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Abstract

A critical point in the analysis of ground displacement time series, as those recorded by space
geodetic techniques, is the development of data driven methods that allow the different sources of
deformation to be discerned and characterized in the space and time domains. Multivariate statistic
includes several approaches that can be considered as a part of data-driven methods. A widely used
technique is the Principal Component Analysis (PCA), which allows us to reduce the dimensionali-
ty of the data space while maintaining most of the variance of the dataset explained. However, PCA
does not perform well in finding the solution to the so-called Blind Source Separation (BSS) prob-
lem, i.e. in recovering and separating the original sources that generates the observed data. This is
mainly due to the fact that PCA minimizes the misfit calculated using a L2 norm (X?), looking for a
new Euclidean space where the projected data are uncorrelated. The Independent Component Anal-
ysis (ICA) is a popular technique adopted to approach the BSS problem. However, the independ-
ence condition is not easy to impose, and it is often necessary to introduce some approximations. To
work around this problem, we test the use of a modified variational bayesian ICA (vbICA) method
to recover the multiple sources of ground deformation even in the presence of missing data. The
vbICA method models the probability density function (pdf) of each source signal using a mix of
Gaussian distributions, allowing for more flexibility in the description of the pdf of the sources with
respect to standard ICA, and giving a more reliable estimate of them. Here we present its applica-
tion to synthetic GPS position time series, generated by simulating deformation near an active fault,
including inter-seismic, co-seismic, and post-seismic signals, plus seasonal signals and noise, and
an additional time dependent volcanic source. We evaluate the ability of the PCA and ICA decom-
position techniques in explaining the data and in recovering the original (known) sources. Using the
same number of components, we find that the vbICA method fits the data almost as well as a PCA
method, since the X increase is less than 10% the value calculated using a PCA decomposition. Un-
like PCA, the vbICA algorithm is found to correctly separates the sources if the correlation of the

dataset is low (<0.67) and the geodetic network is sufficiently dense (10 ¢GPS stations within a box
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of side equal to two times the locking depth of a fault where an earthquake of My > 6 occurred). We
also provide a cookbook for the use of the vbICA algorithm in analyses of position time series for

tectonic and non tectonic applications.

Keywords: Time series analysis, Transient deformation, Seismic cycle, Global Positioning
System (GPS), Variational Bayesian Independent Component Analysis (ICA, vbICA), Principal

Component Analysis (PCA).

1 - Introduction

Often Earth scientists try to increase the knowledge about a specific process just increasing
the amount of data collected. Nevertheless, the extraction of the most significant information from a
huge and messy data set can be not trivial. Most of time, huge data sets contain the evolution of a
certain observable w.r.t. time, arranged in the form of time series. This is true for geodetic meas-
urements of crustal deformation. In the last decade the number of space geodetic data available for
studying Earth's surface dynamics grew remarkably, due to the increase of Global Navigation Satel-
lite System (GNSS) networks and the availability of new Synthetic Aperture Radar (SAR) observa-
tions. In particular, three fundamental aspects improved: the spatial coverage, the temporal cover-
age, and the accuracy of the measurements. The ability to detect ground displacements with accura-
cy down to the millimeter level enables a better understanding of deformations associated to volcan-
ic processes (e.g., Owen et al., 2000), as well as a better characterization of the different processes
occurring at active fault zones, including a better estimate of the inter-seismic linear velocities, tec-
tonic strain loading, and fault movements (slips) during the different phases of the earthquake cycle.
Examples of tectonic deformation events are co-seismic and post-seismic slip (e.g., Johanson et al.,
2006, Perfettini et al., 2010), Slow Slip Events (SSE), i.e. slip events not detected by seismometers
and having a much longer duration than ordinary earthquakes of comparable seismic moment, and

pre-seismic slip events (e.g., Heki et al., 1997; Ito et al., 2013).
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Post-seismic slip, SSE, and pre-seismic slip events are all examples of transient deformations.
In general, a transient deformation signal is “a nonperiodic, nonsecular accumulation of strain in the
crust” (Riel et al., 2014), and its origin can be tectonic (e.g., post-seismic and SSE deformations) as
well as non-tectonic (e.g., tidal loading, hydrological loading, anthropogenic processes). The detec-
tion and characterization of transient events on faults is a fundamental task of tectonic geodesy, with
important implications for the evaluation of the seismic hazard, and several approaches have been
developed in recent times. Lohman and Murray (2013), for example, described the results of some
of these different methods, ranging from the visual inspection to more refined image processing
techniques, Principal Component Analysis (PCA), Kalman filtering with spatial basis functions,
space-time correlations, and so on, which have been applied in the framework of the SCEC blind

transient detection project (http://collaborate.scec.org/transient, last access June 9, 2015).

We can classify the methods developed for the analysis of ground displacement time series
data in two main categories. The first one consists in determining the parameters of a pre-
determined model assumed to explain the data, where the pre-determined model is made up of ana-
lytic functions expressing a presumed contribution to the observed temporal evolution. A linear
combination of these different functions results in the final model of the time series. In general, the
most commonly used model considers at least the following contributions: a linear (secular) trend,
cyclic and seasonal signals, and offsets (including instrumental and co-seismic offsets). It is also
possible to add some other functional forms in order to describe additional transient signals (e.g.,
exponential or logarithmic functions in order to describe the post-seismic decay). A clear advantage
of this approach is that each contribution is associated to a given (known) physical process. On the
other hand, we are mostly interested in understanding what is not already known, i.e. those signals
for which we do not have any well established pre-determined model. We can classify as model-
based those techniques that rely on the estimate of the best parameters of a given dictionary of func-
tions. Riel et al. (2014), for example, have proposed to use a dictionary of non-orthogonal functions

to mimic the ground displacements, and implemented an automatic routine in order to detect the
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dominant timescales and onset times of transient signals, i.e. signals that are not explained with the
basic model described above (i.e., linear + cyclic + offsets). The availability of a wide dictionary
allowed them to reconstruct transient signals of different shapes. Considering the time series one-
by-one, the temporal correlated colored noise causes several false detection throughout the time se-

ries. In order to work around this problem they introduced a spatial sparsity weighting approach.

The second method for the analysis of ground displacement time series, which also provides
an alternative way to mitigate the temporal correlated noise issue, consists in multivariate statistical
techniques, which consistently exploits the information contained in data recorded by a network of
sensors. This second main category of time series analysis encompasses a wide spectrum of diftfer-
ent methods, among which the most popular one is the PCA. This technique has been used for the
dimensionality reduction problem in order to extract the most relevant part of the data (relevance
depends on the specific application). Such a reduction consists in projecting the data onto a new co-
ordinate system, given by the Principal Components (PCs). The new reference system is linear, and
the new axes (i.e., the PCs) are orthogonal. This projection allows an easier interpretation of even a
huge amount of data in terms of few components. The PCA technique has been widely applied in
geodesy, both to filter common mode noise in GPS networks (e.g., Dong et al., 2006) and to detect
regional tectonic signals (e.g., Kositsky and Avouac, 2010; Ji and Herring, 2011). The PCA uses
only statistics up to the second moment, i.e. the variance, diagonalizing the covariance matrix of the
data in order to decorrelate the original dataset. This implies that the assumption underlying PCA is
that the data projected onto the components are normally distributed. Let us suppose that the data
are the result of a mix of different ongoing processes. In signal processing theory each process is
referred to as a source signal, and the observed time series are the sensor signals. This means that
the sensor outputs consist of a mix of the source signals. Figure 1 shows the pdf distributions for
some of the sources most commonly present in GPS time series, such as a linear trend, an annual
signal, and a post-seismic signal. Clearly, the pdf for these sources are not Gaussian, preventing a

proper representation via a single PC. Then, in the case of a mix of such sources, the PCs represent
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only a combination of the true physical sources beneath the observed data. In other words, in this

case the PCs do not have any physical meaning if individually taken.

To make possible a physical interpretation of the components, it becomes of fundamental im-
portance to find out what the original source signals are, making the fewest (and the most reasona-
ble) number of assumptions as possible. This is the goal of the Blind Source Separation (BSS) prob-
lem. One of the most popular approaches to solve the BSS is the Independent Component Analysis
(ICA). This multivariate technique still remains in the field of linear decompositions. However, the
data are projected onto a system of coordinates where each component is no longer constrained to
be orthogonal to another one. In other words, the Independent Components (ICs) constitute a non-
orthogonal basis for this reference system. Only few applications of ICA techniques to geodetic data
have been presented so far in the literature. For example, Bottiglieri et al. (2007) have applied the
FastICA algorithm (Hyvérinen and Oja 1997) to a cGPS network located in the Neapoletan volcanic
area. Forootan and Kusche (2012, 2013) have applied a modification of the JADE algorithm (Car-
doso and Soulomiac, 1993) to the Gravity Recovery and Climate Experiment (GRACE) data. They
have shown that rotating the experimental orthogonal functions perfectly separates an unknown
mixture of trend and sinusoidal signals present in the data, provided that the length of the dataset is
infinite. However, as previously said, we are mostly interested in detecting and characterizing also
transient signals in geodetic time series (e.g., Lohman and Murray, 2013 and references therein). If
pdfs of transient signals are non-unimodal (as in Figure 1), then classical ICA algorithms do not
always perform an optimal decomposition (e.g., Choudrey, 2002, Section 2.4 and references there-
in). In those cases Choudrey (2002) has shown that the variational bayesian ICA (vbICA) is a more

flexible method to solve the BSS problem.

In this work we apply the vbICA approach to synthetic position time series. In particular, the
original approach is suitably modified in order to deal with missing data in time series. We simulate
position time series from a GPS network recording in proximity of an active fault and a volcanic

source. All the tests are performed using the so-called static approach, i.e. assuming that the mix of
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different ongoing processes (or source signals) is independent of time. In other words the mix is
supposed to be instantaneous and the sources are supposed to be fixed in space, i.e. they are not
moving from their starting position. In general, this could be not the case, but it is still a good ap-
proximation for the geophysical scenarios investigated here. Owing to its mathematical complexity,
the moving sources BSS problem is still under investigation, and facing it is beyond the goals of the
present work. In the following we present a summary of the theory behind the vbICA approach
(Sections 2, 3, and 4), we describe the way we generated synthetic data (Section 5), and the results
of the analysis of synthetic data with vbICA and other more popular multivariate statistical tech-

niques (Section 6).

2 — Principle of ICA

Let us consider a network of N continuous GPS stations, for which we have daily positions at
each station. Since GPS measurements are three-dimensional, for each station we have 3 time se-
ries: for the east, north, and vertical components. If M = 3N is the total number of time series, and 7'

is the total number of recorded epochs, the data matrix corresponding to the position of the GPS sta-

xll s xlT
Xuxr =| : (D
le s xMT

where x;; is the position of the time series j at epoch 7, withj =1, ..., Mand t =1, ..., T. In the

tions is:

framework of multivariate statistical techniques the set of data collected by a sensor at different
times corresponds to a sample that describes a random variable (rv) associated to the specific time
series. This means that the matrix X corresponds to a vector of M rvs, described by the samples of

the M time series.

