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AREA FORMULA FOR CENTERED HAUSDORFF
MEASURES IN METRIC SPACES

BRUNO FRANCHI, RAUL PAOLO SERAPIONI,
AND FRANCESCO SERRA CASSANO

Abstract. Motivated by an example in [Mag], we study, inside
a separable metric space (X, d), the relations between centered
and non centered m-dimensional densities of a Radon measure µ
in X and their relations with spherical and centered spherical m-
dimensional Hausdorff measures. Eventually we give an applica-
tion to finite perimeter sets in Carnot groups.

1. Introduction

In a recent interesting note [Mag], Valentino Magnani observed the
following fact. In a separable metric space (X, d), endowed with a
Radon measure µ, absolutely continuous with respect to them-dimensional
spherical measure Sm, the area formula for µ with respect to Sm i.e.

(1.1) µ(B) =

∫
B

Θ∗mF (µ, x) dSm(x)

for any Borel set B may fail to be true if the m-dimensional Federer
density Θ∗mF (µ, ·) is substituted by the (centered) m-dimensional den-
sity Θ∗m(µ, ·) (see Definition 1.7 (i) and (ii)).

Indeed Magnani provides the following example: in the Heisenberg
group X = H1 ≡ R3, equipped with its sub-Riemannian metric d, there
is a Radon measure µ, a set A ⊂ H1 and two constants 0 < k1 < k2
such that µ is absolutely continuous w.r.t. S2 and for all x ∈ A

Θ2(µ, x) = k1 < k2 = Θ∗2F (µ, x)
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and for all t ∈ (k1, k2)

(1.2) µ(A) > tS2(A).

Because of (1.2), given A ⊂ X and k > 0, the implication

(1.3) Θm(µ, x) = k ∀x ∈ A ⇒ µ A = k Sm A

fails to be true in general.
Implication (1.3) was used by us to prove that the perimeter mea-

sure |∂E|G agrees, up to a multiplicative constant, with the (Q − 1)-
dimensional spherical Hausdorff measure SQ−1, in a step 2 Carnot
group G of Hausdorff dimension Q. Hence a new proof of this result is
in order.

Indeed, in [Mag2], Magnani himself provides an alternative proof of
our result using his new notion of (n− 1) vertical regular distance (see
Theorem 4.19 in this paper).

We take here a different approach to the same topic. From the pre-
ceding considerations it appears that Federer density Θ∗mF (µ, x) plays
a privileged role in area formulas when the spherical measure Sm is
used. On the other hand, non centered densities as Θ∗mF (µ, x) are
often harder to compute than the corresponding centered densities
Θ∗m(µ, x). Therefore, motivated by Magnani’s note, we looked for
an area formula different from (1.1) in which the density Θ∗m(µ, x) is
used, but the measure Sm is replaced by an equivalent one.
Centered Hausdorff measures Cm (see Definition 2.1 (iii)) seem to be
the right substitutes. Indeed we could prove the following theoretic
area formula: if A is a Borel set in a metric space X, if µ A is abso-
lutely continuous with respect to Cm A then for each for each Borel
B ⊂ A,

(1.4) µ(B) =

∫
B

Θ∗m(µ, x) dCm(x),

see Theorem 3.1 and Corollary 3.14.
Centered Hausdorff measures Cm were introduced in [SRT] to es-

timate more efficiently the Hausdorff dimension of self-similar fractal
sets (see also [LM]). Inside a general metric space a detailed study of
centered Hausdorff measures has been carried on in [E].

Spherical and centered Hausdorff measures Sm and Cm may disagree
(see [SRT]), even if they are equivalent, that is

Sm ≤ Cm ≤ 2m Sm .
However in the Euclidean case, i.e. when X = Rn, they agree on recti-
fiable sets (see [SRT]). We show that this coincidence keeps being true
for the simplest 1-dimensional submanifolds, namely Lipschitz curves,
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within a general metric setting (see Theorem 2.6). Besides, the coin-
cidence is still true inside Carnot groups for the case of homogeneous
dimension Q (see Corollary 4.13) and for 1-codimensional intrinsic rec-
tifiable sets (see Theorem 4.28).

Using area formula (1.4) a new proof of the previously mentioned
representation result for the perimeter measure |∂E|G follows, so filling
-in a different way- the gaps in [FSS1, FSS2, Mar].

Let us introduce some notation and notions. Throughout this paper
(X, d) is a separable metric space,

B(a, r) := {x ∈ X : d(a, x) ≤ r}
are the closed ball with centre a and radius r > 0. The diameter of a
set E ⊂ X is denoted as

diam(E) := sup {d(x, y) : x, y ∈ E} .
If µ is an outer measure in X and A ⊂ X the restriction of µ to A is
denoted as

µ A(E) = µ(A ∩ E) if E ⊂ X.

