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A Formalization of multi-tape Turing Machines

A. Aspertia, W. Ricciottia

aDepartment of Computer Science, University of Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

We discuss the formalization, in the Matita Theorem Prover, of basic results
on multi-tapes Turing Machines, up to the existence of a (certified) Universal
Machine, and propose it as a natural benchmark for comparing different inter-
active provers and assessing the state of the art in the mechanization of formal
reasoning. The work is meant to be a preliminary step towards the creation of
a formal repository in Complexity Theory, and is a small piece in our long-term
Reverse Complexity program, aiming to a comfortable, machine independent
axiomatization of the field.

1. Introduction

In spite of the remarkable achievements recently obtained in the automatic
checking of complex results in many different domains, spanning from pure
mathematics [10, 20, 6, 17] to software verification [25, 24, 32, 1], passing through
the metatheory and semantics of programming languages [12, 30], the learning
curve of interactive provers is still extremely steep and the mechanization of
formal reasoning remains a very complex task.

Even comparing proof assistants in terms of their concrete usability [31, 5]
looks difficult, due to the different domains of applications (for instance, alpha
equivalence and binding mechanisms are important issues for the metatheory of
functional languages and type systems [30], but are almost negligible for proving
properties on compilers or other software tools [2]) and the different criteria that
can be used in the comparison (in [11], it is particularly stressed the importance
of having human readable proofs, while [2] shifts the emphasis on the connection
between the proof of a specification and the corresponding implementation, and
the possibility of extracting or automatically checking it).

Creating several benchmarks in different domains seems to be the best ap-
proach for promoting the actual development of the field and for comparing
theorem provers on their ability to express/synthesize proofs and to support
the user in the process of formalization.

Somewhat surprisingly, very little work has been done so far in major fields
of theoretical computer science, such as computability theory and, especially,
complexity theory. A notable exception is [26], containing basic results in com-
putability theory relying on λ-calculus and recursive functions as computational
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models. A major drawback of this approach is that computational constructs
like β-reduction or recursive function call are not finitistic and hence are not
suitable for a foundational investigation of complexity. In spite of the many
attempts of providing machines independent characterizations of Complexity
Theory, its actual foundation still relies on Turing Machines.

As a matter of fact, the subject of Turing Machines provides an excellent
test bench for proof assistants, for several reasons

1. it is a well established subject, not deserving auxiliary specifications; even
undergraduate students can directly tackle it, possibly as an experimental
part of traditional theoretical courses;

2. it does not require sophisticated mathematics; it can be easily formalized
in first order logic, but it can also take advantage of more sophisticated
logical frameworks, like systems with dependent types (for instance, we
found both natural and convenient to use them to formalize multi-tape
machine by means of vectors of a specified length);

3. it provides simple but effective examples of executable specifications, al-
lowing to test the computational capabilities of the system and/or its
code-extraction facilities;

4. it allows to address interesting termination problems, that is one of the
most complex issue in the mechanization of formal reasoning.

In this paper, we present a down-to-earth formalization for the Matita In-
teractive Theorem Prover [9? ] of the theory of multi-tape Turing Machines,
up to the existence of a universal machine and the proof of its correctness. The
code is available at http://www.cs.unibo.it/~asperti/turing.tar.

In our development, we have been inspired by several traditional articles
and textbooks, comprising e.g. [16, 23, 14, 29, 27]; all of them are excellent
works, and provide a rigorous mathematical exposition of the theory of Turing
Machines, and nevertheless none of them gives a sufficiently accurate description
(especially of the universal machine) to be directly translated in formal terms.

Although we do not claim any particular originality in our approach, there
are several points in the development where the choice of the data structures
used for the formal encoding, or the means used for expressing the semantics
of Turing Machines have not been entirely straightforward. In particular, for
obvious reasons, we tried to be as compositional as possible in the semantic
specification, allowing us to discover unexpected compositional properties in a
domain that is usually reputed to be (quite) non-compositional.

The current work is a major revisitation of the work presented at Wollic [7];
in particular, we passed from mono to multi-tape Machines, forcing us to com-
pletely rewrite the universal machine. While [7] was essentially a preliminary
report on an ongoing effort, this paper describes a much more mature and sta-
bilized version of the formalization. Relevant differences between the two works
are emphasized at suitable places along the paper, and an overall comparison is
given in the conclusions.

The structure of the paper is the following: Section 2 contains a short de-
scription of the main libraries of Matita used in the development; Section 3
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gives the formal definition of multi-tape Turing Machines and their semantics;
Section 4 provides means for composing machines (sequential composition, con-
ditionals and iteration); Section 5 contains the definition of basic, atomic ma-
chines and a few examples of slightly more complex machines derived from them
by compositional mechanisms; Section 6 introduces the notion of Normal Turing
Machine and its standard representation as a list of tuples; Section 7 gives an
outline of the universal machine; Sections 8,9 and 10 are respectively devoted
to the three main routines of the universal machine, namely finding the right
tuple to apply, and use it to update the state and execute the suitable action on
the simulated tape; in Section 11, we summarize the main results which have
been proved about the universal machine. In the conclusion we provide overall
information about the size of the contribution and the resources required for
its development as well as more motivations for pursuing formalization in com-
putability and complexity theory: in particular we shall briefly outline our long
term Reverse Complexity program, aiming to a trusted and machine indepen-
dent axiomatization of the field, suitable for mechanization.

2. Preliminaries

Our formalization of Turing Machines relies on two main libraries of Matita,
that we shall rapidly discuss in this section: finite sets; and vectors (see [18] for
a discussion of similar libraries in SSReflect).

A theory of finite sets is essential not only to formalize data structures like
the tape alphabet or the machine states, but also to transform a (executable!)
transition function into a finite graph (that is, up to trivial encodings, the
representation exploited by the universal machine). Vectors can be conveniently
used to develop the theory of multi-tape machine in a fully parametric way.

2.1. Finite Sets

As customary in type-theoretic formalizations of abstract algebra, libraries
are usually organized into a hierarchy of structures based on nested dependent
record types. In Matita, at the bottom of this hierarchy there is the DeqSet
structure, that deals with types equipped with a decidable equality (essentially
analogous to the eqType in [19]):� �
record DeqSet : Type :=

{ carr :ąType;
eqb: carr Ñ carr Ñ bool;

eqb_true: @x,y. (eqb x y = true) Ø(x = y)}.� �
We recall that, in Matita, each definition of a record foo implicitly defines

an associated constructor mk_foo that takes a list of arguments corresponding
to the record fields, and returns a new record. The names given by the user
to the record fields are associated to projection functions, extracting from the
record the corresponding field value.

The :> symbol declares carr as a coercion from a DeqSet to its carrier type.
Suppose we build a record DeqNat:DeqSet having the natural numbers nat as
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carrier. Then, for instance, the expression 0:DeqNat is well typed, and it is
understood by the system as 0:carr DeqNat. We use the infix notation “==”
for the decidable equality eqb of the set (different from the primitive logical
equality of the system, denoted with “=”).