Suppose that the data are generated by few sources (L < M) and that linearly combining these
few sources we can reconstruct the observed data, and assume that the processes related to the dif-

ferent sources can be studied separately. This means that we assume that the processes are mutually

7 of 35



[
O W O Joy Ui W

YO OO OYO Ul U1 U1 U1 U1 U1 U1 OTOT Ol DD DD WWWWWWWWWWNNNNNNDNNONDNNNMNNNDMNNNNNRRRERRERRRRRE
GO WNRPFPOWO-JOHUPE WNEFPFOWO-JOHOU WNEFEFOWO IO WNRE OWO-JIOU s WNE O WOOJo O dxs W -

Gualandi et al., Blind Source Separation problem in GPS time series

independent. Finally, let us suppose that some Gaussian noise is perturbing the measurements.

These assumptions can be summarized as follows:

Xyxt = AmxrSpxr + Nyxr (2)

where A is called mixing matrix, S source matrix, and N noise matrix. Each row of S contains the
temporal evolution associated to a given source, and the sources are statistically independent one
from the other. This corresponds to describe the M observed rvs using a linear combination of only
L variables, whose pdfs describe the temporal evolution associated to each row of S. For the inde-

pendence among the sources the joint pdf of the L rvs is necessarily factorized as:

L
pGsir-rs) = | [p(s0 G)
i=1
where p(s;) are the pdfs of each source s, with i = 1, ..., L . In order to identify S under this con-

straint, two possible strategies can be pursued. The first methodology is called mapping approach: it
looks for a function Y: RM — RI that performs a projection from the M-dimensional data space to
the L-dimensional source space. A second methodology is the modeling approach: it looks for a
function Y: R — RM that allows the data to be reproduced using a generative model. The mapping
approach is the first that has been developed, and it is the most commonly used (e.g., Comon, 1994;
Hyvirinen and Oja, 1997; Cardoso and Souloumiac, 1993). Different algorithms have been pro-
posed, which basically build a contrast function to be minimized. Such a contrast function expresses
how far from being independent are the sources, i.e. how far the right hand side of equation (3) is
from the left hand side. Since the actual sources are unknown, some approximations are needed.
The approximations usually involve 4" order cumulants and are based on the definition of mutual
information or negentropy (e.g., Comon, 1994; FastICA by Hyvirinen and Oja, 1997). The model-
ing approach instead creates a generative model, and looks for the model parameters that allow the

data to be better explained. The contrast function to be maximized is the likelihood or, in a bayesian
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framework, the posterior pdf of the parameters. Roberts and Everson (2001) have shown that a gen-
erative model for all the possible mapping procedures exists. Here we use the generative model ap-

proach, and we use the notation of Choudrey (2002).

In order to take into account missing data, which is a common problem in GPS time series,
we have modified the variational bayesian ICA (vbICA) code of Choudrey (2002)
(http://www.robots.ox.ac.uk/~parg/projects/ica/riz/code.html, last access June 10, 2015) following
Chan et al. (2003). The modifications consist in applying a mask of 0 (missing) and 1 (recorded) to
the data and to the formulas used to update the parameters of the generative model. Here we present
a short overview of the main concepts, and for more details see Section S1 of the Supplementary

material.
3 — Description of vbICA

A generative model 91t is characterized by some observed variables (X), some hidden or latent
variables (H), some hidden parameters (@), and the mutual relationships between all these quanti-
ties. The observations and the hidden variables are quantities identified with the “real world”. In
order to have the model working, some parameters exist and their distributions are modeled using
further parameters (called hyper-parameters). Both the parameters and the hidden variables are un-
known, and they are indicated as “weights”, W = {H, ®}. The prior pdf of the weights, given a
model 91, is indicated as p(W|9I). The goal of a generative model is to find the best weights in or-
der to explain the observations and match the a priori knowledge, embodied in the particular struc-
ture of the model 91 and the hyper-parameter values of the prior pdfs. In a bayesian framework,
given a model 91 and the observed data X, maximizing the posterior pdf over weights W given the

data X is the best choice for W:

p(X|W,90p(W|9I0)
p(X]90)

p(WIX, o) = (4)

where the denominator is called the evidence for 9It and is expressed by:

9 0f 35
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p(X|90) = [ p(X|W,910)p(W|9I)dW (5)

In practice, the computation of the integral in equation 5 is intractable in most of the cases,
since it has to be calculated in the whole weight space, and also in this case approximations are
needed in order to evaluate it. Choudrey (2002) proposed a variational approximation, which allows
us to use the Negative Free Energy (NFE) as a contrast function to be maximized in order to find an
approximating posterior pdf for the weights (p'(W|91)) such that the divergence between the true
(p(W]X,910)) and the approximate posteriors is minimized. As shown in the Supplementary Material,

the NFE can be expressed as:

NFE[X] = (In(p(X, W)))p:w) + H[W] (6)

where the dependence on 91 is dropped for conciseness, <- >, w) is the expected value given the pdf
p'(W), and H[W] is the entropy of p'(W). In order to apply the variational approximation it is thus
necessary to choose a particular form for the approximating pdf of the weights, p'(W). The most
common restriction on p'(W) is that it factorizes into [T, p’(w;) for some partition {wi, ..., wn}
of W (e.g., Ormerod and Wand, 2010). Each weight w; is a rv that can be described by a given dis-

tribution, governed by some hyper-parameters, or by other rvs.

For the particular case of the BSS problem, we want to find those parameters (i.e., those
weights W) that can explain the data X under the framework of linear combination of independent
source signals. The vbICA approach makes use of the following partition: W = {A, S, A, q, 0},
where A are the rvs describing the mixing matrix, A are the rvs describing the precision (i.e., the
inverse of the variance) associated to the noise, S are the rvs describing the sources. Each of these
rvs can be described by a given distribution or by other rvs. In particular, each source s;is expressed
via a mix of m; Gaussian distributions, with i =1, ..., L. Using ¢, = 1, 2, ..., m; as an indicator varia-
ble expressing which Gaussian component of the i-th source is chosen for generating s;, the com-

plete collection of all possible choices for ¢, i = 1, 2, ..., L (source states), is denoted as q =
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{q, > Qm}. With m = 5, m;. The mix for the i-th source is described by the rvs 0; = {mi, pi, Bi}.
where i is a vector with m; components containing the probabilities that the gi~th Gaussian with

mean W; ,. and precision ;.. is chosen for explaining the source s;.
l:ql_ lqu

The independence enforced by the factorization [T, p’(w;) allows us to use an Expectation-
Maximization algorithm in order to solve for the NFE maximization problem. At the same time the
constraint (3) is automatically fulfilled, since the M observed time series are considered generated
by mixing L independent source signals. It is possible to rigorously derive the updating equations
(also called learning rules) for all the involved weights. These equations are extensively described
in Chapter 5, and Appendixes B and C of Choudrey (2002). In section S1 of the Supplementary ma-
terial we report the learning rules with the modifications we have introduced in order to deal with

missing data, following Chan et al. (2003) (see equations from S17 to S39).

The choice of the priors plays a major role in the determination of the final result, and this
step is the only one where some a priori choice is required by users in running the vbICA method in
time series analysis. In all the case studies we use starting values of the hyper-parameters that are
rather loose, in order to let as much as possible the data to reveal their intrinsic structure. For more
details on the selection of the pdfs governing the rvs involved and the prior parameters, see Section

S1 of the Supplementary material.
4 — Operational differences between PCA and vbICA

Since PCA is a widely used technique in the analysis of geodetic time series, here we aim at
performing some comparison between the PCA and vbICA algorithms in extracting signal of inter-
est for geophysical studies. In this work we use the PCA technique incorporated in the PCA-based
Inversion Method software (PCAIM, Kositsky and Avouac, 2010), which exploits the Srebro and
Jaakkola (2003) decomposition algorithm, allowing the user to take into account missing data while
performing the decomposition of the data matrix. In order to compare the PCA and ICA algorithms,
it is necessary to assume a common normalization for the PCA eigenvectors and the ICA sources. It

is also necessary to impose some constraints in order to have a unique PCA and ICA (e.g., Comon,
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1994). A common approach used to implement the PCA decomposition consists in the Singular Val-
ue Decomposition (SVD), where the data matrix X is decomposed in the matrices U, X, and V, as X
= U X V!, where U and V are unitary matrices, while X is diagonal. Since it is always possible to
decompose a matrix in a unit column norm matrix and a diagonal matrix, in order to compare the

ICA to the SVD decomposition we rewrite the ICA formulation as follows:

Xica = AS+ N = UjcaZa 1 Zs,., Vica + N = UicaZicaVica + N @)

where the columns of Uica and Vica are unit norm columns, but they are not orthogonal, and Xica is
a diagonal matrix. It is worth noting that, differently from PCA, ICA does not organize into a diag-
onal matrix the variances of the dataset, and thus we can not use a criterion based on a threshold of
explained variance in order to select the most appropriate number of components to retain, as usual-
ly done for a PCA. To this aim, the bayesian framework allows us to use the Automatic Relevance
Determination (ARD) method (e.g., MacKay, 1994). A strong confidence in the starting model
(strong priors) implies a similarity between the posteriors and the priors. Instead, under weak priors
the data play the most important role in guiding the learning of the posterior parameters, and an in-
creasing number of components is used to fit (or over-fit) the data. The ARD method exploits the
fact that each of the L columns of the mixing matrix is associated with one of the L sources. Instead
of assigning a different precision to each element of the mixing matrix, let us associate only one
precision value a; , withi=1, ..., L, to each column. Thus the mixing matrix depends on the set of
parameters o = {ay, ..., &y, }, which defines how strong is the assumption that the mean value of the
columns of the mixing matrix is zero. In other words, a certain o, defines how relevant is the source
i for the explanation of the data. A large value corresponds to a posterior over mixing matrix column
i dominated by the prior density, effectively setting the elements of column i to zero. This will result
in heavy suppression of the i-th source signal for the data explanation. By monitoring the variance
of each source signal - or, equivalently, the values of o, - the most likely number of sources support-

ed by the observation data can be determined (Choudrey, 2002). In this work, in order to determine
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the number of components to retain, we directly compare the variances associated to the posterior of
each column i, and if the maximum variance is more than 10 times bigger than the smallest one, we

consider the source associated with the latter as noise, and discard the last component.