We assume the following condition on the diameter of closed balls:
there are constants ρ0, 0 < ρ0 ≤ 2 and δ0 > 0 such that, for all
r ∈ (0, δ0) and x ∈ X,

(1.5) diam(B(x, r)) = ρ0 r.

For m > 0, we denote

αm :=
Γ(1

2
)m

Γ(m
2

+ 1)

being Γ the Euler function and

(1.6) βm := αm ρ
−m
0 ,

According to Federer’s notation [F], we define a centered and a non
centered density of an outer measure µ on X.

1.7. Definition. (i) The upper and lower m-densities of µ at x ∈ X
are

Θ∗m(µ, x) := lim sup
r→0

µ(B(x, r))

αm rm

and

Θm
∗ (µ, x) := lim inf

r→0

µ(B(x, r))

αm rm
.

If they agree their common value

Θm(µ, x) := Θ∗m(µ, x) = Θm
∗ (µ, x)

is called the m-density of µ at x.
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(ii) The m-Federer densities of µ at x ∈ X are

Θ∗mF (µ, x) := inf
ε>0

sup

{
µ(B(y, r))

βm diam(B(y, r))m
: x ∈ B(y, r), ρ0 r ≤ ε

}
It is easy to see that

(1.8) Θ∗m(µ, x) ≤ Θ∗mF (µ, x) ≤ 2m Θ∗m(µ, x) ∀x ∈ X .

1.9. Theorem. [F, Theorems 2.10.17 (2) and 2.10.18 (1)] Let (X, d) be
a separable metric space, µ be an outer measure in X and t > 0.

(i) Let A ⊂ X, suppose that µ is Borel regular and

Θ∗mF (µ A, x) < t ∀x ∈ A .

Then

µ(A) ≤ t Sm(A) .

(ii) Let V ⊂ X be an open set, B ⊂ V and suppose that

Θ∗mF (µ, x) > t ∀x ∈ B .

Then

µ(V ) ≥ t Sm(B) .

1.10. Remark. From (1.2), it follows that the conclusion of Theorem
1.9 (i) may fail to be true when replacing Federer density Θ∗mF by the
density Θ∗m.

The following (theoretic) area formula for the spherical Hausdorff
measure Sm has been recently proved in [Mag] improving previous Fed-
erer’s results.

1.11. Theorem. [Mag, Theorem 5] Let µ be a Borel regular measure in
X such that there exists a countable open covering of X whose elements
have finite µ measure; let A ⊂ X be a Borel set. Suppose that Sm(A) <
∞ and µ A is absolutely continuous with respect to Sm A. Then

(1.12) µ(B) =

∫
B

Θ∗mF (µ, x) dSm(x)

for each Borel set B ⊂ A.

Acknowledgements. We thank Valentino Magnani for raising this
issue and for sharing with us his unpublished results.
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2. Hausdorff measures and density: comparison with the
centered Hausdorff measure

We begin repeating the well known definitions of Hausdorff mea-
sures to stress their differences with the less known notion of centered
spherical Hausdorff measure.

2.1. Definition. Let A ⊂ X, m ∈ [0,∞), δ ∈ (0,∞), and let βm be
the constant (1.6).

(i) The m-dimensional Hausdorff measure Hm is defined as

Hm(A) := lim
δ→0
Hm
δ (A)

where

Hm
δ (A) = inf

{∑
i

βmdiam(Ei)
m : A ⊂

⋃
i

Ei, diam(Ei) ≤ δ

}
.

(ii) The m-dimensional spherical Hausdorff measure Sm is defined
as

Sm(A) := lim
δ→0
Smδ (A)

where

Smδ (A) = inf
{∑

i

βmdiam(B(xi, ri))
m : A ⊂

⋃
i

B(xi, ri),

diam(B(xi, ri)) ≤ δ
}

(iii) The m-dimensional centered Hausdorff measure Cm is defined
as

Cm(A) := sup
E⊆A
Cm0 (E) .

where Cm0 (E) := limδ→0+ Cmδ (E), and, in turn, Cmδ (E) = 0 if E = ∅
and for E 6= ∅

Cmδ (E) = inf
{∑

i

βmdiam(B(xi, ri))
m : E ⊂

⋃
i

B(xi, ri),

xi ∈ E, diam(B(xi, ri)) ≤ δ
}

Notice that the set function Cm0 is not necessarily monotone (see
[SRT, Sect. 4]) while Cm is monotone.

For reader’s convenience we collect a few results about the measures
Cm. Most of these results are taken from [E].
Let

dist(E,F ) := inf {d(x, y) : x ∈ E, y ∈ F}
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denote the distance between E and F . Recall that an outer measure µ
on X is said to be metric if

µ(A ∪B) = µ(A) + µ(B) whenever dist(A,B) > 0 .