Inductive data structures can usually be turned into a DeqSet by defining
“==” as a structural equality test. This is for instance the case for booleans
and natural numbers (and many others), for which we have two corresponding
DeqSets named DeqBool and DeqNat. We use the mechanism of unification
hints [? ] to suggest to Matita that, for example, if it meets a natural number,
and if required by unification, it may lift it up to an element of a DeqSet

using a suitable decidable equality hinted to by the user. For instance, the
expression 0 == 1 is well typed: the comparison would require two elements
of type carr ?X for some unknown DeqSet ?X, while it receives two elements
of type nat. The purpose of the hint is to suggest a possible solution for the
equation carr ?X = Nat1, namely, in this case, ?X = DeqNat.

A finite set is a record consisting of a DeqSet A, a list of elements of type A
enumerating all the elements of the set, and the proofs that the enumeration does
not contain repetitions and is complete (memb is the membership operation on
lists, defined in the obvious way, and the question mark is an implicit parameter
automatically filled in by the system).� �
record FinSet : :=

{ FinSetcarr:ą DeqSet;

enum: list FinSetcarr;

enum_unique: uniqueb FinSetcarr enum = true;

enum_complete : @x:FinSetcarr. memb ? x enum = true}.� �
The library provides many operations for building new FinSets by composing
existing ones: for example, if A and B have type FinSet, then also option A,
AˆB, A‘B are finite sets. In all these cases, unification hints are used to suggest
the intended finite set structure associated with them, that makes their use quite
transparent to the user.

Among all constructions, the most interesting one for the purpose of this
paper is the arrow type AÑB. We may define the graph of f:AÑB, as the set
(sigma type) of all pairs xa, by such that fpaq “ b.� �
definition graph_of :=λA,B.λf:AÑ B.

ř

p:AˆB.f (\fst p) = \snd p.� �
In case the equality is decidable, we may effectively enumerate all elements
of the graph by simply filtering from pairs in AˆB those satisfying the test
λp.f (\fst p) == \snd p):� �
definition graph_enum :=λA,B:FinSet.λf:AÑ B.

filter ? (λp.f (\fst p) == \snd p) (enum (FinProd A B)).� �
1The solution to this type of unification problems would require narrowing, that is a com-

plex and expensive operation transcending the (pseudo)-first order capabilities of the unifica-
tion algorithms typically (and wittingly) implemented in proof assistants.
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The proofs that this enumeration does not contain repetitions and is complete
are straightforward.

2.2. Vectors

A vector of length n of elements of type A is simply defined in Matita as a
record composed by a list of elements of type A, plus a proof that the list has
the expected length. Vectors are a paradigmatic example of dependent type,
that is of a type whose definition depends on a term.� �
record Vector (A:Type) (n:nat): Type :=

{ vec :ąlist A;

len: length ? vec = n }.� �
Given a list l we may trivially turn it into a vector of length |l|; we just need to
prove that |l| “ |l| that follows from the reflexivity of equality.� �
lemma Vector_of_list :=λA,l.mk_Vector A (|l|) l (refl ??).� �

Most functions operating on lists can be naturally extended to vectors: in-
teresting cases are vec_append, concatenating vectors, and vec_map, mapping
a function f on all elements of the input vector and returning a vector of the
same dimension of the input one.

Since a vector is automatically coerced, if needed, to the list of its elements,
we may simply use typical functions over lists (such as nth) to extract/filter
specific components.

The function change_vec A n v a i replaces the content of the vector v at
position i with the value a.

The most frequent operation on vectors for the purposes or our work is their
comparison. In this case, we have essentially two possible approaches: we may
proceed component-wise, using the following lemma� �
lemma eq_vec: @A,n.@v1,v2:Vector A n.@d.

(@i. i < n Ñ nth i A v1 d = nth i A v2 d) Ñ v1 = v2.� �
or alternatively we may manipulate vectors exploiting the commutation or idem-
potency of change_vec and its interplay with other operations.

3. The notion of Turing Machine

Turing Machines were defined by Alan M. Turing in [28]. To Computer
Scientists, they are a very familiar notion, so we shall address straight away
their formal definition. We formalized both mono and multi-tape machines2; in

2It is worth to recall that the choice about the number of tapes, while irrelevant for com-
putability issues, it is not from the point of view of complexity. Hartmanis and Stearns
[21] have shown that any k-tape machine can be simulated by a one-tape machine with at
most a quadratic slow-down, and Hennie [22] proved that in some cases this is the best we
can expect; Hennie and Stearns provided an efficient simulation of multi-tape machines on a
two-tape machine with just a logarithmic slow-down [15].
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many cases, simple multi tape (sub-)machines work on a single tape at a time,
and it is convenient to define them as “injections” of mono tapes machines.

3.1. The tape

A first interesting issue is the definition of the tape. The natural idea is to
formalize it as a zipper, that is a pair of lists l and r, respectively representing
the portions of the tape at the left and the right of the tape head; by convention,
we may assume the head is reading the first symbol on the right. Of course, the
machine must be aware this list can be empty, that means that the transition
function should accept an optional tape symbol as input. Unfortunately, in
this way, the machine is only able to properly react to a right overflow; the
problem arises when the left tape is empty and the head is moved to the left:
a new “blank” symbol should be added to the right tape. A common solution
in textbooks is to reserve a special blank character \ of the tape alphabet
for this purpose: the annoying consequence is that tape equality should be
defined only up to a suitable equivalence relation ignoring blanks. To make an
example, suppose we move the head to the left and then back to the right: we
expect the tape to end up in the same situation we started with. However,
if the tape was in the configuration pr s, rq we would end up in pr\s, rq. As
anybody with some experience in interactive proving knows very well, reasoning
up to equivalence relations is extremely annoying, that prompts us to look for a
different representation of the tape.

The main source of our problem was the asymmetric management of the
left and right tape, with the arbitrary assumption that the head symbol was
part of the right tape. If we try to have a more symmetric representation we
must clearly separate the head symbol from the left and right tape, leading to
a configuration of the kind pl, c, rq (mid-tape); if we have no c, this may happen
for three different reasons: we are on the left end of a non-empty tape (left
overflow), we are on the right end of a non-empty tape (right overflow), or the
tape is completely empty. This definition of the tape may seem conspicuous at
first glance, but it resulted to be quite convenient in practice.� �
inductive tape (sig:FinSet) : Type :=

| niltape : tape sig

| leftof : sig Ñ list sig Ñ tape sig

| rightof : sig Ñ list sig Ñ tape sig

| midtape : list sig Ñ sig Ñ list sig Ñ tape sig.� �
For instance, suppose to be in a configuration with an empty left tape, that is
pmidtape rs a lq; moving to the left will result in pleftof a lq; further moves to the
left are forbidden, and moving back to the right restores the original situation.

Given a tape, we may easily define the optional current symbol� �
definition current :=λsig.λt:tape sig.match t with

[ midtape _ c _ ñ Some ? c | _ ñ None ? ].� �
as well as the left and right portions of the tape:
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� �
definition left :=λsig.λt:tape sig.match t with

[ niltape ñ [] | leftof _ _ ñ [] | rightof s l ñ s::l | midtape l _ _ ñ l ].

definition right :=λsig.λt:tape sig.match t with

[ niltape ñ [] | leftof s r ñ s::r | rightof _ _ ñ [] | midtape _ _ r ñ r ].� �
Note that if pcurrent tq “ None than either pleft tq or pright tq is empty.

