and nmax = ⌊b/τ − 1⌋. Considering that

tn+1 = tn + ∆n+1 + τ , we have P {tn+1 > b, tn < a} =
P {∆n+1 > b− τ − tn, tn < a}, and, given that tn and ∆n+1

are independent r.v.s, we can write

P {∆n+1 > b−τ−tn, tn < a}

=

∫

tn<a

P {∆n+1 > b−τ− t} ftn(t)dt

=

∫

tn<a

e−λ(b−τ−t)ftn(t)dt

=
λn (a−(n−1)τ)n

n!
e−λ(b−nτ). (52)

Considering that

P {t1 > b} = exp(−λb) (53)

we can express (51) as

P {∃tn ∈ [a, b]} = 1−
nmax∑

n=0

λn (a− (n− 1)τ)
n

n!
e−λ(b−nτ).

(54)

Random τ case: computation of P {∃ tn ∈ [a− τ, b]}.

For the random hold time τ case, in this section we

compute the probability P {∃ tn ∈ [a− τ, b]} where a and b
are constants, and tn is defined in (34). Following the same

approach used in (51) we can write

P {∃ tn ∈ [a−τ, b]} =1− P {t1 > b}

−
∞∑

n=1

P {tn+1 > b, tn < a−τ} . (55)

Defining θn = tn + τ we obtain P {tn+1 > b, tn < a− τ} =
P {θn +∆n+1 > b, θn < a} and thus, given that θn and ∆n+1

are independent r.v.s, we can write

P {tn+1 > b, tn < a− τ}

= P {∆n+1 > b−θn, θn < a}

=

∫

ξ<a

P {∆n+1 > b−x} fθn(x)dx

=

∫

ξ<a

e−λ(b−x)fθn(x)dx. (56)

The p.d.f. of θn can be obtained from the complementary c.d.f.

expression given in [35] as

fθn(x) =

n∑

i=1

c̃1i
xn−i e−λx

Γ(n− i+ 1)
u(x)

+
n∑

j=1

c̃2j
xn−j e−µx

Γ(n− j + 1)
u(x) (57)

c̃1i = (−1)i−1

(
i+ n− 2

i− 1

)
λnµn

(µ− λ)n+i−1
(58)

c̃2j = (−1)j−1

(
j + n− 2

j − 1

)
λnµn

(λ− µ)n+j−1
(59)

and therefore we derive

P {tn+1 > b, tn < a−τ} =e−λb

n∑

i=1

c̃1i
an−i+1

(n−i+1)!

+ c̃2i
γ̄(n−i+1, (µ−λ)a)

(µ−λ)n−i+1
. (60)

The probability P {∃tn ∈ [a− τ, b]} can be thus computed

using (55) using (53) and (60).

APPENDIX B

In this section we provide the solutions of two integral

forms useful for computation of the probabilities in Section V.

We consider in particular integrals in the form
∫∞

0
γ̄(n, a +

bτ)fτ (τ)dτ with n ∈ N, a, b, µ ∈ R, a, b, µ > 0 and b > µ.

Considering the case in which fτ (τ) = µ exp(−µτ), for τ ≥ 0
and zero otherwise, solving by parts we obtain
∫ ∞

0

γ̄(n, a− bτ)µ exp(−µτ)dτ

=
µ

b
exp

(
−
µ

b
a
)∫ a

0

γ̄(n, x) exp
(µ
b
x
)
dx

= γ̄(n, a)−γ
(
n, a

(
1−

µ

b

))( b

b−µ

)n
exp

(
−
µ

b
a
)
.

(61)

Considering the case in which fτ (τ) = b exp(−bτ), for τ ≥ 0
and zero otherwise, we get the form

∫ ∞

0

γ̄(n, a−bτ) b exp(−bτ)dτ

= exp (−a)

∫ a

0

γ̄(n, x) exp (x) dx

= γ̄(n, a)−
an

n!
exp (−a). (62)
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