5 — Synthetic data generation

In order to validate the algorithm described in Section 3, we perform tests on synthetic time
series, realized in order to simulate continuous GPS (cGPS) observations, with the goal of evaluat-
ing the ability of the algorithm to retrieve sources that are known a priori. In order to generate the
¢GPS time series datasets, we create some source signals (S), then we perform a specific linear
combination of the sources (i.e., we use a predetermined mixing matrix A), and finally we add some
noise (N).

We aim to simulate daily ground displacement data around an active fault or near a volcanic
region. The time spanned for the analysis is 5 years, and the number of ¢GPS stations is fixed to 20
with variable geometries of the network with respect to the fault, or volcanic, source. The data ma-
trix is Xuxr = Xeox1827 (considering also leap years). As a reference epoch we assume the starting
time Tswure = 0. All the data of the epochs that follow 7 are expressed in mm and estimate the dis-
placement along east, north, and vertical directions relative to the first epoch. The simulation of the
seismic cycle is performed considering only one planar fault as the main source of the tectonic de-
formation, which is modeled using a thrust fault simplified by a planar dislocation in an elastic and
homogeneous half space (0.25 Poisson modulus). A rigidity modulus p = 30 GPa is used to estimate
the equivalent magnitude of the final distribution of slip on the fault plane. By taking the fault ge-
ometry as fixed, we vary the area of the fault undergoing slip during different phases of the earth-
quake cycle, as well as the value of slip, with the goal of simulating different kinematic settings
with different deformation rates at play. The volcanic activity is simulated using an inflating and

deflating Mogi source, i.e. the deformation at the surface is computed from the formula of Anderson
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(1936) and Mogi (1958), which consider a hydrostatic pressure inside a sphere having assigned ra-

dius and center depth, and embedded in a homogeneous, semi-infinite elastic body.
The tests are performed moditying two different conditions:

1) source intensities (signal-to-noise ratio, SNR, and signal-to-signal ratio, SSR, the latter be-
ing defined, in analogy with the SNR, as the ratio between the power of one signal and the power of

a second signal; for more details, see section S2 of the Supplementary material).
2) network quality (sensor location w.r.t. the fault plane, and percentage of missing data);

It is worth noting that point 1) depends only on the sources, while point 2) relies only on the sen-

SOrs.

5.1 — Description of the source signals

By using a linear function, a Heaviside function, and a logarithmic function as sources (de-
tailed in Section S2 of the Supplementary Material) we mean to simulate the 1) inter-seismic, 2) co-
seismic, and 3) post-seismic stages of the seismic cycle. Commonly, the (secular) linear trend ob-
served in GPS time series is explained as due to long term, inter-seismic, relative motion of crustal
blocks. The differences in trends (i.e., velocities) among sites, e.g. across a fault, are due to inter-
seismic deformation and long-term slip in the deep portion of the fault plane. In this simplified
model of the inter-seismic stage, the fault slips aseismically beneath a certain depth (e.g., Segall,
2010), defined as locking depth. In its shallow, brittle portion the fault is locked during the inter-
seismic stage. Since we are simulating daily data it is not possible to see the evolution of the co-
seismic rupture, and what is recorded is just a jump from the position before and after the earth-
quake, here modeled as an Heaviside step function. The use of a logarithmic function to represent
the post-seismic process is less obvious than the model of co-seismic signals. The post-seismic de-
formation, in fact, can be driven by different processes, each of which following a characteristic
evolution with time (e.g. Barbot and Fialko, 2010, and references therein). Here we decide to model
afterslip following Marone at al. (1991), i.e. adopting a logarithmic function, and in particular as-

suming a constant decay time of 1 day. It is worth noting that this choice is not critical for the goal
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of this work, since the algorithm does not take advantage of any particular choice of the model of
the transient signal since it does not impose any further constraint on the shape of the recovered
source function than its a priori knowledge.

We test three scenarios relative to the intensity of the tectonic signals, which differ in the
amount and distribution of slip on the fault plane during the co- and post-seismic stages:

1) My = 6.85, # patches along strike = 15, # patches along dip = 9, slip®® = 400 mm;

MyP* = 6.57, # patches along strike = 15, # patches along dip = 7, slip?® = 200 mm;

2) My = 6.29, # patches along strike = 5, # patches along dip = 4, slip® = 400 mm;

M = 6.09, # patches along strike = 5, # patches along dip = 3+5, slip?™ = 100 mm;

3) My = 5.94, # patches along strike = 3, # patches along dip = 4, slip® = 200 mm;

MyP* = 5.80, # patches along strike = 3, # patches along dip = 3+5, slip” = 60 mm;
where slip® (slip?) is the constant value of co-seismic (post-seismic) slip on mentioned patches,
which are located along the fault plane as shown in Figure 2. The size of each patch is ~3.1 km
along strike and ~3.7 km along depth. In the scenarios number 2) and 3) the post-seismic slip occurs
both below and above the region of co-seismic slip. In all the configurations some regions of co-
seismic and post-seismic slip overlap (see Figure 2). For the deep creeping section we use three dif-
ferent inter-seismic velocity scenarios: 2, 12, and 60 mm/yr, in order to span typical conditions of
slow, intermediate, and fast deformation rates. We calculate the surface displacement resulting from
fault slip using the Green's function computed from the solutions of Okada (1985).

We add also a seasonal signal characterized by a sinusoidal temporal evolution with a 1 yr pe-
riod and a spatial Gaussian distribution, centered in the SW corner of the region considered (Figure
4). This can simulate, for example, the effect of a water reservoir located near the SW corner of re-
gion, where the signal amplitude is maximum (e.g., Argus et al., 2014).

Finally, in order to simulate a volcano-tectonic context, or the occurrence of a transient de-

formation superimposed on a post-seismic deformation, we use a Mogi source located at 5 km
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depth, NW w.r.t. the fault (40 km West and 60 km North the surface projection of the fault top cen-
ter). We use a linear combination of arctangent functions to reproduce F(7), the time-dependent
change of volume associated with the inflation and deflation of a magma chamber (see Figure 3).

The maximum volume variation corresponds to ~4.9 x 10* mm?, and occurs at ~4.3 yr.

In Section S2 and Table S1 of the Supplementary material all the parameters used for the dif-

ferent simulations are provided.

5.2 — Description of the sensor signals

In this work we attempt to reproduce only a few of the possible conditions that are known in
the real world in terms of geodetic network geometry and data quality. In particular, we test 1) the
possibility of different geometries of the GPS network around the fault source and 2) three different

configurations of missing data in the synthetic time series.

GPS data include white and colored noise (Langbein, 2008), in particular pink (or flicker) and
red (or Brownian or random-walk). We simulate the presence of the three sources of noise fixing
them to pre-determined powers, resulting in an average total noise power over the 60 time series of
~1.1 mm?. In order to vary the SNR we prefer to control the signal power through the source inten-
sities, rather than changes the noise in the time series, since the noise generation in the synthetic
time series is performed randomly. The two different geometries tested are shown in Figure 4, and
we refer to them as Network 1 (N1) and Network 2 (N2). The possibility of a GPS network to rec-
ord a particular source signal depends on the geometry of the network w.r.t. the position of the
source and the source intensity. Here, we use the inter-seismic locking depth as a reference distance
to define the geometric quality of a GPS network. In particular, N1 has half of the total number of
stations (i.e., 10) located in a square box of side equal to twice the locking depth, and centered at
the surface projection of the mid-point of the fault top edge. The network N2 consists in 20 stations,

but only 1/10 of them are located in the box described above.
Real ¢GPS time series often present broad empty data gaps, mainly due to malfunctioning or
theft of the geodetic instrumentation (antenna, batteries or receiver), rather than data missing com-
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pletely at random. In order to create missing data in the synthetic time series we randomly create a
bunch of gaps with different lengths, and delete the data associated with these gaps, obtaining two
dataset structures (i.e., masks) with 5% and 25% missing data, respectively. These two masks are
applied to the datasets obtained modifying both the source intensities and the network configura-
tions. We do this in order to avoid to continuously generate random gaps, that would be again a fac-

tor out of control during the analysis.

5.3 — Case studies

Figure 5 summarizes the case studies we consider. The generation of the synthetic dataset re-

sults from the following steps:

1) Definition of the area extent under study;

2) Creation of the fault geometry and the creeping section;

3) Creation of the GPS network;

4) Creation of the source signals: inter-seismic, co-seismic, post-seismic, seasonal, Mogi;

5) Calculation of the surface displacements;

6) Addition of noise to the time series: white, flicker, and random walk noise;

7 Removal of missing data according to three pre-defined masks (0%, 5%, and 25% of
missing data).
We assign to the estimated positions an uncertainty of 2 and 5 mm for the horizontal and vertical
components, respectively.

It is necessary to point out that the co- and post-seismic sources described in Section 5.1 are
not independent. Indeed, from the temporal evolution of the second source we can deduce some-
thing concerning the temporal evolution of the first one, and vice-versa. Let us imagine that we
know the value of the post-seismic source at a certain epoch. If it is equal to O (or the reference
point before the earthquake), then we know the value of the co-seismic source at the same time; if it

is different from the pre-earthquake value, then again we know the value of the co-seismic source at
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that epoch. It follows that the probabilities of the two sources do not factorize:
(s, P Ep(s<)p(s°), but the application of ICA algorithms relies on such a factorization. Ac-
cordingly, we decide to pre-process the time series correcting them for the co-seismic jump, which
is recovered using a PCA with the same number of components used for the subsequent ICA. In so
doing, we assume that the PCA reproduces satisfactorily well the observed (simulated) time series
data using few components, and we minimize the effect of the noise in the determination of the co-
seismic offset. This, unfortunately, is not always the case, since sometimes we handle cases having
a very low SNR (see Tables from S3 to S6 of the Supplementary material for the SNR values of
each source and each configuration studied in this work). Moreover, also the geometric configura-
tion of the network affects the SNR recorded. For the three co-seismic sources tested the percentage
of time series with SNR > 1 is 70%, 45%, and 23% for the configuration N1, but these values drop
to 56%, 10%, and 3% for the configuration N2. The same is valid for the post-seismic signal, pass-
ing from values of 63%, 28%, and 8% to values of 28%, 3%, and 0%. The linear and seasonal sig-
nals are less affected by the network configuration since they are less localized than the signals re-
lated to the seismic event. Indeed, for the linear signals tested this percentage is about 5%, 60%, and
95% for the 2 mm/yr, 12 mm/yr, and 60 mm/yr creep rates adopted, respectively, while for the sea-
sonal signal it is 28-30% for both the network geometry configurations. Finally, for the case with

also a Mogi source, the SNR related to the volcanic signal is greater than 1 for 6% of the stations.