Being obtained by Carathëodory’s construction, Hm and Sm are met-
ric (outer) measures (see [F, 2.10.1] or [M, Theorem 4.2]). Also the
measures Cm are metric measures in any metric space, but this fact is
not as immediate as for Hm and Sm.

2.2. Lemma. [E, Proposition 4.1] Cm is a metric outer measure.

Observe also that Lemma 2.2, yields that Cm is a Borel regular outer
measure.

2.3. Remark. The measuresHm, Sm and Cm are all equivalent measures.
Indeed, it is well known that (see, for instance, [F, 2.10.2])

Hm ≤ Sm ≤ 2mHm

and, by definition,

(2.4) Hm ≤ Sm ≤ Cm .
The opposite inequality between Hm (or Sm) and Cm is less immediate:
it was proved in [SRT, Lemma 3.3] for the case X = Rn. See also
[Sch], but for a differently defined centered Hausdorff-type measure.
The comparison in a general metric space is contained [E].

2.5. Lemma. [E, Proposition 4.2] Hm ≤ Cm ≤ 2mHm .

By Lemma 2.5, it follows in particular that the metric dimension
induced by Hm or Sm or Cm is the same one.

Let us begin to prove that the measures agree for the simplest ex-
ample of 1-dimensional regular submanifold in a metric space, that is,
for Lipschitz curves.

2.6. Theorem. Suppose that γ : [a, b] → (X, d) is a Lipschitz curve
and let Γ = γ([a, b]). Then

H1(Γ) ≤ S1(Γ) ≤ C1(Γ) ≤ V ar(γ) < +∞ ,

and equality holds if γ is injective. Here

V ar(γ) := sup{
N∑
i=1

d(γ(ti−1), γ(ti))}

where the supremum is taken over all finite partitions of [a, b] with
a = t0 < t1 < · · · < tN = b.
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Proof. We have only to show that

(2.7) C1(Γ) ≤ V ar(γ) .

Indeed, from [AT, Theorem 4.4.2], it follows that

H1(Γ) = V ar(γ) if γ is injective.

Thus, from (2.4) and (2.7), we get the desired conclusion.
Let us prove (2.7). By a new parametrization of γ (see [AT, Theorem

4.2.1], we can assume that a = 0, b = V ar(γ) with metric derivative of
γ = 1 a.e. on [a, b]. In particular observe that γ is 1-Lipschitz and

(2.8) V ar(γ, [t, s]) = s− t ∀ a ≤ t ≤ s ≤ b .

Given δ > 0, choose N ∈ N such that h := V ar(γ)/N < δ. For
i = 0, . . . , N − 1 let Ji := [i h, (i + 1)h], pi := γ((2i + 1)h/2) and
Bi := B(pi, h/%0), where %0 is the constant in (1.5). Then, by (1.5),

(2.9) diam(Bi) = h

and

(2.10) Γ ⊆ ∪N−1i=1 Bi .

Indeed by (2.8) γ(Ji) ⊂ Bi, for i = 0, . . . , N − 1 because

d

(
γ(t), γ

(
2i+ 1

2
h

))
≤
∣∣∣∣t− 2i+ 1

2
h

∣∣∣∣ ≤ h

2
≤ h

%0
∀ t ∈ Ji .

¿From (2.10) and (2.9), we get that, for each E ⊆ Γ

(2.11) C1δ (E) ≤ C1δ (Γ) ≤
N−1∑
i=0

diam(Bi) = V ar(γ) ∀ δ > 0 .

Passing to the limit as δ → 0 in (2.11), we get for all E ⊆ Γ,

C10(E) ≤ V ar(γ)

and, taking the supremum on all subsets E ⊆ Γ, (2.7) follows. �

The estimates needed to relate the m-dimensional density Θ∗m(µ, ·)
with the centered Hausdorff measure Cm are the following ones.

2.12. Theorem. [E, Theorem 4.15] Let (X, d) be a separable metric
space, let µ be a finite Borel outer measure in X and let B ⊂ X be a
Borel set. Then

(i)

µ(B) ≤ sup
x∈B

Θ∗m(µ, x) Cm(B)

except when the product is ∞ · 0;
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(ii)

inf
x∈B

Θ∗m(µ, x) Cm(B) ≤ µ(B) .

By easy modifications of the proof of Theorem 2.12, one gets the
following density estimates involving Θ∗m(µ, x) and Cm. These esti-
mates are analogous to Federer’s ones involving Θ∗mF (µ, x) and Sm (see
Theorem 1.9).

2.13. Theorem. Let (X, d) be a separable metric space, let µ be an
outer measure in X and t > 0.

(i) If µ is Borel regular and

Θ∗m(µ A, x) < t, ∀x ∈ A ⊂ X

then

µ(A) ≤ t Cm(A) .