3.2. Multi-tape Machines

We shall consider machines with three possible moves for the head: L (left)
R (right) and N (None).� �
inductive move : Type :=| L : move | R : move | N : move.� �

A multi-tape Turing Machine, parametric over a tape alphabet sig and the
number tapes_no of additional working tapes, is a record composed of a finite
set of states, a transition function trans, a start state, and a set of halting
states identified by a boolean function. To encode the alphabet and the states,
we exploit the FinSet library of Matita, described in Section 2.� �
record mTM (sig:FinSet) (tapes_no:nat) : Type[1] :=

{ states : FinSet;

trans : states ˆ(Vector (option sig) (S tapes_no)) Ñ

states ˆ (Vector ((option sig) ˆmove) (S tapes_no));

start: states;

halt : states Ñ bool }.� �
The transition function takes in input a pair xq,~ay where q is the current

internal state and ~a is a vector of optional symbols under the tape heads; it
returns a pair xq1, ~py where q1 is a new internal state and ~p is a vector of actions.
Each action is a pair xb,my composed of a new optional character b and a move
m. The new character is optional since we want to give the possibility to leave
the tape untouched, that is particularly convenient when we are in an overflow
position on some tape3.

Executing an action p “ xb,my on a tape simply consists in writing b and
move the tape according to m:� �
definition tape_move_mono :=λsig,t,mv.
tape_move sig (tape_write sig t (\fst mv)) (\snd mv).� �

Writing a symbol is straightforward:� �
definition tape_write :=λsig.λt: tape sig.λs:option sig.

match s with [ None ñ t | Some s0 ñ midtape ? (left ? t) s0 (right ? t)].� �
3The type of actions has changed w.r.t.[7]; the point is that in mono-tape machines overflow

situations are essentially pathological, while in multi-tape machines it is extremely convenient
to exploit the border of the tapes as natural delimiters of data types stored on dedicated
working tapes.
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The move operation is slightly more complex; we start by splitting it in simpler
operations, according to the move� �
definition tape_move :=λsig.λt: tape sig.λm:move.
match m with [ R ñ tape_move_right ? t | L ñ tape_move_left ? t | N ñ t ].� �

Then, tape_move_right is defined in the following way (tape_move_left is
analogous); note in particular that trying to move right when we are in an
empty tape or in a right overflow situation has no effect.� �
definition tape_move_right :=λsig:FinSet.λt:tape sig.

match t with

[ niltape ñ niltape sig

| rightof _ _ ñ t

| leftof a rs ñ midtape sig [ ] a rs

| midtape ls a rs ñ

match rs with

[ nil ñ rightof sig a ls

| cons a0 rs0 ñ midtape sig (a::ls) a0 rs0

]

].� �
Finally, moving a vector of tapes w.r.t. a vector of actions simply consists

in mapping the corresponding mono-tape operation:� �
definition tape_move_multi :=λsig,n,ts,actions.
pmap_vec . . . (tape_move_mono sig) n ts actions.� �

3.3. Configurations and computations

A configuration relative to a given set of states and an alphabet sig is
a record composed of a current internal state cstate and a vector ctapes of
tapes.� �
record mconfig (sig,states:FinSet) (n:nat): Type[0] :=

{ cstate : states;

ctapes : Vector (tape sig) (S n) }.� �
To perform a transition step between two configurations we must first of

all extract from the input configuration c the current state and the vector of
characters under the tape heads; then, we apply the transition function to get
a new state news and an action, and finally build a new configuration com-
posed by news and the tapes resulting by executing the given action. This is
summarized by the following code:� �
definition step :=λsig.λn.λM:mTM sig n.λc:mconfig sig (states ?? M) n.

let xnews,actionsy :=trans sig n M xcstate . . . c,current_chars . . . (ctapes . . . c)y in

mk_mconfig . . . news (tape_move_multi sig ? (ctapes . . . c) actions).� �
where current_chars returns the symbols currently under the tape heads:� �
definition current_chars :=λsig.λn.λtapes. vec_map ?? (current sig) (S n) tapes.� �
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A computation is an iteration of the step function until a final internal state
is met. In Matita, we may only define total functions, hence we provide an
upper bound to the number of iterations, and return an optional configuration
depending on the fact that the halting condition has been reached or not. To
this purpose, we use the following generic iterator4 loop (inspired by [13]):� �
let rec loop (A:Type) n (f:AÑ A) p a on n :=

match n with

[ O ñ None ?

| S m ñ if p a then (Some ? a) else loop A m f p (f a) ].� �
The transformation between configurations relative to Turing machine M is:� �

definition loopM :=λsig,n.λM:mTM sig n.λi,cin.
loop ? i (step sig n M) (λc.halt sig n M (cstate . . . c)) cin.� �

3.4. Semantics

The usual notion of computation for Turing Machines is defined in relation
with given input and output functions, providing the initial tape encoding and
the final read-back function. As we know from Kleene’s normal form, the out-
put function is particularly important: the point is that our notion of Turing
Machine is monotonically increasing w.r.t. tape consumption, with the con-
sequence that the transformation relation between configurations is decidable.
However, input and output functions are extremely annoying when composing
machines and we would like to get rid of them as far as possible.

Our solution is to define the semantics of a Turing Machine by means of
a relation between the input tape and the final tape (possibly embedding the
input and output functions): in particular, we say that a machine M realizes a
relation R between tapes (M ( R), if for all t1 and t2 there exists a computation
leading from xqo, t1y, to xqf , t2y and t1 R t2, where q0 is the initial state and qf
is some halting state of M .� �
definition initc :=λsig,n.λM:mTM sig n.λtapes.
mk_mconfig sig (states sig n M) n (start sig n M) tapes.

definition Realize :=λsig,n.λM:mTM sig n.λR:relation (Vector (tape sig) ?).

@t.Di.Doutc.

loopM sig n M i (initc sig n M t) = Some ? outc ^ R t (ctapes . . . outc).� �
It is natural to wonder why we use relations on tapes, and not on configura-

tions. The point is that different machines may easily share tapes, but they can
hardly share their internal states. Working with configurations would force us
to an input/output recoding between different machines that is precisely what
we meant to avoid.

4For us, it was gratifying to discover that the small library of lemmas relative to the loop
iterator that we develop for the mono-tape case, did not require any extension or modification
in passing to the multi-tape case.
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The previous notion of realizability implies termination. It is useful to define
a weaker notion (weak realizability, denoted M ( R), asking that t1 R t2
provided there is a computation between t1 and t2. It is easy to prove that
termination together with weak realizability imply realizability (we shall use
the notation M Ó t to express the fact that M terminates on input tapes t).� �
definition Realize :=λsig,n.λM:mTM sig n.λR:relation (Vector (tape sig) ?).

@t,i,outc.

loopM sig n M i (initc sig n M t) = Some ? outc Ñ R t (ctapes ??? outc).

definition Terminate :=λsig,n.λM:mTM sig n.λt. Di,outc.
loopM sig n M i (initc sig n M t) = Some ? outc.

lemma WRealize_to_Realize : @sig,n .@M: mTM sig n.@R.