The total number of cases studied is 55, coming from the use of 2 network configurations x 3
missing data masks x 3 earthquake energy release x 3 inter-seismic slip rates + 1 with a Mogi
source (not reported in Figure 5). As an example, Figures 6a and 6b show the synthetic position
time series of the stations 7 and 8 relative to the case where also the Mogi source is active, i.e. with
a network configuration N2 (see Figure 4b for the location of the stations on the map). Figures 6¢
and 6d instead show the position time series of the stations 10 and 17 relative to the case with a
network configuration N1 (see Figure 4a for the location of the stations on the map), 5% of missing

data, a medium size earthquake, and a long term fault slip-rate of 2 mm/yr (i.e., slow tectonic rate).
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6 — Results of PCA and ICA application on synthetic time series

In order to compare the results recovered from different algorithms on different datasets (ob-
tained from different network configurations and tectonic regimes) we use the following quantities:

the %* and the Mean Squared Error (MSE) for the reconstructed sources. The y* is defined as:

M T

j=1t=1

where o is the data mask (i.e., 0; is equal to O if the data is missing and 1 if the data is recorded),
wj: 1S the weight associated to the data corresponding to the #-th epoch of the j-th time series, and it
is equal to the inverse of the square of the uncertainty associated to the given data, x;; is the actual
data, and x;%“°" corresponds to the data as reconstructed by a given decomposition technique (PCA

or ICA). The MSE is defined as:

LT
MSE:%ZZ true _ decomp)z 9)
t=1

i=1t

frue ;3

where v,/ is the value of the actual i-th source at time 7, and v;%“°" is the value of the i-th compo-

nent at time 7. L, M, and T have the same meaning as in Section 2.

The goal of the PCA is to minimize the 2. Instead, an ICA performs better in reconstructing
the true sources (in the case when they are statistically independent), but provides higher ¥ values
than PCA. The lowest the value of the x> and MSE quantities, the better is the fit to the data and the
unravel of the sources, respectively. These features are testified by Tables 1 and 2, which show the
percentage of improvement in the x> using a PCA instead of an ICA (y,2), and the percentage of im-
provement in the MSE using an ICA instead of a PCA (ymsg) for the low tectonic rate (2 mm/yr)

scenario. These two quantities are defined as follows:

L = Xica — Xbca Vareg = MSEpcy — MSE ¢4
X XIZDCA ' MSE MSEICA

(10)
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6.1 — Low tectonic rate (2 mm/yr)

For this scenario we consider 18 cases, using four synthetic sources (linear, co-seismic, post-
seismic, and seasonal) and estimating the co-seismic one with a PCA (see section 5.3). If we use a
reduced ¥ test in order to select the number of components, we find that only one component is suf-
ficient to explain the data, for both the PCA and the ICA decompositions. This choice is clearly in-
correct, consequently, it is necessary to use a different test to select the number of components. Us-
ing an F-test for the PCA decomposition (following Kositsky and Avouac, 2010) we find that 3
components are not enough. This means that PCA introduces some noise into the reconstruction
probably because the signals under investigation have a SNR <1 in several cases (see Tables S3-S6
in the Supplementary Material). Instead, an F-test performed on the vbICA decomposition suggests
that 2 components are sufficient in all cases but the one with 0% of data missing, the network con-
figuration N1, and a co-seismic source corresponding to a My = 6.85 earthquake. In such a case, the
F-test points out that the 3 components decomposition is the most appropriate one. Finally, the use
of the criterion based on the ARD method suggests 2 components as the most appropriate 14 times
over 18, and in the remaining 4 cases it suggests 3 components. In most of the cases (14 over 18)
the linear signal is not properly recognized due to its low SNR (< 0.3, see Table S3, first three col-
umns, in the Supplementary material). The criterion based on the ARD method suggests the use of 3
components only when 25% of the data is missing, but in all these cases one of the 3 ICs contains
both the linear signal and a residual co-seismic offset. This means that the PCA reconstruction of
the offset, and its consequent subtraction from the dataset, is not good enough, leaving in the pro-
cessed data a residual offset. However in general this subtraction is necessary, as we will see at the
end of this subsection. A similar problem affects also the two cases relative to a small earthquake
scenario (Mw® = 5.94 and My = 5.80). In those cases where only two ICs are identified as neces-
sary to explain the data, despite the use of a good network configuration (N1) and a small percent-
age of missing data, in one of the two ICs the post-seismic signal is superimposed to the linear trend

(see Figures S2f and S3f of the Supplementary material). Moreover, the smaller the post-seismic

20 of 35



[
O W O Joy Ui W

YO OO OYO Ul U1 U1 U1 U1 U1 U1 OTOT Ol DD DD WWWWWWWWWWNNNNNNDNNONDNNNMNNNDMNNNNNRRRERRERRRRRE
GO WNRPFPOWO-JOHUPE WNEFPFOWO-JOHOU WNEFEFOWO IO WNRE OWO-JIOU s WNE O WOOJo O dxs W -

Gualandi et al., Blind Source Separation problem in GPS time series

source, the more significant the linear signal contribution on the corresponding IC is (see Figures
S2-S7 of the Supplementary material). The superposition of the linear trend and the post-seismic
signal in the same IC might introduce some error in the estimate of the time decay constant of the

latter signal, as we will discuss in the next Section.

As an example, Figure 7 compares the PCs and the ICs relative to the mid-size earthquake
with 5% of missing data in the synthetic time series. The benefits of the ICA are evident if we look
at Figures 7a and 7b, i.e. when we have a good network configuration (such as N1). We are not able
to correctly infer the post-seismic signal in the cases when the signal intensity is low (Mw"* = 5.80
and 6.09) and the ¢GPS network configuration is unfavorable (N2) (see Figure 7d and Figures S2-
S7 of the Supplementary material). However in all cases but one, the vbICA algorithm reduces the
MSE, as expected (Table 2). The only scenario where the MSE is better for a PCA is the worst pos-
sible case studied, i.e. the one with 25% of missing data, a small post-seismic source, and the N2
network configuration. For this configuration, the SNR of the post-seismic source is equal to 0.009,
resulting in a very noisy component. Finally, as an example, we present in Figure 8 the results of the
PCA and the vbICA decompositions performed on the position time series relative to the mid-size
earthquake with 5% of missing data and a good network configuration (same as Figures 7a and 7b),
but where the co-seismic offset is not corrected. The ARD method for the selection of the number of
components coherently indicates that we should keep 3 ICs, that is one more w.r.t. the case where
we have removed the co-seismic signal. As expected, even if we are using the network N1, the vbI-
CA algorithm correctly isolates the seasonal signal, but does not succeed in separating the co- and

post-seismic sources (see Figure 7b for comparison).
6.2 — High tectonic rate (12 and 60 mm/yr)

For high values of the inter-seismic slip rate the linear signal becomes dominant, and the en-
tire dataset is strongly correlated. In other words, the cloud of points in the data space is strongly
aligned, and this makes the search of the IC directions difficult. Choudrey (2002) pointed out that a

correlation value greater than 0.67 prevents the vbICA to work properly. A possible solution, which
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allows to maintain the linear signal in the time series (thus to avoid, for example, estimates of a lin-
ear trend in case of short time-series or in the presence of strong non-linear motions), consists in
changing the reference frame into a station-fixed reference frame. Of course, the estimation of the
linear trend can be performed only if we have at our disposal enough consecutive data for which the
linear signal is the only non-stationary one, so that the estimation of the linear signal is not signifi-
cantly affected by the other superimposed signals (e.g., Blewitt and Lavallée, 2002). For the syn-
thetic data under study we estimate the linear trend using the 3 years of observations before the
earthquake, i.e. we do not consider post-seismic data in order to prevent a distorted estimation for
the trend. Such a solution is helping only for the network configuration N2. This is due to the fact
that we use as a reference station the station number 1 (see Figure 4). In the N2 case most of the sta-
tions are located North-West of the source, close to the reference station. It follows that the linear
trend is largely reduced, and the correlation of the dataset is reduced below the 0.67 threshold men-

tioned above.

Among all the N2 cases, we have already proven that in the case of a low tectonic rate the
post-seismic signal is not recovered for the My = 5.80 and 6.09 scenarios because of the very
small SNR. All the more this is true at high tectonic rates, since the SSR between the post-seismic
and the linear signals is even lower, and the transient signal of interest is undetectable. In Figure 9
we show that in the case of 0% of missing data and a large earthquake the vbICA decomposition
reduces the global MSE value, but a strong cross-talk between the ICs representing the linear and
the post-seismic sources is still present (Figure 9b). This is due to the fact that the vbICA algorithm
is trapped near a local maximum for the NFE, close to the PCA solution. In order to allow the algo-
rithm to escape from it, it is possible to try different random initializations. Figure 9¢ shows the ICA
sources corresponding to the random initialization which gives the highest NFE among ten random
initializations.

6.3 — Mogi source
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The number of sources used for this synthetic test is four: a co-seismic Heaviside step func-
tion, a logarithmic post-seismic decay function, a seasonal sinusoidal function, and a linear combi-
nation of arctangent functions for the volcanic source (see Figure 3 and Section S2.2 of the Sup-
plementary material). Due to the location of the Mogi source and the relatively small spatial extent
of the region affected by its presence, we test only the N2 network configuration. We have already
shown that this network configuration is able to properly recover the co- and post-seismic signals

only for the seismic scenario corresponding to My = 6.85, MyP*t =

6.57. Consequently, we gener-
ate the data using only such a scenario, using the 5% missing data mask. After the correction of the
co-seismic step, the criterion based on the ARD method correctly suggests to use 3 components.
The results of a PCA and a vbICA are shown in Figure 10a and 10c. The loss in the y* passing from
the PCA to the vbICA is y,2~3%, while the gain in the MSE, ywmsk, is greater than 500%, as it can be

visually seen looking at Figures 10a and 10c.

7 — Discussions

The tests performed suggest that the configuration of the geodetic network w.r.t. the source is
critical. A well designed geodetic network is mandatory if we want to detect signals with small in-
tensities (SNR < 1). In critical situations (i.e., less than 5% of the stations show a SNR > 1, and
those few stations do not have a relevant SSR compared to other signals) the performance of the
multivariate statistical techniques we have tested is poor, mainly because the signal is too localized
and not common to a sufficient number of stations in the network. Unfortunately, in real data appli-
cations we do not know the actual SNR value, and we have to figure out which are the relevant sig-
nals recorded by the data. We have shown that having 10 ¢GPS stations within a box of side equal
to two times the locking depth of a fault where an earthquake of My, > 6 occurred allows us to solve
satisfactorily the BSS problem with the proposed algorithm. In particular, for slow long-term slip
rates (2 mm/yr, Section 6.1), a 99.99% credible interval contains the correct value of the used tem-
poral decay constant T in 12 over 18 cases (see Section S3 of the Supplementary material for the

derivation of the credible intervals). This finding indicates that, even if in 14 over 18 cases we use
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only 2 ICs to recover 3 sources (see Section 6.1), in most of the cases we are able to properly infer a
correct credible interval for the temporal decay parameter (t). This is probably due to the fact that
the potential corruption of the post-seismic IC due to the residual linear signal is negligible. In the
remaining 6 cases the temporal decay constant parameter is not resolved, and all the values spanned
are acceptable or the post-seismic source has not been identified. These 6 cases correspond to the
N2 geometry scenarios for the intermediate and small post-seismic source intensities. This proves
that it is necessary to have a good quality geodetic network if we want to study crustal displace-

ments of the order of few mm with multivariate statistical techniques such as vbICA.