(ii) If V ⊂ X is an open set and

Θ∗m(µ, x) > t, ∀x ∈ B ⊂ V

then

µ(V ) ≥ t Cm(B) .

2.14. Remark. If µ is supposed to be a Radon measure, approximating
from above by open sets, we can strengthen the conclusion in Theorem
2.13 (ii) getting the inequality µ(B) ≥ t Cm(B).

3. Area formula for the centered Hausdorff measure

3.1. Theorem. Let µ be a Borel regular measure in X such that there
exists a countable open covering of X whose elements have µ finite
measure; let A ⊂ X be a Borel set. If Cm(A) < ∞ and µ A is
absolutely continuous with respect to Cm A, then

Θ∗m(µ, ·) : X → [0,+∞] is Borel measurable

and, for each Borel set B ⊂ A,

(3.2) µ(B) =

∫
B

Θ∗m(µ, x) dCm(x).

3.3. Remark. Since Cm and Sm are equivalent, then Cm(A) < ∞ if and
only if Sm(A) < ∞ and µ A is absolutely continuous with respect to
Cm if and only if µ A is absolutely continuous with respect to Sm.



CENTERED HAUSDORFF MEASURE 9

Proof. The proof is strongly inspired by [M, Theorem 2.12].
First we prove that Θ∗m(µ, ·) : X → [0,+∞] is Borel measurable.

For r > 0, let gr : X → [0,+∞) be the function

gr(x) :=
µ(B(x, r))

βmdiam(B(x, r))m
=

µ(B(x, r))

αmrm
.

By Fatou’s Lemma, gr : X → [0,+∞) is lower semicontinuous. Thus

Θ∗(µ, ·) = lim sup
r∈Q, r→0

gr(·)

gives the desired conclusion.
To show (3.2), first we prove that

(3.4) µ(A \ S) = 0 ,

if

(3.5) S := {x ∈ A : 0 < Θ∗m(µ, x) < +∞}
Since

A \ S = N1 ∪N2 ,

N1 := {x ∈ A : Θ∗m(µ, x) = +∞}, N2 := {x ∈ A : Θ∗m(µ, x) = 0},
let us prove that

(3.6) µ(Ni) = 0 (i = 1, 2) .

Let (Uh) ⊂ X be an increasing sequence of open sets such that

(3.7) ∪∞h=1Uh = X and µ(Uh) < +∞.
Let

N1,h := N1 ∩ Uh.
For a given h, since

+∞ = Θ∗m(µ, x) > n ∀n ∈ N and x ∈ N1,h ,

by Theorem 2.13 (i), it follow that

(3.8) +∞ > µ(Uh) ≥ µ(N1,h) ≥ n Cm(N1,h) ∀n ∈ N .
By (3.8), it follows that Cm(N1,h) = 0. Since µ A is absolutely con-
tinuous with respect to Cm,

(3.9) µ(N1,h) = 0 ∀h .
Because N1 = ∪∞h=1N1,h , (3.9) implies (3.6) for i = 1.

For 0 < ε, let

(3.10) S∗ε := {x ∈ A : Θ∗m(µ, x) ≤ ε } .
By Theorem 2.13 (i), it follows that

µ(N2) ≤ µ(S∗ε ) ≤ ε Cm(S∗ε ) ≤ ε Cm(A) ∀ ε > 0 .



10 B. FRANCHI, R. SERAPIONI, AND F. SERRA CASSANO

Since Cm(A) < +∞, letting ε→ 0 in the previous inequality, we get

µ(N2) = 0 ,

which establishes (3.6) for i = 2.
Finally, the proof follows from the two inequalities

(3.11)

∫
B

Θ∗m(µ, x) dCm(x) ≤ µ(B) for each Borel set B ⊆ A ,

(3.12)

∫
B

Θ∗m(µ, x) dCm(x) ≥ µ(B) for each Borel set B ⊆ A .

For t ∈ (0,∞) and k ∈ Z, let

Bk :=
{
x ∈ B : tk ≤ Θ∗m(µ, x) < tk+1

}
and notice that, for k 6= k′,

(3.13) Bk ∩Bk′ = ∅ and S ∩B = ∪k∈ZBk

where S is the set defined in (3.5). By (3.4) and Theorem 2.13 (ii),∫
B

Θ∗m(µ, x) dCm(x) =

∫
S∩B

Θ∗m(µ, x) dCm(x)

=
∞∑

k=−∞

∫
Bk

Θ∗m(µ, x) dCm(x)

≤
∞∑

k=−∞

tk+1 Cm(Bk)

≤ t
∞∑

k=−∞

µ(Bk) ≤ t µ(B) .