(@t.M Ó t) Ñ M ||ù R Ñ M |ù R.� �
3.5. A canonical relation

For every machine M we may define a canonical relation, that is the smallest
relation weakly realized by M� �
definition R_mTM :=λsig,n.λM:mTM sig n.λq.λt1,t2.
Di,outc. loopM ? n M i (mk_mconfig . . . q t1) = Some ? outc ^ t2 = (ctapes . . . outc).

lemma Wrealize_R_TM : @sig,n.@M:mTM sig n.

M ||ù R_TM sig n M (start sig n M).

lemma R_mTM_to_R: @sig,n.@M:mTM sig n.@R. @t1,t2.

M ||ù R Ñ R_mTM ?? M (start sig n M) t1 t2 Ñ R t1 t2.� �
3.6. The Nop Machine

As a first, simple example, we define a Turing machine performing no oper-
ation (we shall also use it in the sequel to force, by sequential composition, the
existence of a unique final state).

The machine has a single state that is both initial and final: we defines the
states as initN 1, that is the interval of natural numbers less than 1. This is
actually a sigma type containing a natural number m and an (irrelevant) proof
that m is smaller than n.� �
definition nop_states :=initN 1.

definition start_nop : initN 1 :=mk_Sig ?? 0 (le_n . . . 1).� �
The transition function is irrelevant, since it will never be executed: we define
it as a map returning a vector of dummy actions.� �
definition null_action :=λsig.λn.
Vector_of_list (make_list (option sig ˆmove) (xNone ?,Ny) (S n)).

definition nop :=

λalpha:FinSet.λn.mk_mTM alpha n nop_states

(λp.let xq,ay :=p in xq,null_action sig n)y) start_nop (λ_.true).� �
10



The semantic relation R nop characterizing the machine is just the identity;
the proof that the machine realizes R nop is entirely straightforward.� �
definition R_nop :=λalpha,n.λt1,t2:Vector (tape alpha) (S n).t2 = t1.

lemma sem_nop: @alpha,n.nop alpha n|ù R_nop alpha n.� �
4. Composing Machines

Turing Machines are usually reputed to suffer for a lack of compositionality.
Our semantic approach, however, allows us to compose them in relatively easy
ways. This will give us the opportunity to reason at a higher level of abstraction,
rapidly forgetting their low level architecture.

4.1. Sequential composition

The sequential composition M1 ¨M2 of two Turing Machines M1 and M2 is
a new machine having as states the disjoint union of the states of M1 and M2.
The initial state is the (injection of the) initial state of M1, and similarly the
halting condition is inherited from M2; the transition function is essentially the
disjoint sum of the transition functions of M1 and M2, plus a transition leading
from the final states of M1 to the (old) initial state of M2 (here it is useful to
have the possibility of not moving the tape).� �
definition seq_trans :=λsig,n. λM1,M2 : mTM sig n.

λp. let xs,ay :=p in

match s with

[ inl s1 ñ

if halt sig n M1 s1 then xinr . . . (start sig n M2), null_action sig ny

else let xnews1,my :=trans sig n M1 xs1,ay in xinl . . . news1,my
| inr s2 ñ let xnews2,my :=trans sig n M2 xs2,ay in xinr . . . news2,my
].

definition seq :=λsig,n. λM1,M2 : mTM sig n.

mk_mTM sig n

((states sig n M1) ‘ (states sig n M2))

(seq_trans sig n M1 M2)

(inl . . . (start sig n M1))

(λs.match s with [ inl _ ñ false | inr s2 ñ halt sig n M2 s2]).� �
If M1 ( R1 and M2 ( R2 then

M1 ¨M2 ( R1 ˝R2

that is a very elegant way to express the semantics of sequential composition.
The proof of this fact, however, is not as straightforward as one could expect.
The point is that M1 works with its own internal states, and we should “lift”
its computation to the states of the sequential machine. To have an idea of the
kind of results we need, here is one of the the key lemmas:
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� �
lemma loop_lift : @A,B,k,lift,f,g,h,hlift,c,c1.

(@x.hlift (lift x) = h x) Ñ

(@x.h x = false Ñ lift (f x) = g (lift x)) Ñ

loop A k f h c = Some ? c1 Ñ

loop B k g hlift (lift c) = Some ? (lift . . . c1).� �
It says that the result of iterating a function g starting from a lifted configuration
lift c is the same (up to lifting) as iterating a function f from c provided that

1. a base configuration is halting if and only if its lifted counterpart is halting;

2. f and g commute w.r.t. lifting on every non-halting configuration.

4.2. If then else

The next machine we define is an if-then-else composition of three machines
M1,M2 and M3 respectively implementing a boolean test, and the two condi-
tional branches. We found convenient to store the result of the boolean test in
an internal state of the first machine instead than on a tape: in particular we
expect to end up in a distinguished final state qacc if the test is successful, and
in a different state otherwise. This special state qacc must be explicitly men-
tioned when composing the machines. The definition of the if-then-else machine
is then straightforward: the states of the new machine are the disjoint union of
the states of the three composing machines; the initial state is the initial state
of M1; the final states are the final states of M2 and M3; the transition function
is the union of the transition functions of the composing machines, where we
add new transitions leading from qacc to the initial state of M2 and from all
other final states of M1 to the initial state of M2.� �
definition if_trans :=λsig,n. λM1,M2,M3 : mTM sig n. λq:states sig n M1.

λp. let xs,ay :=p in

match s with

[ inl s1 ñ

if halt sig n M1 s1 then

if s1==q then xinr . . . (inl . . . (start sig n M2)), null_action ??y

else xinr . . . (inr . . . (start sig n M3)), null_action ??y

else let xnews1,my :=trans sig n M1 xs1,ay in xinl . . . news1,my
| inr s’ ñ

match s’ with

[ inl s2 ñ let xnews2,my :=trans sig n M2 xs2,ay in xinr . . . (inl . . . news2),my
| inr s3 ñ let xnews3,my :=trans sig n M3 xs3,ay in xinr . . . (inr . . . news3),my
]].� �� �

definition ifTM :=λsig,n. λcondM,thenM,elseM : mTM sig n.

λqacc: states sig n condM.

mk_mTM sig n

((states sig n condM) ‘ (states sig n thenM) ‘ (states sig n elseM))

(if_trans sig n condM thenM elseM qacc)

(inl . . . (start sig n condM))

(λs.match s with

[ inl _ ñ false

| inr s’ ñ match s’ with

[ inl s2 ñ halt sig n thenM s2

| inr s3 ñ halt sig n elseM s3 ]]).� �
12



Our realizability semantics is defined on tapes, and not configurations. In
order to observe the accepting state we need to define a suitable variant that
we call conditional realizability, denoted by M ( rq : R1, R2s. The idea is that
M realizes R1 if it terminates the computation on q, and R2 otherwise.� �
definition accRealize :=λsig,n.λM:mTM sig n.λacc:states sig n M.λRtrue,Rfalse.
@t.Di.Doutc.

loopM sig n M i (initc sig n M t) = Some ? outc ^

(cstate ??? outc = acc Ñ Rtrue t (ctapes ??? outc)) ^

(cstate ??? outc ‰acc Ñ Rfalse t (ctapes ??? outc)).� �
The semantics of the if-then-else machine can be now elegantly expressed in

the following way:� �
lemma sem_if: @sig,n.@M1,M2,M3:mTM sig n.@Rtrue,Rfalse,R2,R3,acc.