Among all the tested scenarios, those with a high tectonic rate (> 10 mm/yr) show a highly
correlated (> 0.67) dataset. Such a high correlation may prevent the vbICA algorithm to identify the
proper directions in the data space (i.e., the independent components) onto which to project the da-
ta. The removal of a linear trend from the original time series reduces the correlation of the dataset.
In section 6.2 we subtracted to all the stations the corresponding horizontal, and eventually also the
vertical, long term velocities derived from a given reference station. This strategy provides satisfac-
tory results if the reference station is located in the proximity of the available network. For example,
in Figure 9¢ we show the case of 0% of missing data, a large earthquake, an unfavorable network
(N2), and a tectonic rate of 60 mm/yr. The credible interval at 99.99% for the post-seismic decay
constant correctly includes the 1 day temporal decay used for the logarithmic source. An alternative
solution to the high correlation issue may be to refer the time series data to an external stable refer-
ence frame (e.g., a plate-fixed frame). However, this strategy implies to consider the linear trend as
an actual signal, and it may distort the identification of signals having a curvature different from
zero (e.g., acceleration of the ground due to isostatic adjustment). It is also possible, as proposed by
Choudrey (2002), to decorrelate the dataset from the very beginning, for example using a PCA.

However, this procedure is likely to wipe out signals of potential interest.

In absence of missing data the BSS problem is over-determined, i.e. the number of sources L

is lower than or equal to the number of time series M. If it happens that only » stations recorded
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their position in a given time interval, then the maximum number of components that we can esti-
mate in the same time interval is 3n. The problem of missing data is common to geophysical data in
general, and it is relevant in GPS measurements, where daily position data are usually not missing
completely at random. Looking at the ability of the vbICA algorithm to recover the original sources
(see Table 2, bottom), we find that the sources are better recovered when the percentage of missing
data is low. We did not perform systematic tests with more than 25% of missing data, but in few
cases with ~50% of gaps we noticed a considerable degradation both in the PCA initialization and
in the final vbICA solution. Even if PCA provides lower y? values w.r.t. the ones computed from a
vbICA reconstruction (i.e., positive values for y,2, see Table 1, upper part), vbICA performs better
than PCA with the estimate of missing data, as we explain in the following. Considering the low
tectonic rate scenario, we reconstruct the position time series, x; ““*”, using the PCs and the ICs
deduced from the decomposition of the dataset with two different percentages of missing data (5%
and 25%). The reconstructed time series estimate the position even at the epochs when the data ac-
tually used for the same decomposition are missing (missing epochs). Then, particularly for those
epochs, we can compare such a reconstruction with the actual data (known from the synthetic un-
masked time series) and we find that the correspondent position values are better explained by the
vbICA decomposition. Indeed, we evaluate the x> MP, calculated as in equation (8) but using w;M? =
(1 = o0j)wjs in place of o;wjr, j=1, ..., Mand t = 1, ..., T, where o is the data mask. In 9 over the 12
cases reported in Table 1, > MP is lower if we use the vbICA reconstruction (see Table 1, bottom).
We argue that such a better performance of vbICA w.r.t. PCA in reconstructing the missing data is
due to the fact that it provides a more faithful representation of the actual sources, allowing a better
prediction of the values at the missing epochs. We think that the more trustful filling of the data
gaps obtained through the vbICA decomposition may be useful to better constraint geophysical

model of the surface displacement.

The bayesian approach to the ICA brings other two advantages with respect to classic ICA and

PCA. The first one consists in having the full posterior pdf of both the sources and the mixing ma-
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trix. Such a knowledge allows us to propagate the uncertainties on the reconstructed time series,
providing a more complete understanding of the actual reliability of the data decomposition. In this
work we exploit this information also assessing the 99.99% credible interval related to the temporal
decay constant parameter (t) of the post-seismic signal. The second advantage allows us to handle
the classical multivariate statistical methods' issue regarding the determination of the proper number
of components that best describe the original data. Here the selection of the number of components
is done using a criterion based on the ARD method and adopting loose prior parameters so that the
data can reveal their inner structure (see Section 2). After having determined the proper number of
components, it is necessary to tune the prior parameters, and this tuning can be performed evaluat-

ing the NFE function.

As well as for the original code of Choudrey (2002), also in a case of missing data the vbICA
algorithm outperforms the FastICA one, which is based on a mapping approach (see Section 2). In
the analysis of the superposition of a seasonal signal, a post-seismic decay, and a time-varying vol-
canic source, we have compared the ICA decomposition obtained using the FastICA and the vbICA
algorithms (see Figures 10b and 10c). While the FastICA decomposition is not able to correctly
separate the volcanic and post-seismic sources, the VbICA clearly separates the two contributions.
In particular, the gain in the MSE using the FastICA w.r.t the PCA decomposition is ~44%, while
using the vbICA gives us an improvement of more than 500% in the MSE. Despite the low percent-
age of stations with SNR > 1 (~6%), the signal of the volcanic source is correctly recovered (see
Figure 10c). Moreover, the post-seismic decay constant is correctly inferred at a 99.99% credible
interval from the first IC deduced from the vbICA algorithm. This better performance must be as-
cribed to the greater flexibility of the vbICA approach w.r.t. the more classic mapping approaches.
Figure 10d shows that the pdfs corresponding to the three ICs of Figure 10c have a clear multimod-

al nature, which is completely captured using the mix of Gaussians of the vbICA approach.

Moreover the capability to recover the actual temporal sources enables vbICA to reconstruct a

more faithful mixing matrix w.r.t. the one obtained with different multivariate statistical techniques,
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like PCA or FastICA. This in turns allows us to visualize in a more clear way the spatial extent of

the ongoing geophysical processes.

8 - Conclusions

Real world ground displacement observations are the result of a combination of different
sources, and in order to reveal the inner structure of the data it is useful to search for an intrinsic
coordinate frame where the informative content of the data is maximized. For this reason, we pro-
pose the use of an advanced ICA technique based on variational approximation and bayesian infer-
ence (vbICA), with the goal of solving the BSS problem in ground displacement time series, as
those recorded by GPS networks, and extract the robust information about the sources originating
the observations.

A modified vbICA algorithm, which allows to handle missing data that are a common prob-
lem in GPS observations, has been tested on synthetic time series generated in order to simulate
earthquake and volcanic deformations. We find that the vbICA method shows clear advantages w.r.t.
widely used multivariate statistical techniques like classic PCA or ICA in extracting the relevant
information from high-dimensional (>3) datasets, such as the ones typically studied in tectonic ge-
odesy. The main benefits derived from the vbICA consist in: 1) a better characterization of the
sources, which leads also to a better forecast of the missing values as testified by the lower y*> MP; 2)
a full description of the sources' pdf, which allows us to estimate also the uncertainty related to the
model parameters inferred from the ICs.

On the basis of our tests, we suggest to use the vbICA technique adopting the following steps:

1) Center the dataset, i.e. remove the mean to each time series

2) Check the correlation of the centered dataset

2a) if the correlation is greater than 0.67, go to point 3)
2b) if the correlation is smaller than 0.67, go to point 4)

3) Detrend the time series
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4) Correct for the co-seismic offsets because of the non independence with the post-seismic

signals

5) Perform a vbICA with loose priors and select the number of components via a criterion

based on the ARD method

The vbICA is performed starting from a PCA initialization. If the ICs are very close to the
PCs it is possible that the algorithm stucks in a local maximum for the NFE, corresponding to the
PCA solution. In this case we find that a random initialization helps retrieving the original sources

from the data.

The method and approaches discussed in this work can be applied to the analysis of any kind
of geodetic time series data, including for example InSAR, strainmeters, and tiltmeters. In particular
the results presented in this work show the capability of a vbICA analysis in detecting transient de-

formations in a spatially and temporally consistent way.
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Figure captions

Figure 1: Typical geophysical signals commonly determined in GPS position time series, and his-
tograms of the corresponding pdfs: a) linear signal, b) seasonal signal, c¢) logarithmic decay signal,
and d) flat pre-seismic + logarithmic post-seismic signal. Each panel is subdivided in two plots: on
the right there is the temporal evolution of a specific signal, and on the left side there is the ten bins
histogram showing the number of points belonging to a given bin. These histograms correspond to a
rough approximation of the pdfs related to the corresponding signals. All the distributions are clear-
ly non Gaussian, with a) showing a uniform distribution, b) showing a bimodal symmetric distribu-
tion, ¢) showing a unimodal asymmetric distribution, and d) showing a bimodal asymmetric distri-

bution.

Figure 2: Fault model used to simulate earthquake cycle deformation recorded at a network of geo-
detic points at the surface. The green line corresponds to the intersection between the ground and
the extension of the fault plane. For all the simulations we have used a rake of -90° (thrust regime).
a) Slip distribution after 5 years. The yellow region indicates the patches that undergo only afterslip
(200 mm); the light red region experiences only the co-seismic slip (400 mm); in the darker region
there is a superposition of the two slip sources (total slip: 600 mm). b) As in case a), there are three
different regions: a light yellow one (only afterslip), a light red one (only co-seismic slip) and a dark

red one (co-seismic slip and afterslip). ¢) As a) and b), but with reduced intensities.

Figure 3: Temporal evolution of the Mogi source used in synthetic tests. The maximum displace-

ment associated to the volcanic source recorded at one of the stations is ~13 mm.

Figure 4: GPS network configurations. Red triangles: ¢GPS stations. Numbers: station names.
Green line: surface projection of the upper bound of the fault plane (see Figure 2). Black rectangles:
surface projection of the fault patches. a) N1: Half of the total number of stations (i.e., 10) located
in a square box of side equal to twice the locking depth, and centered at the surface projection of the
mid-point of the upper bound of the fault plane. b) N2: As N1, but with only 1/10 of the total num-

ber of stations located in the box described above. Green circle: Mogi source (Figure 3) location.
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Figure 5: Logic tree used for the creation of the synthetic data. After setting the tectonic regime
(thrust faulting) and the time span (5 years), we study two different GPS network geometry configu-
rations shown in Figure 4, as described in the main text. Then, we take into account three different
masks for missing data (MD): 0%, 5%, and 25%. We consider three possible seismic sources which
are characterized by a specific energy released through co-seismic and post-seismic slip: My® and
M. Finally, other three cases are considered, varying the slip rate of the creeping section of the

fault in the inter-seismic phase. The addition of the noise is the same for all the data generated.