Letting t→ 1 in the previous inequality, we establish (3.11).
Now choose 0 < t < 1, let

Bk :=
{
x ∈ B : tk+1 ≤ Θ∗m(µ, x) < tk

}
k ∈ Z ,
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and notice that (3.13) still holds. Arguing as before we get∫
B

Θ∗m(µ, x) dCm(x) =

∫
S∩B

Θ∗m(µ, x) dCm(x)

=
∞∑

k=−∞

∫
Bk

Θ∗m(µ, x) dCm(x)

≥
∞∑

k=−∞

tk+1 Cm(Bk)

≥ t
∞∑

k=−∞

ν(Bk) = t µ(S ∩B) = t µ(B) ,

which establishes (3.12) after letting t→ 1. �

3.14. Corollary. Under the same assumptions of Theorem 3.1, if there
is k > 0 such that

Θ∗m(µ, x) = k ∀x ∈ A ⊆ X

then

µ A = k Cm A .

4. An application to Carnot groups

Carnot groups are a relevant class of separable metric spaces (X, d)
satisfying (1.5) (see Lemma 4.5 below). A detailed study of Carnot
groups can be found in [BLU]. Here we will recall only a few of their
properties using the notations of [FSS2] and we will refer to this last
paper for notions and results.

A n-dimensional Carnot group G of step k is a connected, simply
connected Lie group whose Lie algebra g has dimension n and admits
a step k stratification, i.e., there are linear subspaces V1, V2, . . . of g
such that

g = V1 ⊕ ...⊕ Vk,
[V1, Vi] = Vi+1, Vk 6= {0}, Vi = {0} if i > k,

(4.1)

where [V1, Vi] is the subspace of g generated by the all the commutators
[X, Y ], with X ∈ V1 and Y ∈ Vi.

The integer

(4.2) Q :=
k∑
i=1

i dim(Vi)

is the homogeneous dimension of G.
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By exponential coordinates, we can identify G with (Rn, ·) where
the explicit expression of the group operation · is determined by the
Campbell-Hausdorff formula ([FSS2, Proposition 2.1])

Any Carnot group G is equipped with a family of automorphisms,
the intrinsic dilations

δλ : G→ G, λ > 0

4.3. Definition. A distance d in G is said to be invariant if

(4.4) d(z · x, z · y) = d(x, y) and d(δλ(x), δλ(y)) = λ d(x, y)

for all x, y, z ∈ G and λ > 0.

The so-called sub-Riemannian distance or Carnot-Carathéodory dis-
tance ([FSS2, Definition 2.3]) is an example of an invariant distance in
G. On the other hand, several invariant distances, equivalent to the
sub-Riemannian one and sometimes easier to compute, have been used
in the literature. Notice that two invariant distances d and d̃ on G are
always equivalent, that is there exists C > 1 such that for all x, y ∈ G,

C−1 d(x, y) ≤ d̃(x, y) ≤ C d(x, y),

(see[BLU, Corollary 5.1.5]).

4.5. Lemma. (see [FSS2, Proposition 2.4]) Let G be a Carnot group
endowed with an invariant distance d. Then (1.5) holds with ρ0 = 2.

Observe also that the homogeneous dimension Q is the Hausdorff
dimension of G with respect to any invariant distance on G.

We want to compare the Hausdorff measures HQ, SQ and CQ on a
Carnot group G = (Rn, ·) of homogeneous dimension Q, endowed with
an invariant metric d.
First of all observe that HQ, SQ, CQ are Radon measure and are in-
variant under left-translations hence they are Haar measures of G. On
the other hand Ln too is a Haar measure. Thus (see [M, Theorem 3.4])
each one of them is a constant multiple of Ln.

4.6. Theorem. Let G = (Rn, ·) be a Carnot group of homogeneous
dimension Q endowed with an invariant distance d.

(i) ([R, Proposition 2.1]) SQ(B) = βQ diam(B)Q for each ball B ⊂
G;

(ii) ([R, Proposition 2.3]) SQ = CdHQ where Cd is the isodiametric
constant, that is

(4.7) Cd := sup

{
SQ(A)

βQ diam(A)Q
: 0 < diam(A) < +∞

}
;
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(iii) CQ(B) = βQ diam(B)Q for each ball B ⊂ G

Proof. Let us prove (iii). From (i) and the definition of CQ, we get

SQ(B) = βQ diam(B)Q ≤ CQ(B)

for each closed ball B ⊂ G. Let µ be the normalized Haar measure on
G such that µ(B) = βQ diam(B)Q for each closed ball B. Then it is
sufficient to prove that

(4.8) CQ(U) ≤ µ(U) ,

for each open ball U . Indeed, since CQ is a left-invariant Radon mea-
sure, diam(U) = diam(U), from Lemma 4.5, if B = U with U open
ball, then

CQ(B) = CQ(U) ,

and, by (4.8), we get the desired inequality.
Let us prove (4.8). Given an open ball U , E ⊂ U and δ > 0, let

F :=
{
B(x, r) : x ∈ E, B(x, r) ⊂ U, diam(B(x, r)) < δ

}
.