M1 |ù [acc: Rtrue,Rfalse] Ñ M2 |ù R2 Ñ M3 |ù R3 Ñ

ifTM sig n M1 M2 M3 acc |ù (Rtrue ˝R2) Y(Rfalse ˝R3).� �
It is also possible to state the semantics in a slightly stronger form: in fact,

we know that if the test is successful we shall end up in a final state of M2 and
otherwise in a final state of M3. If M2 has a single final state, we may express the
semantics by a conditional realizability over this state. As we already observed,
a simple way to force a machine to have a unique final state is to sequentially
compose it with the nop machine. Then, it is possible to prove the following
result (the conditional state is a suitable injection of the unique state of the nop
machine):� �
lemma acc_sem_if: @sig,n,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc.

M1 |ù [acc: Rtrue, Rfalse] Ñ M2 |ù R2 Ñ M3 |ù R3 Ñ

ifTM sig n M1 (single_finalTM . . . M2) M3 acc |ù

[inr . . . (inl . . . (inr . . . start_nop)): Rtrue ˝R2, Rfalse ˝R3].� �
4.3. While

The last machine we are interested in, implements a while-loop over a body
machine M . Its definition is really simple, since we have just to add to M a
single transition leading from a distinguished final state q back to the initial
state.� �
definition while_trans :=λsig,n. λM: mTM sig n. λq:states sig n M. λp.
let xs,ay :=p in

if s == q then xstart ?? M, null_action ??y

else trans ?? M p.

definition whileTM :=λsig,n. λM: mTM sig n. λqacc: states ?? M.

mk_mTM sig n

(states ?? M)

(while_trans sig n M qacc)

(start sig n M)

(λs.halt sig n M s ^ s==qacc).� �
More interesting is the way we can express the semantics of the while ma-

chine: provided that M ( rq : R1, R2s, the while machine (relative to q) weakly
realizes R˚1 ˝R2:
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� �
theorem sem_while: @sig,n,M,acc,Rtrue,Rfalse.

halt sig n M acc = true Ñ

M |ù [acc: Rtrue,Rfalse] Ñ

whileTM sig n M acc ||ù (star ? Rtrue) ˝Rfalse.� �
In this case, the use of weak realizability is essential, since we are not guaranteed
to exit the while loop, and the computation can actually diverge. Interestingly,
we can reduce the termination of the while machine to the well foundedness of
Rtrue:� �
theorem terminate_while: @sig,n,M,acc,Rtrue,Rfalse,t.

halt sig n M acc = true Ñ

M |ù [acc: Rtrue,Rfalse] Ñ

WF ? (inv . . . Rtrue) t Ñ whileTM sig n M acc Ót.� �
5. Basic Machines

An important lesson learned in [7] was to avoid modelling relatively complex
operations by directly writing a corresponding Turing Machine. While writing
the code is usually not very complex, proving its correctness can easily become
a nightmare, due to the complexity of specifying and reasoning about internal
states of the machines and all intermediate configurations. A much better ap-
proach consists in specifying a small set of basic machines, and define all other
machines by means of the compositional constructs of the previous section. In
this way, we may immediately forget about Turing Machines’ internals, since the
behavior of the whole program only depends on the behavior of its components.

We can divide the basic machines in two sets: machines acting on a single
tape, and machines acting in parallel over two tapes.

The set of machines acting on a single table is essentially a subset of the
machines5 already considered in [7]:

write c write the character c on the tape at the current head position

move D move the head one step towards direction D

test char f perform a boolean test f on the current character ending in state
tc_true or tc_false according to the result of the test

The specification of these machines is straightforward. We typically generalized
them to the multi-tape case by means of a generic “injection” operation allowing
to operate on a specified tape.

Typical basic machines working in parallel on two tapes are the following:

par move step i j D make a parallel D move on tapes i and j

5Most of them are actually families of machines, indexed over suitable input arguments.
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compare step i j compare head-characters on tapes i and j, ending up in state
comp1 if they are equal, and comp2 otherwise.

copy char N i j copy head-character on tape i to tape j without advancing
the tapes.

It is interesting to observe that the swap operation, that played an important
role when working on mono-tape machines, is absolutely useless in the multi-
tape case.

5.1. Composing machines

Let us see an example of how we can use the previous bricks to build more
complex functions. In Turing Machines, moving the head to a specific position
on the tape is a very frequent operation. In particular, our universal machine
needs to return to one end of a given tape on several different occasions. We are
now going to show how to write a machine move to end that moves the head
towards a given direction until the end of the tape is met.

A step of the machine essentially consists of a move operation, but guarded
by a conditional test; then we shall simply wrap a while machine around this
step.� �
definition mte_step :=λalpha,D.
ifTM ? (test_null alpha) (single_finalTM ? (move alpha D)) (nop ?) tc_true.� �
If the test succeeds we expect to end up in the single final state of the “then”
machine, that is the following mte_acc state:� �
definition mte_acc : @alpha,D.states ? (mte_step alpha D) :=

λalpha,D.(inr . . . (inl . . . (inr . . . start_nop))).� �
In this case, the input tape t1 must be a midtape and we expect to end up with
a tape t2 resulting from t1 by performing the given move. This is expressed by
the following relation:� �
definition R_mte_step_true :=λalpha,D,t1,t2.
Dls,c,rs. t1 = midtape alpha ls c rs ^ t2 = tape_move ? t1 D.� �

Conversely, if the test fails it means that we are in overflow, and we do nothing:� �
definition R_mte_step_false :=λalpha.λt1,t2:tape alpha.

current ? t1 = None ? ^ t1 = t2.� �
The semantics of the mte_step machine is hence expressed as follows:� �
lemma sem_mte_step :

@alpha,D.mte_step alpha D |ù

[ mte_acc . . . : R_mte_step_true alpha D, R_mte_step_false alpha ] .� �
Here is the full move_to_end program:
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� �
definition move_to_end :=λsig,D.whileTM sig (mte_step sig D) (mte_acc . . . ).

definition R_move_to_end_l :=λsig,int,outt.
(current ? int = None ? Ñ outt = int) ^

@ls,c,rs.int = midtape sig ls c rs Ñ

outt = mk_tape ? [ ] (None ?) (reverse ? ls@c::rs).

definition R_move_to_end_r :=λsig,int,outt.
(current ? int = None ? Ñ outt = int) ^

@ls,c,rs.int = midtape sig ls c rs Ñ

outt = mk_tape ? (reverse ? rs@c::ls) (None ?) [ ].

lemma sem_move_to_end_l : @sig. move_to_end sig L |ù R_move_to_end_l sig.

lemma sem_move_to_end_r : @sig. move_to_end sig R |ù R_move_to_end_r sig.� �
We do not give semantics for the useless non-terminating machine obtained by
instantiating move to end to the N direction.