Figure 6: a) Position time series (black dots) recorded by station 7 relative to the case including a
Mogi source (i.e., N2 network configuration, Figure 4b). b) As a), but station 8 is shown. ¢) Position
time series (black dots) recorded by station 10 relative to the case with 5% of missing data, a medi-
um size earthquake (Mw" = 6.09), low tectonic rate (s’”” =2 mm/yr), and N1 network configura-

tion (Figure 4a). d) As c), but station 17 is shown. The gray lines indicate the uncertainty related to

each measurement.

Figure 7: Temporal evolution of the recovered PCs (a and c) and ICs (b and d) (black dots) in the
case of 5% of missing data, medium earthquake scenario (Mw® = 6.29 and My"* = 6.09), and low
tectonic rate($" = 2 mm/yr).The gray lines in the ICs corresponds to the associated uncertainty
related to the ICs, calculated as the square root of the variance. This estimation is enabled by the
knowledge of the approximated pdf of each IC via a mix of Gaussians. The red lines correspond to

the post-seismic and seasonal actual sources. a) and b): N1 ¢GPS network geometry. ¢) and d): N2

¢GPS network geometry.

Figure 8: Left: PCs relative to the case MD 5%, N1, medium size earthquake, long term velocity 2
mm/yr not corrected for the co-seismic offset. Right: ICs for the same case. These decompositions
should be compared with Figures 7a and 7b, where we have preprocessed the data correcting for the

offset.

Figure 9: Temporal evolution of the recovered components (black dots) in the case of 0% of miss-

ing data, N2 ¢GPS network configuration (Figure 4b), large earthquake scenario (Myw* = 6.85 and
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MwP* = 6.57), and high tectonic rate (§'™ = 60 mm/yr). a) PCs. b) ICs using the PCA as a starting
initialization for the vbICA algorithm. ¢) ICs using a random initialization for the vbICA algorithm.
The gray lines in b) and ¢) are, as in Figure 7, the uncertainties associated to the ICs. The red lines
correspond to the linear, post-seismic, and seasonal actual sources. The decomposition shown in c)
corresponds to the one showing the best NFE value among the 10 random initializations tested. The
random initialization allows the vbICA algorithm to escape from the local maximum of the PCA
decomposition. The percentage MSE gain is ~100% for the PCA initialization, and it is ~6750% for

the random initialization. The percentage y* loss, instead, is ~2% and ~3%, respectively.

Figure 10: Decomposition results relative to the N2 ¢GPS network configuration (see Figure 4b)
with 5% of missing data, and the mix of the My*® = 6.85 and My"® = 6.57 co- and post-seismic
source, the seasonal source, and the Mogi source (see Section 3 for further details and Figure 3). a)
PCA decomposition. b) ICA decomposition with the FastICA algorithm (Hyvérinen and Oja, 1997).
¢) ICA decomposition with the modified vbICA algorithm tested in this work. Red lines in ¢) indi-
cate the actual sources. d) Probability density functions associated to the ICs shown in ¢). The con-
tinuous black lines correspond to the sum of the mix of Gaussian used to mimic the pdf of the
sources. We have used 4 Gaussian for each source, and they are indicated by the dashed colored

lines.
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Tables 1 and 2

Tables
$Hm = 2mm/yr
2
T MD 0% MD 5% MD 25%
N1 4.8% 3.4% 5.2%
My = 6.85
N2 1.9% 1.0% 6.1%
N1 2.3% 2.6% 5.5%
My = 6.29
N2 1.6% 1.9% 2.9%
N1 2.4% 2.6% 7.7%
My =5.94
N2 2.1% 2.2% 7.6%
. M T MD 5% MD 25%
Xédecom = wie? (x5 = xfiecomp)z
decomp ;; e (Kje = X reaMP A aMP 20 MD g2, MD
N1 2944 3585 20918 28605
My = 6.85
N2 1150 1142 12395 11247
N1 1149 1131 15103 11366
My = 6.29
N2 1070 1083 12587 12403
NI 1105 1096 570537 130228
My =5.94
N2 1053 1046 407138 91476

Table 1: Top: Percentage gained in the ¥* quantity if the PCA decomposition is used instead of

the ICA. M defines the seismic scenario (see Figure 5), N1 or N2 indicate the cGPS network

configuration (see Figure 4), and MD stands for Missing Data. Bottom: y’pcaMP and y?ica™MP

values, computed as in formula (8) but relative to all and only the epochs of missing data (for the

purpose of the decomposition). The cases marked in green shows a decreasing value for the ¥* of

the missing data passing from the PCA to the vbICA decomposition.



$H = 2mm/yr

YMSE
MD 0% MD 5% MD 25%

NI 44% 49% 72%
My = 6.85

N2 221% 130% 33%

N1 226% 230% 30%
My =6.29

N2 76% 92% 12%

N1 1767% 1430% 47%
My° =5.94

N2 25% 35% -38%

MSE post+seasonal MD 0% MD 5% MD 25%

N1 0.0241 0.0245 0.0310
M, = 6.85

N2 0.0187 0.0242 0.0365

Nl 0.0254 0.0261 0.0328
My =6.29

N2 0.0910 0.0742 0.2755

N1 0.0405 0.0430 0.1085
My =5.94

N2 0.1523 0.1281 1.9872

Table 2: Top: Percentage gained in the MSE quantity if the ICA decomposition is used instead of
the PCA. Bottom: MSE values for the post-seismic and seasonal sources. We notice a
deterioration of the MSE with an increasing percentage of missing data (MD). Symbols as in

Table 1.
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S1 — The variational bayesian ICA: some details

As said in Section 2 of the main text, under a bayesian framework the goal is to evaluate the

quantity given by:
pXW,20p(W[210)
WX, 90) = (S1)
POVIR0 = &P
where
pX|20) = [ p(X|W,20p(W|90)dW (82)

In most of the cases, the integral at right hand side (RHS) of (S2) is intractable because it involves
the integration in the whole weight space. Such an integral is also called as evidence, and it repre-
sents the pdf of the observed data X under the model 9. The variational approach allows us to ap-
proximate the integral in (S2), and the approximate form of the posterior pdf of the weights W,
p'(W), is introduced to allow a closed form solution to the posterior (left hand side, LHS, of S1).
The idea behind this approach is the following. Let us consider the log-evidence In(p(X)), where we
drop the symbol 91 for brevity. Since the integral over the whole weight space of any given pdf,
p'(W), that depends only on the weights must be equal to the identity, and since the log-evidence

does not depend on the weights W, the following equivalences hold:

In(p(X)) = In(pX))J p'(W)dW = [ p'(W)In(p(X))dW (S3)

Using the standard formulas for joint pdfs: p(X, W) = p(X | W) p(W) = p(W | X) p(X), we

can write:

In(p(X)) = J p'(W)In(p(X))dW =

s p(X, W) N p(X, W) p'(W) (S4)
= [pwin (TS5 ) aw = [ pw)in (p(wpc) p'(W)) w
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Finally, rearranging equation (S4), we can write the following equality:

p(X, W)
p'(W)

p'(W) ) (S5)

In(p(0) = [ p'(Wyin (2222 ) aw + [ p(w)in (mw'x)

The first term of the RHS is called the Negative Free Energy of the data X, NFE[X], while the
second term of the RHS is the Kullback-Leibler (KL-)divergence, KL[p'(W) || p(W | X)], between
the two pdfs p'(W) and p(W | X), . The KL-divergence between two given pdfs is a strictly non-
negative quantity that measures the difference among the pdfs under comparison, and it is equal to 0
iff the two pdfs are the same. In particular, the smallest the KL-divergence the more similar are the
two pdfs. In the case under study, our goal is to find a pdf p'(W) such that it approximates well the
posterior pdf p(W | X). In other words, we want to minimize RHS's second term of equation (S5).
In order to achieve this goal, since the log-evidence does not depend on the weights W, maximizing
the NFE w.r.t. the p'(W) will automatically minimize the KL-divergence. Let us now discuss further

the structure of the NFE.

We can write the NFE as follows:

pX, W)) _

p'(W)

= [ p"(W)In(p(X, W))dW — [ p'(W)Inp'(W)dW =
= (In(p(X, W)))p:w) + H[W]

NFE[X] = [ p'(W)ln(
(S6)

where <->,w) is the expected value given the pdf p'(W), and H[W] is the entropy of p'(W). The

most common restrictions for p'are (Ormerod and Wand, 2010):
a) p'(W) factorizes into [T, p’(w;), for some partition {wi, ..., wx} of W
b) p' is a member of a parametric family of density functions.

From equation (S6) it becomes clear the reason why it is necessary to choose a proper factori-

zation for p'(W) if we want to be able to maximize the NFE w.r.t. p'(W). Indeed, such a maximiza-
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tion is performed iteratively via an Expectation-Maximization procedure, and two different factori-

zations result in two different sets of learning rules.

For the particular case of the BSS problem, and for the implementation of a variational bayes-
ian ICA, Choudrey (2002) used the ensemble of hidden variables and parameters given by W = {A,

A, S, q, 0}. He tested two different factorizations:
1) P'(W) = p'(A)p'(A)p'(S)p'(q)p'(9) (S7)

i) p'(W) = p'(A)p'(A)p'(S [ q)p'(@)p'(8) (S8)

where the factorization ii) outperforms the first one (Choudrey, 2002). This is the reason why in our
work we use only the second factorization. The meaning of the rvs can be understood taking a look
to the original BSS problem, formulated by the equation (2) of the main text. We want to find those
parameters (i.e., those weights W) that can explain the data X under the framework of linear com-
bination of independent source signals. The sources are described by the rvs S, the mixing matrix is
described by the rvs A, and the noise is described by the rvs A. Each of these rvs can be described

by a given distribution or by other rvs.

Here we are going to present the so called learning rules we apply in order to maximize the
NFE. In particular we specify the approximating posteriors in the RHS of (S8) used in order to cal-
culate explicitly the NFE. MacKay (1995) has shown that there is no need to specify functional
forms for the posteriors if conjugate forms for the densities are chosen. Families of conjugate func-
tions are such that, when member functions are multiplied together, they give a function in the same
family.