Since U is open, F is a fine covering of E, and, because CQ is a
doubling measure, by a Vitali-type covering lemma there is a countable,
disjoint family of closed balls (Bi)i ⊂ F such that

(4.9) CQ(E \ ∪∞i=1Bi) = 0 .

Observe now that

(4.10) CQδ (∪∞i=1Bi) ≤
∞∑
i=1

βQ diam(Bi)
Q = µ(∪∞i=1Bi) ≤ µ(U) ,

and, by (4.9),

(4.11) CQδ (E \ ∪∞i=1Bi) ≤ CQ0 (E \ ∪∞i=1Bi) ≤ CQ(E \ ∪∞i=1Bi) = 0 .

On the other hand, by (4.10) and (4.11), for all E ⊂ U and δ > 0

(4.12) CQδ (E) ≤ CQδ (E \ ∪∞i=1Bi) + CQδ (∪∞i=1Bi) ≤ µ(U).

Taking, first the limit as δ → 0 in (4.12) and then the supremum on
all sets E ⊆ U , (4.8) follows.

�

4.13. Corollary. If G is a Carnot group of homogeneous dimension Q
and endowed with an invariant distance d then

SQ = CQ.

Proof. Since there is β > 0 such that SQ = β CQ, and SQ(B) = CQ(B)
on any ball, then β = 1. �
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Notice that, choosing βQ = 2−Q Ln(Bd(0, 1)) in Definition 2.1, it
follows that SQ = CQ = Ln.

4.14. Remark. The constant Cd in (4.7) is related to the so-called iso-
diametric problem. In the setting of Carnot groups, the isodiametric
problem has been studied in [R] and [LRV]. More precisely in [R] it is
studied whether - in a Carnot group endowed with a generic invariant
distance - the sharp isodiametric inequality holds or, equivalently, if
balls realize the supremum in the right-hand side of (4.7). If this were
the case, by Theorem 4.6 (i) it would follow Cd = 1 and the sharp
isodiametric inequality

(SII) SQ(A) ≤ βQ diam(A)Q ∀A ⊂ G
and, eventually, from Theorem 4.6 (ii)

SQ = HQ .

On the contrary, Rigot proves that in every non abelian Carnot group
G, there is an invariant distance for which the sharp isodiametric in-
equality (SII) fails to be true (see [R, Theorems 3.4, 3.5 and 3.6]).
Note that it is not difficult to prove the existence of sets achieving
the supremum in (4.7), these sets are called isodiametric sets (see [R,
Theorem 3.1]). Very little is known about these isodiametric sets in
general Carnot groups. In [LRV], when the group G is the Heisenberg
group Hn equipped with its CC distance dc, the regularity of the iso-
diametric sets as well as their characterization under some symmetry
assumption is studied. The characterization of a general isodiametric
set even inside Heisenberg groups is still an open problem.

In the following we are going to use frequently a particular invariant
distance, the so called distance d∞. It is defined in [FSS2, (2.8)], it can
be explicitly computed and the balls constructed with it are convex
sets with many rotational simmetries.

Several notions typical of geometric measure theory have been stud-
ied inside Carnot groups. Among them we mention the so called sets
of locally finite perimeter (their definition in Carnot groups was given
in [CDG]; see also [FSS1]). Let us recall that a measurable set E ⊂ G
has locally finite G-perimeter in an open set Ω ⊂ G (or E is a G-
Caccioppoli set) if

|∂E|G(V ) < +∞ for all open sets V b Ω ,

where |∂E|G, known as the G-perimeter measure, is the Radon measure
defined as in [FSS2, (2.18)]. In general, the measure |∂E|G is supported
on a subset of the topological boundary of a G-Caccioppoli set. In
a large class of Carnot groups G this subset, known as the reduced
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boundary ∂∗E of E is known to be a rectifiable subset of G (for a
precise statement see Theorem 4.18). This result is the Carnot group
counterpart of the celebrated De Giorgi’s structure theorem for sets of
finite perimeter in Euclidean spaces.

In order to state correctly Theorem 4.18, adapted intrinsic notions of
regular hypersurfaces and of rectifiable sets in Carnot groups are needed
([FSS1, FSS2, FSS4]). Observe that this definition of rectifiable sets is
different from the one in [AK].