6. Normal Turing Machines

A normal Turing machine is a mono-tape machine where:

1. the tape alphabet is t0, 1u;

2. the finite states are supposed to be an initial interval of the natural num-
bers.

By convention, we assume the starting state is 0.� �
record normalTM : Type :=

{ no_states : nat;

pos_no_states : (0 < no_states);

ntrans : (initN no_states)ˆOption bool Ñ (initN no_states)ˆ(Option bool)ˆMove;

nhalt : initN no_states Ñ bool}.� �
We may easily define a coercion transforming a normal TM into a traditional

Machine.
A normal configuration nconfig n is a configuration for a normal machine

with n states, that is record composed by an element in initN n (representing
the state) and a single boolean tape.� �
definition nconfig :=λn. config FinBool (initN n).� �
6.1. Tuples

By the results on FinSets of Section 2 we know that every function f between
two finite sets A and B can be described by means of a finite graph of pairs
xa, f ay. Hence, the transition function of a normal Turing machine can be
described by a finite set of tuples xxi, cy, xj, d,myy of the following type:

pinitN nˆ option boolq ˆ pinitN nˆ poption boolq ˆmoveq
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Unfortunately, this description is not directly suitable for a Universal Machine,
since such a machine must work with a fixed set of states, while the size on n
is unknown. Hence, we must pass from natural numbers to a representation for
them on a finitary, e.g. binary, alphabet. In general, we shall associate to a pair
xxi, cy, xj, d,myy a tuple with the following syntactical structure

| wi x wj y z

where

1. ”|” is a special character used as a separator;

2. wi and wj are lists of booleans representing the states i and j;

3. x represents the symbol c: it is a special character null if c “ None and
is the boolean b if c “ Some b; the character y represents d in the same
way;

4. similarly, for moves we map N into null, and L and R on the two booleans
false and true.

This encoding of tuples is much simpler than the one described in [7]. In fact,
working with a multi-tape machine, the set of tuples will be stored on a dedicated
tape, that allows to spare a few delimiters; moreover, having multiple heads,
we may avoid the annoying use of markers to remember tape positions during
comparison and copying operations on strings (performed over different tapes).� �
definition mk_tuple :=λqin,cin,qout,cout,mv.
bar :: qin @ cin :: qout @ [cout; mv].� �

We codified a state i in a machine with n states as a list of n bits where the
bit at position i is set to 1 and the other bits are all 0. The function computing
such a representation is called bits_of_state (we omit the obvious definition).
As a matter of fact, the actual encoding of states is not very important: the only
relevant points are that (a) it is convenient to assume that all states (and hence
all tuples for a given machine) have a fixed, uniform length; (b) an additional
(first) bit of the representation of the state tells us if the state is final or not.

In the same way, the two functions low_char and low_mv compute the low
level representation of characters and moves of the normal machine.� �
definition low_char :=λc.
match c with [ None ñ null | Some b ñ bit b ].

definition low_mv :=λm.
match m with [ R ñ bit true | L ñ bit false | N ñ null ].� �

It is simple to prove that such encoding functions (as well as bits_of_state)
are injective (and hence invertible).

6.2. Input configurations

An input configuration is a string corresponding to an input xq, ay for the
transition function of the normal machine, preceded by the symbol “|”.
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If bar::qin@cin::qout@[cout;mv] is a tuple, then bar::qin@[cin] is an
input configuration, and similarly bar::qout@[cout] is the (next) input con-
figuration.

In the universal machine, input configurations will be stored on a dedicated
tape. The following predicate captures the relevant syntactical characteristics
of input configurations:� �
definition is_config : :=λn,cfg.Dqin,cin.
only_bits qin ^ cin ‰bar ^ |qin| = S n ^ cfg = bar::qin@[cin].� �

An important property of tuples is that, if they derive from a transition
function, they are deterministic: for any input configuration there is only one
corresponding output configuration.� �
lemma deterministic: @M:normalTM.@l,t1,t2,c,out1,out2.

l = graph_enum ?? (ntrans M) Ñ

mem ? t1 l Ñ mem ? t2 l Ñ

is_config (no_states M) c Ñ

tuple_encoding ? (nhalt M) t1 = (c@out1) Ñ

tuple_encoding ? (nhalt M) t2 = (c@out2) Ñ

out1 = out2.� �
6.3. The table of tuples

The list of all tuples, concatenated together, provides the low level descrip-
tion of the normal Turing Machine to be interpreted by the Universal Machine:
we call it a table.� �
definition table_TM :=λn,l,h.flatten ? (tuples_list n h l).� �

The main lemma relating a table to the list of its tuples l is the following
one, stating that for any input configuration c, if c is matched inside the table,
then it is followed by a string out such that c@out is the encoding of some tuple
t in l.� �
lemma table_to_list: @n,l,h,c. is_config n c Ñ

@ll,lr.table_TM n l h = ll@c@lr Ñ

Dout,lr0,t. lr = out@lr0 ^ tuple_encoding n h t = (c@out) ^ mem ? t l.� �
7. The Universal Machine

In this section we define a multi-tape Universal Machine (UM) for normal
Turing Machines. Let M be the normal machine to be simulated; the universal
machine will work with three tapes, with the following functions:

• the object tape (obj) is used to simulate the tape of M ;

• the configuration (cfg) tape contains the encoding of the current state of
M , concatenated with a copy of the head symbol (that is, at each step of
M , the input for its transition function)
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• the program (prg) tape contains the table of tuples relative to M .

Each step of the normal machine M is simulated by the following sequence
of operations:� �
definition unistep :=

match_m cfg prg UniS 2 ¨ (* find a matching tuple *)

restart_tape cfg ¨ (* move to the beginning of the cfg tape *)

mmove cfg ? 2 R ¨ (* skip initial bar on cfg *)

copy prg cfg UniS 2 ¨ (* copy the tuple output to cfg *)

exec_move (* update the obj tape *)� �
where mmove is the (non-primitive) multi-tape version of move. The behaviour
of the other functions is summarized in Figure 1, where we also also emphasize
the expected positions of the tape heads after each operation (that is a quite
delicate semantical issue). An execution of unistep is shown in Figure 2.

The body of the universal machine uni_body consists of checking the termi-
nation condition (i.e. examining the first bit of the current state, to see if it is
a final state) and, if the condition is not met, executing uni_step.

The universal machine is simply a while over uni_body:� �
definition uni_body :=

ifTM ?? (mtestR ? cfg 2 stop)

(single_finalTM ?? unistep)

(nop . . . ) (mtestR_acc ? cfg 2 stop).

definition universalTM :=whileTM ? uni_body us_acc.� �
8. Matching

The matching operation involves repeatedly comparing the current configu-
ration to the input configuration of each tuple on the prg tape: when the two
are different, we will move to the next tuple and loop; otherwise we will stop,
keeping the head of the prg tape at the beginning of the output configuration
of the matching tuple.

Matching is the most complex operation used in the universal machine, since
it is obtained by iterating, in a while loop, the string comparison machine, which
is made of a while loop itself. In our mono-tape formalization, its implementa-
tion was further complicated by the need to consider various kinds of delimiters,
and to set marks needed to move back and forth between the two strings under
consideration.