Noise is assumed to be Gaussian with zero mean, and the rvs A describe the precision (i.e.,

the inverse of the variance) associated to the noise. Such rvs are assumed to follow a Gamma distri-
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bution, such that two hyper-parameters are necessary to describe each of them. The distribution of
the mixing matrix coefficients is a Gaussian, where each element of the matrix A is described by a
mean and a precision. Finally, in order to allow the sources to adapt and mimic different distribu-
tions, the rvs S are described using a mix of Gaussian distributions for each source s; withi =1, ...,
L. This means that for each source s; there is a set of rvs 0; such that it explains the set of Gaussian
pdfs that contributes to the final realization of s;. Supposing that m; Gaussian pdfs are used to de-
scribe the i-th source, then we need a mean and a precision for each of the m; Gaussians as well as a
rv m; expressing the probability that a given Gaussian is selected to contribute to the source. Finally,
the rv q is an indicator variable, and for the i-th source there is the rv g; that may vary between 1
and m;. The mean of a Gaussian p;,, follows itself a normal distribution, while a precision of a
Gaussian f3; 4, follows a Gamma distribution. The mixture proportion 7; is described by a Dirichlet
distribution.

The choice of these particular families of distribution is arbitrary, but not accidental. Indeed,
the Gamma distribution ( ‘2 (-)) is the conjugate prior for the precision of the normal distribution
(- / (+)) with known mean, and the Dirichlet distribution ( ~ (-)) is the conjugate prior of the cate-
gorical distribution. All the previous assumptions can be summarized by Figure S1, which repre-
sents the direct graph to solve the BSS problem via an ICA. The formulas associated to all these
assumptions on the prior distributions are the following:

M

pd) = | | 7 @ybacn) (89)

j=1
L M

p(A) = 1_[1_[ 7 (4il0, o) (S10)
i=1 j=1

]:

T L
p(Slq4, 0) = 1_[ ﬂ 1 (sEs Wigy Bigy) (S11)
t=1 i=1

50f30
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T L
pam = | [] [ 512)
t=1 i=1

93
p(8) = p(Mp(Wp(B) (S13)
94
L
p = |7 (o) (S14)
i=1
95
P(ll) - 1_[ 1_[ (Uqu mlOITLO) (SIS)
i=1 q;=
96
L ™
p® =] [[ | 7 Biaibioco) (S16)
i=1 gq;=1
97
98 The derivation of the posteriors can be found in the Appendix B and C of Choudrey (2002).

99  Here we just report his results, in order to describe the modifications we have introduced for appli-
100  cations to cases with missing data, following Chan et al. (2003). The priors from (S9) to (S16) be-

101  come the posteriors given by:

102
M
v = | 2 @pbasen) (517)
j=1
103
L M
p'(A) = 1_[ l_[ (Al 8 (S18)
i=1 j=1
104
p'(Sla‘, 0) = ]_[ 1_[ »GER, D) (s19)
t=1 i=
105
T
p'(q) = l_[ l_[\?ftjl (S20)
t=1 i=
106
p'(0) =p'(Mp’'(Wp'(B) (S21)

6 of 30



Gualandi et al., Blind Source Separation problem in GPS time series

107
L
P =] |7 mkigm) (822)
i=1
108
L ™
v =[] [ Gt Pigotia) (523)
i=1 qi=1
109
L ™
v® =[] |7 Bigsbiartia) (524)
i=1 gq;=1
110
111 From these approximating pdfs, it is possible to maximize the NFE w.r.t. the p'(w;). The pa-

112 rameters are estimated using an Expectation-Maximization algorithm, obtaining the values indicat-
113 ed with the hat ®at each iteration. The missing data are taken into account using a data mask o/,
114  withj=1,...,Mandt=1, ..., T, that is equal to 0 if the data is missing and 1 if the data is record-

115  ed. The learning rules for the different pdf hyper-parameters are the following:

116 P(A)
T -1
b =Y ok — 22 $25
by, = |7 +3 ) of(Gxf — 2)?) (525)
Aj t=1
117
Ly $26
A; = € Ez (S26)
t=1
118
119 P(A)
T
_ (Aj) ~
Mgy, = =2 ) (55 0f(xf = (%) (s27)
=
120
T
@i = oy + (Aj>z 0f(st") (S28)
t=1
121
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P'Slaq)
M
~t 1 t t ot
Mg, = 77— |{Big X Hig) + Z<Aj) (4j0)0j (% = (% k1))
Lgi j=1
M
B, = (Bua) + ) 0f(A)(AZ)
=1
r'@)
~t Yl?lql

t o~ ~
where v; o, = T; 4,014, and

ﬁi,qi = exp qj(j\\i,qi) e 4 Z Xl',q’i
q'i

1

~ Ei,i E 1,5 ~ 2
pi,qi = <B€q ) €xp [E (Bf,qiuf,qi - (Bi,qﬁ(uﬁqi))]
l,qi

Bi.ql‘ = Bi,QieXp[Lp(éi.qz‘)]

p'(m)

M ~
-
=
2

&)

iq; = Mo +

~+
Il
Juy

p'(p)
i

T
Mg, = —— | Tomio + (B, ) #adstlal)
i ;Ei 10’740 1,9 1, \Pi 1M1
t=1

8 of 30

(S29)

(S30)

(S31)

(S32)

(S33)

(S34)

(S35)

(S36)



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Gualandi et al., Blind Source Separation problem in GPS time series

=Tio + (Big;) z Vi, (S37)
()
biq; = [bi + %ai,qi]—l (S38)
0
1 T
= i EZ (S39)

~ ~ 2
where 8 g, = ST_y 74, ((557105) — 2010, 0(581aE) + (12,))-

We specify also the learning rules relative to the Automatic Relevance Determination tech-
nique (see Section 4 of the main text). Indeed, the precision of each column of the mixing matrix is

treated as a rv, and it follows its own distribution. In particular, it obeys a Gamma distribution:

L
p'(@ = | | Glaibe, ) (540)

and the updating equations for the parameters Bai and ¢y, are:

1 I,
ba, = [;—+75 ) (43)] (341)
o j=1
M
e, = Cay (S42)

In all case studies we have used the following starting hyper-parameter values: m;p = 0, Tip =
1, bip=10%, cip = 1073, Ay € [0.01, 0.1]T, be= 10°, Ca;= 102 fori=1, ..., L; and bAjZ 10°, A~ 103

forj=1,...,M.
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S2 — Simulated sources

S2.1 — Seismic cycle

In order to reproduce the seismic cycle, we use three different source signals: 1) a linear func-
tion; 2) a Heaviside function; 3) a logarithmic function, representing the inter-, co-, and post-
seismic stages, respectively. The reason behind the choice of these functions can be found in Sec-

tion 5.1 of the main text. The mathematical expressions used are the following:

s (x,y,z,t) = " (x,y,2) + m'"(x,y, 2)t (S43)

sO(x,y,z,t,t°) = A°(x,y,z)H(t — t°°) (S44)

co

sPOSt(x,y,2,t,t°,T) = AP*!(x,y,2)In(1 + ) (S45)

where ¢ is time, and (x, y, z) is a point in the space.

We discretize the fault plane into different patches of smaller area. For each patch located in

(x, v, z) we specify the following six parameters in (S43-S45)
1) ¢ arbitrary value of stationary aseismic slip (creep) at time Ty
2) min = ghm: creep rate
3) A°: co-seismic slip
4) t°°: epoch of the earthquake
5) AP*": post-seismic amplitude
6) T: post-seismic decay time.
Varying these 6 parameters we can vary the Signal-to-Signal Ratio (SSR) among the different

sources, defined, in analogy with the Signal-to-Noise Ratio (SNR), as the ratio between the power

of one signal and the power of a second signal. In particular, we maintain the same value for the fol-
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lowing three parameters: ¢’ = 0 mm, #° = 1096 d (= 3 yr) and T = 1 d. We limit the cases under

study allowing the remaining three parameters to assume the values shown in Table S1.

The co-seismic and post-seismic amplitudes are intended to vary in order to generate events
with different energies. Assuming that the fault under study is embedded in a homogeneous and
elastic half-space, then the seismic moment associated to an earthquake (or the equivalent seismic

moment associated to afterslip) can be calculated using the formula:

M, = pAS (S46)

where p is the rigidity modulus, and A is the area that slips an amount & during the co-seismic peri-
od (or during the post-seismic period). In all our simulations, we keep constant the rigidity modulus
p = 30 GPa (a typical value for the crust, e.g. Kanamori and Brodsky, 2004). For the purposes of
this work, it is sufficient to use uniform slip distributions in a set of contiguous patches within a cer-
tain depth interval, so the co-seismic and post-seismic amplitudes take only the values shown in Ta-
ble S1. Since the moment magnitude is related to the seismic moment (in the International System

of units) by the Hanks and Kanamori (1979) formula

2
M, = §log(M0) -6 (547)

then we vary the moment magnitude of the generated events by changing M. In turns we vary My
by changing the extension of the slipping portion of the fault and then its area 4. Figure 2 of the
main text shows the three different fault models proposed. We use a fixed planar fault geometry,
described by the 7 parameters of Table S2. The tectonic regime is set to simulate a thrust fault (rake
-90°). The associated My are 6.85, 6.29, and 5.94, respectively, and the corresponding equivalent

M,P after 2 years are 6.57, 6.09, and 5.80.

S2.2 — Volcanic source
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The time dependence of the magma chamber's volume associated to the volcanic source is

modeled using the following equation:

arctan[a s (t — ting)] _ arctan[ages; (t — taerr)]
max{arctan[a;, s (t — tins)]}  max{arctan[ages; (t — tae)]}

V(& Qingi tingr Aaeri Laefr) X (548)
The values of the 4 parameters aing, tins, Qaeft, taen are 0.01 1/yr, 4 yr, 0.05 1/yr, and 4.5 yr, re-

spectively.

S3 - Credibility intervals for the post-seismic decay constant

Let us suppose that we want to explain a data vector d € RP using a parameter vector m €
RM and the relationship (model) g : RM — RP such that d = g(m). The misfit function S(m, d) =d
— g(m) depends on both the data and the parameter model vectors, d and m. For brevity we will
consider the observed data as a known vector d = doss , and the misfit function depending only on
the choice of the parameter vector. In general, g can be a non-linear function, and it is not guaran-
teed that S is convex everywhere in the model space. In other words, it is not guaranteed that only

one minimum exists for the misfit function.