4.15. Definition. (i) A set S ⊂ G is a G-regular hypersurface if for
each x ∈ S there are a neighborhood U of x and a function f ∈ C1

G(U)
such that

S ∩ U = {y ∈ U : f(y) = 0}
and

∇Gf(y) 6= 0 ∀y ∈ U ,
where C1

G(U) and ∇G denote, respectively, the space of functions de-
fined in [FSS2, Definition 2.8] (see also [FSS2, Proposition 2.12]) and
the horizontal gradient section ([FSS2, Proposition 2.11]). We denote
by T gGS(x) the tangent group to S at x as in [FSS2, Section 2.4].

(ii) A set Γ ⊂ G is said to be (Q − 1)-dimensional G-rectifiable if
there is a sequence of G-regular hypersurfaces (Sj)j such that

HQ−1(Γ \ ∪∞j=1Sj) = 0 .

Here HQ−1 denotes the (Q−1)-dimensional Hausdorff measure defined
as in Definition 2.1 (i) with X = G and d any invariant distance in G.

4.16. Remark. Both the notions of G-regular hypersurfaces and of G-
rectifiable sets are independent of the chosen invariant distance d. In-
deed, from the equivalence of invariant distances and from [FSS2, Def-
inition 2.8 and Proposition 2.11], if S is a G-regular hypersurface with
respect to an invariant distance d so it is with respect to any other
invariant distance d̃. The same holds if S is a G-rectifiable set.

The following structure result for sets of finite perimeter was proved
inside step 2 Carnot groups in [FSS2] and recently extended to the
much larger class of groups of type ?, in [Mar].

4.17. Definition. A stratified Lie algebra g = V1 ⊕ · · · ⊕ Vk is of type
? if there exists a basis {X1, . . . , Xm1} of V1 such that

[Xj, [Xj, Xi]] = 0, for all i, j = 1, . . . ,m1.

A Carnot group G is a group of type ? if its Lie algebra g is of type ?.
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4.18. Theorem. Let G be a Carnot group of type ?, endowed with the
invariant distance d∞. Let E ⊂ G be a G-Caccioppoli set and let ∂∗GE
denote its reduced boundary ([FSS2, Definition 2.25]). Then

(i) |∂E|G = |∂E|G ∂∗GE;
(ii) there exists k = k(G) > 0 s.t.

ΘQ−1(|∂E|G, x) = k ∀x ∈ ∂∗GE;

where the (Q − 1)-dimensional density ΘQ−1(|∂E|G, ·) must be
understood according to Definition 1.7 (i) with X = G and
d = d∞;

(iii) ∂∗GE is (Q− 1)-dimensional G-rectifiable;
(iv) |∂E|G = k SQ−1 ∂∗GE,

where SQ−1 denotes the (Q−1)-dimensional spherical Hausdorff
measure defined according to Definition 2.1 (ii) with X = G
and d = d∞.

We recall that Theorem 4.18 has been recently extended even to a
class of sub-Riemannian manifolds (see [AGM]).

Magnani [Mag2] correctly observes that the example mentioned in
the introduction shows that Theorem 4.18 (iv) - notwithstanding be-
ing true - is not an immediate consequence of Federer’ results [F, 2.10.
17(2) and 2.10.19 (3)], as was claimed in [FSS2] (see also [FSS3, The-
orem 3.4]). However Magnani himself has proved Theorem 4.18 (iv) in
the following result.

4.19. Theorem. Let G be a Carnot group endowed with the invariant
distance d∞.
(i) [Mag2, Theorem 5.2] Let E ⊂ G. Assume that the topological bound-
ary ∂E is a G-regular hypersurface, then there is k = k(G) > 0 such
that

ΘQ−1(|∂E|G, x) = Θ∗Q−1F (|∂E|G, x) = k ∀x ∈ ∂E;

(ii) [Mag2, Theorem 1.3] Under the same assumptions of Theorem 4.18,
statement (iv) holds.

As anticipated in the introduction we are taking here a different
approach. As a consequence of Corollary 3.14 and of Theorem 4.18(ii),
we directly obtain the following version of Theorem 4.18 (iv), where
the centered Hausdorff measure takes the role of the spherical measure
SQ−1. Observe that no regularity of ∂∗GE is assumed.

4.20. Corollary. Let G be a Carnot group of type ? of homogeneous
dimension Q and endowed with the invariant distance d∞. Let E ⊂ G
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be a G-Caccioppoli set. Then there is k = k(G) > 0 for which

|∂E|G = k CQ−1 ∂∗GE ,

where CQ−1 denotes the (Q−1)-dimensional centered Hausdorff measure
defined as in Definition 2.1 (iii) with X = G and d = d∞.

As an other application to Carnot groups of the area formula for
centered Hausdorff measure, we provide an explicit characterization of
the centered density ΘQ−1(|∂E|G, ·) for sets E whose boundary ∂E is
a G-regular surface. This is an emendated version of [FSS3, Theorem
3.5].