8.1. String comparison

In a multi-tape setting we can compare two characters in a single step,
without any need to store the first character in the internal state (let alone use
the more complicated comparison technique adopted in [7] for technical reasons).
A further difference, accounting for more simplification, is that the new machine
does not use delimiters to decide whether the comparison has been completed
successfully, but terminates when one of the two tapes is over. This machine is
obtained by means of a simple while iterating the compare_step basic machine.
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match m:

src

dst

a1 a2 ............... an

........... a1 a2 ............... an ............

ÝÑ

src

dst

a1 a2 ............... an

........... a1 a2 ............... an ............

restart tape:

i x y z .......................................... ÝÑ i x y z ..........................................

copy:

src

dst

........... a1 a2 ................... an ...........

x1 x2 ............... xn

ÝÑ

src

dst

........... a1 a2 ............... an ...........

a1 a2 ............... an

cfg to obj:

obj

cfg

....................... x .......................

......................... c

ÝÑ

obj

cfg

....................... c .......................

......................... c

(if c is a bit)

Œ
obj

cfg

....................... x .......................

......................... c

(if c is null)
obj to cfg (current obj ‰ null):

obj

cfg

....................... c .......................

......................... x

ÝÑ

obj

cfg

....................... c .......................

......................... c

obj to cfg (current obj = null):

obj

cfg

..................................................

......................... x

ÝÑ

obj

cfg

..................................................

....................... null

tape move obj (the direction depends on current prg):

obj

prg

................... x y z ......................

.................................... 0 ...........

ÝÑ

obj

prg

................... x y z ......................

.................................... 0 ...........

Figure 1: Machines used in unistep.
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x a y. . . . . . | aq | q q' .... . . | a a' 0 |

obj cfg prg

match_m

x a y. . . . . . | aq | q q' .... . . | a a' 0 |

restart_tape

x a y. . . . . . | aq | q q' .... . . | a a' 0 |

mmove

x a y. . . . . . | aq | q q' .... . . | a a' 0 |

copy

x a y. . . . . . | a'q' | q q' .... . . | a a' 0 |

cfg_to_obj

x a' y. . . . . . | a'q' | q q' .... . . | a a' 0 |

tape_move_obj

x a' y. . . . . . | a'q' | q q' .... . . | a a' 0 |

restart_tape

x a' y. . . . . . | a'q' | q q' .... . . | a a' 0 |

obj_to_cfg

x a' y. . . . . . | xq' | q q' .... . . | a a' 0 |

Figure 2: Sample execution of unistep.

� �
definition compare :=λi,j,sig,n.
whileTM . . . (compare_step i j sig n) comp1.� �

More precisely, the compare machine running on tapes i and j will succeed
if one of the two is a prefix of the other one. Since we plan to use the machine
to compare an initial configuration in prg with the content of cfg, success is
corresponds to the case where the portion of those two tapes standing on the
right of the head is found to be equal, until the end of tape cfg is reached.

Failure happens when at some point, the k-th characters on the right of
the two tapes considered are different, in which case the heads are left on the
two differing characters. These two outcomes are described by the semantics of
compare:� �
definition R_compare :=

λi,j,sig,n.λint,outt: Vector (tape sig) (S n).

. . .
(@ls,x,rs,ls0,rs0.

nth i ? int (niltape ?) = midtape sig ls x rs Ñ
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nth j ? int (niltape ?) = midtape sig ls0 x rs0 Ñ

(Drs’.rs = rs0@rs’ ^

outt = change_vec ??

(change_vec ?? int

(mk_tape sig (reverse sig rs0@x::ls) (option_hd sig rs’)

(tail ? rs’)) i)

(mk_tape sig (reverse sig rs0@x::ls0) (None ?) [ ]) j) _

. . .
(Dxs,ci,cj,rs’,rs0’.ci ‰cj ^ rs = xs@ci::rs’ ^ rs0 = xs@cj::rs0’ ^

outt = change_vec ??

(change_vec ?? int (midtape sig (reverse ? xs@x::ls) ci rs’) i)

(midtape sig (reverse ? xs@x::ls0) cj rs0’) j)).

lemma wsem_compare : @i,j,sig,n.i ‰j Ñ i < S n Ñ j < S n Ñ

compare i j sig n ||ù R_compare i j sig n.� �
The semantics of compare as we formalized it also includes two more pos-

sible outcomes (here denoted by ellipses): a symmetric success case (due to
the fact that the machine operates in the same way on the two tapes) and a
base case stating the outcome of the machine when the termination condition
is immediately verified and no iterations of compare_step are executed.

8.2. match step

The match_step starts by performing a compare over the tapes cfg and prg,
then it checks whether the halting condition is met: we want to stop if the
head of cfg or prg has stopped over an uninitialized portion of the tape. In the
former case, the compare operation was successful; in the latter case, we have
finished examining a table without finding a matching tuple. Checking whether
the table has ended may seem useless, since it is supposed to represent a total
transition function, but it will allow us to prove the termination of match_step
for all inputs (including ill-formed ones).

If the termination condition is not met, in order to prepare for a new iteration
of match_step we will move back to the start of tape cfg, and to the next tuple
on tape prg. Since both the configuration on cfg and all the tuples in the tape
start with a “|” character, we obtain the same result with a simpler machine
by moving to the next character in prg, instead of moving to the next tuple:
subsequent iterations will fail immediately until the next tuple, starting with
“|”, is found.� �
definition match_step :=λsrc,dst,sig,n.
compare src dst sig n ¨

(ifTM ?? (partest sig n (match_test src dst sig ?))

(single_finalTM ??

(rewind src dst sig n ¨ mmove dst ?? R))

(nop . . . )
partest1).� �

Notice that the termination condition match test will check whether either
the source or the destination tape have ended.

The match m machine is obtained by simply iterating match step until the
termination condition is met.
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� �
definition match_m :=λsrc,dst,sig,n.
whileTM . . . (match_step src dst sig n)

(inr ?? (inr ?? (inl . . . (inr ?? start_nop)))).� �
After a successful execution of match m, the prg head will be at the beginning

of the output of the matching tuple, and the cfg head will be at the right end
of its tape in overflow position.

9. State update

We decompose the execution of an action in two simpler operations, which
can be executed sequentially: in the first half, we will copy the output portion
of the tuple selected by the match m machine into the cfg tape, which will then
contain the new current state and the new character to be written to the tape;
the second half is concerned with updating the obj tape and obtaining the next
input configuration.

The update of the state is performed, after returning the head on the cfg
tape to the first character on the left (restart tape), by the copy machine.� �
definition copy :=λsrc,dst,sig,n.
whileTM . . . (copy_step src dst sig n) copy1.� �

Similarly to the compare operation, copying is done one character at a time
and stops when the end of the tape is reached on either the source or the
destination. This is obtained by iterating the conditional machine copy step in
a while cycle. In our case, it is the destination (cfg) that is going to end first:
thus at the end of the execution, the cfg head will be at the right end of its tape
in overflow position, and the prg head will have moved to the last character of
the selected tuple (representing the direction towards which the obj head should
move).