A bayesian approach to the fitting problem consists in assigning to the data d, the parameters
m, and the model function g some a priori probability density function (pdf), and then solve for the
inverse problem to find the a posteriori pdf of the parameters. In the particular fitting problem
treated in this work, the observed data vector doss corresponds to the IC related to the post-seismic

decay, the model function g is given by a slightly modified version of equation (S45):

_4CO
g(m,t,t) = m, + myln(1 + =
3

m

) for ¢ >t (S49)

where m=(m, m2, ms), m bias, my amplitude, and m3 decay time. We consider only times ¢ > ¢, i.e.
epochs after the occurrence of the mainshock. The time is a known parameter, so it can be neglected

in the count of the model space dimensionality. We assume that modelization uncertainties are neg-
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ligible compared to observational uncertainties. Since the data and model spaces are linear, the solu-

tion to the inverse problem can be written as (equation 1.93 of Tarantola, 2005):

1
ou(m) = =py(m)pp(g(m)) (S50)

where owm is the a posteriori probability density of the parameters, pm is the prior probability density
in the model space, pp is the probability density describing the result of the measurement, and v =
fRM py(m)pp(g(m))dm is a normalization constant. We will identify pp(g(m)) with the likelihood

function L(m), which gives a measure of how good a model m is in explaining the data.

If no a priori information is available about the parameters, pm(m) can be replaced by its ho-

mogeneous limit zv(m). We consider a uniform pm(m)=k, and we can rewrite equation (S45) as:

oy (m) = %L(m) (S31)

Knowing the a posteriori pdf of the parameters m, we can compute the x% credibility volume
Vx in the M-dimensional space, that is determined as the volume ¥ such that the probability P to
find a parameter vector in it is x%, i.e. ¥x =¥ S RM such that P (m € V') = x%. From the definition
of probability we can write:

J, L(m)dm
x% =P(meEV,) = f oy(m)dm = —=

v Jgm L(m)dm (532)

Obviously, if ¥ = RM, then the probability to find m in ¥y is 100%. Since the problem is not
linear, it is not possible to use a direct formula to solve it and we have to sample the model space.
Fortunately, for all the cases treated in this work the model space dimensionality is low (M = 3), and
we can sample the posterior distribution using a grid search approach. It remains to specify the a
priori pdf for the data, pp(g(m)) or L(m) . This choice is case dependent. In the cases treated here,

the data consist in the temporal sources obtained from an ICA. A great advantage of the vbICA
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technique is that it finds an approximation of the sources using a mix of Gaussian distributions, and
thus it is possible to calculate the moments of such a distribution. In particular, for each point of a
given IC, i.e. for each element of the temporal sources, we can compute (at least) the variance. We
assume that all the 7 elements that compose an IC are independent and identically distributed (iid),
in particular they follow a normal distribution pp(g(m)). Practically, we are not assuming any tem-
poral dependency between the value of the IC at time ¢ and the value at time ¢ + d¢. An attempt to
consider this dependency has been done by Choudrey (2002). He developed a Dynamic ICA, based
on Hidden Markov Models (HMMvbICA). It might be a good idea for the future to follow the same

approach also for the analysis of geodetic data.

We explore the ranges [-0.03,0], [€,0.04], and [€,50] for the three parameters m1, m2, and ms3,
where &€ = 2.2 x 107!, These ranges are chosen around the values found using an unconstrained
non-linear minimization of the sum of squared residuals, and ensure us to explore all the regions of
the model space where the likelihood function is significantly greater than 0. We say that the likeli-
hood is significantly greater than 0 if even considering a m3 range 100 times wider, the sum of all
the new added points investigated would not contribute more than 1 /10 of the contribution to the
volume given by the point of maximum likelihood. If a relevant portion of the model space having a
likelihood function significantly different from 0 is not taken into account, than the uncertainty on
the time decay parameter is too high, and such a parameter is not resolved. The grid step adopted
for the three parameters is 0.005, 0.0001, and 0.5 respectively. The actual m3 value is 1 day (see
Section 5.1 of the main text), and the credible intervals at 68.27% and 99.99% for the low tectonic
rate case are listed in Tables S7 and S8. For 6 over 18 cases the m3 parameter is not resolved, and all
the values spanned are acceptable or the post-seismic source has not been identified (NI). These 6
cases correspond to the N2 geometry scenarios for the intermediate and small post-seismic source
intensities. This proves that it is necessary to have a good quality network if we want to study crus-
tal displacements of the order of few mm with multivariate statistical techniques such as vbICA. In

more than one case we recover more than one credible interval. This is the direct consequence of
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the non linearity of the forward model. Indeed, the likelihood function has few local maxima, and
we can not exclude the possibility that the proper model does not belong to the global maximum.
Moreover, as every inverse problem, the solution is not unique, and to give only the maximum like-
lihood model could be misleading. In all cases where the number of ICs used is 2, it is probably
more correct to use a forward model (i.e., equation S49) that takes into account also the linear sig-
nal. Nevertheless, the number of parameters used in equation S49 seems to be already enough to

correctly guess the decay constant at a 99.99% level.
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Figure captions

Figure S1: Same as figure 5.1 of Choudrey (2002). Bayesian Independent Component Analysis as a
Graphical Model. Circles represent random variables and rectangles represent hyper-parameters.
The meaning of each symbol is indicated in the main text of the supplementary material. The mix-
ing matrix parameters are all summarized in one symbol for brevity.

Figure S2: Black dots: temporal evolution of the recovered PCs (left) and ICs (right) in the case of
0%, 5%, and 25% of missing data. The gray shadow in the ICs corresponds to the associated uncer-
tainty related to the ICs, calculated as the square root of the variance. This estimation is enabled by
the knowledge of the approximated pdf of each IC via a mix of Gaussians. The red lines correspond
to the post-seismic and seasonal actual sources. The scenario here represented corresponds to the
one of the network geometry N1, a big post-seismic source My"*' = 6.57, and a low tectonic rate
$im = 2 mm/yr.

Figure S3: As Figure S2, but with N2 — M= 6.57 — §!" = 2mm/yr.

Figure S4: As Figure S2, but with N1 — My?*'=6.09 — ™ = 2mm/yr.

Figure S5: As Figure S2, but with N2 — My*'= 6.09 — 5" = 2mm/yr.

Figure S6: As Figure S2, but with N1 — MyP*t=5.80 — ™ = 2mm/yr.

Figure S7: As Figure S2, but with N2 — M= 5.80 — s/ = 2mm/yr.
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287 Tables

288
Parameter Values Unit of measurement
m'" 2 12 60 mm/yr
A 400 400 200 mm
APt 303 152 9.1 mm
289

290  Table S1: Source parameters case study

Xtop centre 0 km
Vtop centre 0 km
Length 46 km
Ztop -2 km
Zbottom -26 km
Strike 45 °
Dip 40 °

291

292 Table S2: Fault plane geometry parameters.
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e

$® =2mmiyr 5™ =12 mm fyr £ =60 mm/yr
MD 0% MD 5% MD 25% MD 0% MD 5% MD 25% MD 0% MD 5% MD 25%

N1 0.26 0.26 0.24 9.45 9.50 8.58 236.32 237.54 214.40
Zéoo
6.85

N2 0.22 0.21 0.19 7.97 7.73 6.84 199.17 193.29 17091

N1 0.26 0.26 0.24 9.45 9.50 8.58 236.32 237.54 214.40
Zéoo
6.29

N2 0.22 0.21 0.19 7.97 7.73 6.84 199.17 193.29 17091

N1 0.26 0.26 0.24 9.45 9.50 8.58 236.32 237.54 214.40
ZSNOO
5.94

N2 0.22 0.21 0.19 7.47 7.73 6.84 199.17 193.29 17091

Table S3: Linear SNR values.

293
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e

7 =2mm/yr e T 7L e My
MD 0% MD 5% MD 25% MD 0% MD 5% MD 25% MD 0% MD 5% MD 25%

N1 339.58 324.46 328.63 339.58 324.46 328.63 339.58 324.46 328.63
Zéoo
6.85

N2 14.97 14.20 13.16 14.97 14.20 13.16 14.97 14.20 13.16

N1 12.34 12.08 11.54 12.34 12.08 11.54 12.34 12.08 11.54
Z,ZOO
6.29

N2 0.85 0.83 0.70 0.85 0.83 0.70 0.85 0.83 0.70

N1 1.30 1.28 1.22 1.30 1.28 1.22 1.30 1.28 1.22
zgoo
5.94

N2 0.08 0.08 0.06 0.08 0.08 0.06 0.08 0.08 0.06

Table S4: Co-seismic SNR values

295
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2mm /yr % =12 mm/yr 5™ =60 mm /1
MD0% MD5% MD25% | MD0% MD5% MD25% | MD0% MD5% MD 25%

N1 64.30 63.35 63.04 64.30 63.35 63.04 64.30 63.35 63.04
Zéoo
6.85

N2 4.43 4.19 3.37 4.43 4.19 3.37 4.43 4.19 3.37

N1 2.22 2.11 1.84 2.22 2.11 1.84 2.22 2.11 1.84
Zéoo
6.29

N2 0.10 0.09 0.07 0.10 0.09 0.07 0.10 0.09 0.07

N1 0.31 0.29 0.26 0.31 0.29 0.26 0.31 0.29 0.26
zgoc
5.94

N2 0.013 0.012 0.009 0.013 0.012 0.009 0.013 0.012 0.009

Table S5: Post-seismic SNR values

296
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e

§% =12 mm/yr

5% =60 mm/yr

$Y =2mm/yr
MD 0% MD 5%  MD25% | MD 0% MD 5%  MD25% | MD 0% MD 5%  MD 25%

Nl 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.98 0.97
zgoo
6.85

N2 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11

N1 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.98 0.97
Zéoo
6.29

N2 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11

N1 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.98 0.97
zgoo
5.94

N2 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11

Table S6: Seasonal SNR values.

297
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$m = 2 mm/yr

m3 (days)
MD 0% MD 5% MD 25%
N1 1.0 1.0 1.0
My = 6.85 LLO] [1.0] [LO]
N2 [2.0, 2.5] [1.5] [0.5]
N1 [1.5], [4.0] [1.0] [1.0]
My =6.29 [5.0],[6.0,9.5],
N2 [15.5,37.5] [10.5].[38.0.50.0] [NI]
N1 11.5,15.5 10.5, 15.5 0.5,1.0
My =5.94 [ : [ ] [ ]
N2 [NI] [NI] [, 50.0]
Table S7: m3 ranges in days: 68.27% credible intervals.
$m = 2 mm/yr
ms3 (days)
MD 0% MD 5% MD 25%
N1 [1.0] [1.0] [1.0]
My*° = 6.85 [1.0],[2.0,2.5],
N2 [4.5.5.5] [1.5] [0.5, 1.0]
ML — 6.9 N1 [1.5,2.0],[3.0,5.0] [0.5,1.0],[2.0,3.0] [0.5, 1.0],[2.0]
A N2 [0.5, 50] [0.5,50.0] [NI]
[0.5,1.5],[2.5,5.5], [0.5,5.5],
My = 5.94 NI 8.0,21.5] [7.0.22.5] [0.5,1.5]
N2 [NI] [NI] [, 50.0]

Table S8: m3 ranges in days: 99.99% credible intervals.
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