10. Tape update

Finally, the exec move updates the tape of the simulated machine.� �
definition exec_move :=

cfg_to_obj ¨ tape_move_obj ¨ restart_tape prg 2 ¨obj_to_cfg.� �
The cfg to obj machine reads the new character to be written from the cfg

tape (where it has just been written by copy) and writes it to the obj tape at
the current position. However, if the character is not a bit, but the special value
null, the prg tape will be left untouched.

tape move obj moves the obj head to the left (if the current character under
the prg head is a 0 bit), to the right (if that character is a 1 bit), or does not
move it at all (if that character is a null).

The restart tape has the usual semantics, and is used in this case to return
the prg head to its initial position, where it is expected to be at the next iteration
of unistep.
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The last machine obj to cfg updates cfg putting the new character read
from obj, obtaining the next input configuration. If the obj head is in an
overflow position, the special character null will be written to cfg instead.
After this operation, the cfg head is also returned to its initial position.

The previous machines are relatively trivial; the interesting point, in this
case, is to relate their low-level operational behaviour to the intended meaning,
that is to mimic the execution of a move of the simulated machine.

11. Main Results

Given a configuration c for a normal machine M, the following function
builds the corresponding “low level” representation, that are the three tapes
[obj;cfg;prg] manipulated by the Universal Machine:� �
definition low_tapes: @M:normalTM.@c:nconfig (no_states M).Vector ? 3 :=

λM:normalTM.λc:nconfig (no_states M).Vector_of_list ?

[tape_map ?? bit (ctape ?? c);

midtape ? [ ] bar

((bits_of_state ? (nhalt M) (cstate ?? c))@[low_char (current ? (ctape ?? c))]);

midtape ? [ ] bar (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M)))

].� �
The first tape is simply an embedding of the tape ctape ?? c in the alphabet

of the Universal Machine: every bit b is transformed in the character bit b;
the tape_map function is the obvious extension of the map functions to tapes:� �
definition tape_map :=λA,B:FinSet.λf:AÑ B.λt.
mk_tape B (map ?? f (left ? t))

(option_map ?? f (current ? t)) (map ?? f (right ? t)).� �
The second tape contains the current input configuration for the transition

function discussed in Section 6.2.
Finally, the third tape is just the table of tuples for the normal machine M.
The semantics of the unistep machine can be expressed very elegantly in

terms of low_tapes:� �
definition R_unistep_high :=λM:normalTM.λt1,t2.
@c:nconfig (no_states M).

t1 = low_tapes M c Ñ t2 = low_tapes M (step ? M c).� �
Every relation over tapes can be reflected into a corresponding relation on

their low-level representations:� �
definition low_R :=λM,q,R.λt1,t2:Vector (tape FSUnialpha) 3.

@Mt. t1 = low_tapes M (mk_config ?? q Mt) Ñ

Dcout. R Mt (ctape . . . cout) ^
halt ? M (cstate . . . cout) = true ^ t2 = low_tapes M cout.� �
Starting from the above semantics of the unistep machine, it is then easy

(20 lines) to prove that, for any normal machine M , the Universal Machine
weakly realizes the low level version of the canonical relation for M
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� �
theorem sem_universal: @M:normalTM. @q.

universalTM ||ù low_R M q (R_TM FinBool M q).� �
As a corollary of the the latter result we obtain that, for any relation weakly
realized by M , the universal machine weakly realizes its low level counterpart.� �
M ||ù R Ñ universalTM ||ù (low_R M (start ? M) R).� �

Termination is stated by the following result, whose proof (once we may rely the
totality of the unistep function, is entirely straightforward (ten lines of code):� �
theorem terminate_UTM: @M:normalTM.@t.

M Ó t Ñ universalTM Ó(low_tapes M (mk_config ?? (start ? M) t)).� �
12. Conclusions

We provided in this paper a formalization of the basic Theory of Turing
Machines, up to the definition of a universal machine and the proof of its cor-
rectness.

The work is a deep revisitation of [7]; in particular, we generalized the in-
vestigation from mono-tape machines to the multi-tape case. In spite of the
fact the meta-theory of multi-tapes machines is technically more complex, its
formalization, taking advantage of the vector library of Matita, takes about the
same space of the mono-tape case.

On the other side, the formalization of the universal machine is sensibly
simplified. In Table 3 we compare the size, in lines, of the main files in the
case of the mono-tape version described in [7] with respect to the multi-tape
version described in this article. Note that the complex management of marks
for copying/comparing strings in the mono-tape case has no counterpart in
the multi-tape case. We should also stress that termination was still under
development in [7], while it has been completely proved in the current version.

file name mono multi content
marks.ma 901 0 management of marks
alphabet.ma 110 59 alphabet of the universal machine
normalTM.ma 319 257 normal Turing machines
tuples.ma 276 229 the table of tuples
match.ma 727 729 matching a tuple in the table
uni_step_aux.ma 778 521 auxiliary machines
uni_step.ma 585 458 emulation of a high-level step
universal.ma 394 120 the universal machine
total 4090 2373

Figure 3: Main files and their dimension in lines

.
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Our universal machine is a multi-tape machine simulating mono-tape normal
machines. To provide a truly Universal Machine we should still prove that

1. any multi-tape machine can be transformed into a mono-tape machine;
we have a n logpnq slow down in this transformation, but since in the case
of our universal machine all tapes but one have fixed sizes, the slow-down
is just linear in our case

2. any mono-tape machine can be transformed into a normal machine with
just a linear slow-down;

Apparently, this should give a fair interpreter for normal machines, in the sense
of [4]. There is a delicate issue, however, somewhat overlooked in the literature.
In the last transformation we change the alphabet, and hence the structure of
the input: so the input of the normalized universal machine is not the same as
the input of the original universal machine, and it is not entirely clear at all
that we can operate this modification of the input on a single tape (!) machine
in linear time. In modern terminology, we need to escape the input, that could
take quadratic time on a single-tape machine. As far as we understand the
issue at present, it seems that, at best, we can simulate a normal machine of
time-complexity Opfpnqq in a time that is Opfpnq ` n2q.

This is precisely the kind of problems that we hope to contribute clarifying
by means of our investigation. Complexity Theory, more than Computability, is
indeed the real, final target of our research. Any modern textbook in Complexity
Theory (see e.g. [3]) starts with introducing Turing Machines just to claim,
immediately after, that the computational model does not matter. The natural
question we are addressing and that we hope to contribute to clarify is: what
matters?

The way we plan to attack the problem is by reversing the usual deduc-
tive practice of deriving theorems from axioms, reconstructing from proofs the
basic assumptions underlying the major notions and results of Complexity The-
ory. The final goal of our Reverse Complexity Program is to obtain a formal,
axiomatic treatment of Complexity Theory at a comfortable level of abstrac-
tion, providing in particular logical characterizations of Complexity Classes that
could help to better grasp their essence, identify their distinctive properties, sug-
gest new, possibly non-standard computational models and finally provide new
tools for separating them.

The axiomatization must obviously be validated with respect to traditional
cost models, and in particular w.r.t. Turing Machines that still provide the
actual foundation for this discipline. Hence, in conjunction with the “reverse”
approach, it is also important to promote a more traditional forward approach,
deriving out of concrete models the key ingredients for the study of their com-
plexity aspects. The work in this paper, is meant to be a contribution along
this second line of research.
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