4.21. Theorem. Let G be a Carnot group and d an invariant distance
on it. Let Ω ⊂ G be an open set, let E ⊂ G be such that ∂E∩Ω = S∩Ω,
where S is a G-regular hypersurface. Then, for all x ∈ S

(4.22) ΘQ−1(|∂E|G, x) =
Ln−1 (Ud(0, 1) ∩ T gGS(x))

αQ−1
,

where T gGS(x) denotes the tangent group to S at x, and Ud(0, 1) denotes
the unit (open) ball induced by the distance d. In particular

(4.23) |∂E|G Ω = ΘQ−1(|∂E|G, ·) CQ−1 (S ∩ Ω).

where CQ−1 denotes the (Q−1)-dimensional centered Hausdorff measure
defined as in Definition 2.1 (iii) with X = G equipped by d.
Moreover, there is βd > 1, depending only on d, such that

(4.24) 0 <
1

βd
≤ ΘQ−1(|∂E|G, x) ≤ βd <∞ ∀x ∈ S.

4.25. Remark. If S = ∂E is G-regular the equality

ΘQ−1(|∂E|G, x) = Θ∗Q−1F (|∂E|G, x) ∀x ∈ S
is known to hold only for a restricted class of distances on G. These
distances are denoted by Magnani as (n−1)-vertical regular (see [Mag2,
Definition 2.2]) and the distance d∞ is one of them. In the general case,

an explicit characterization of Federer density Θ∗Q−1F (|∂E|G, ·) - similar
to the one in (4.22) - seems to be unknown. It seems to be unknown
even for the Carnot-Carathédory distance dc.

Proof of Theorem 4.21. In [FSS3, (64)] is proved that, when 0 ∈ S,

(4.26) lim
r→0

|∂E|G(Ud(0, r))

rQ−1
= Ln−1 (Ud(0, 1) ∩ T gGS(0)) .

The G-perimeter is left-invariant and (Q− 1)-homogeneous, that is

|∂E|G(U) = |∂(x · E)|G(x · U), |∂E|G(U) = λ1−Q|∂δλ(E)|G(δλ(U))
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for any open U ⊂ G, x ∈ G and λ > 0. Hence from (4.26) it follows
that for all x ∈ S

lim
r→0

|∂E|G(Ud(x, r))

rQ−1
= Ln−1 (Ud(0, 1) ∩ T gGS(x))

that proves (4.22).
Now, also (4.23) follows from (4.22), Lemma 4.5 and Theorem 3.1.
To prove (4.24) recall that d and d∞ are equivalent distances. Thus

it suffices to show that there exists β > 0 such that

(4.27) Ln−1 (Ud∞(0, 1) ∩ T gGS(x)) = β ∀x ∈ S .
Since d∞ is invariant under rotations of the first layer V1 of the algebra,
arguing as in [FSS2, Thrm.3.9], (4.27) follows. �

Eventually it holds that

4.28. Theorem. Let G be a Carnot group endowed with the invariant
distance d∞. Let SQ−1 and CQ−1 denote the (Q−1)-dimensional spher-
ical and centered Hausdorff measures, defined as in Definition 2.1 (ii)
and (iii) with X = G and d = d∞. Then SQ−1 and CQ−1 agree on
G-rectifiable sets.

Proof. Let Γ ⊂ G be a (Q−1)-dimensional G-rectifiable set. By defini-
tion there are Borel sets Γi (i = 0, 1, 2, . . . ) and G-regular hypersurfaces
Si (i = 1, 2, . . . ) such that

(4.29) Γ = Γ0 ∪ (∪∞i=1Γi ) ,

(4.30) HQ−1(Γ0) = 0 ,

and, for i = 1, 2, . . .

(4.31) Γi ⊂ Si.

By a well known argument, we can suppose that the sets Γi are pairwise
disjoint. Moreover, from [FSS2, Theorem 2.35], we can also assume the
existence of functions fi ∈ C1

G(Ui) with ∇Gfi(x) 6= 0 for each x ∈ Ui
such that, if Ei := {x ∈ Ui : fi(x) < 0 },
(4.32) Si = {x ∈ Ui : fi(x) = 0 } , ∂Ei ∩ Ui = ∂∗GEi ∩ Ui = Si ,

(4.33) |∂Ei|G(Ui) < +∞ .

From [Mag2, Theorem 4.19], [Mag, Theorem 1.11], (4.31), (4.32) and
(4.33), it follows that

(4.34) |∂Ei|G(Γi) = k SQ−1(Γi ∩ Si) = k SQ−1(Γi) i = 1, 2, . . . .

From Corollary 4.20, (4.31), (4.32) and (4.33), it follows that

(4.35) |∂Ei|G(Γi) = k CQ−1(Γi ∩ Si) = k CQ−1(Γi) i = 1, 2, . . . .
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Thus, from (4.34) and (4.35), we deduce that for i = 1, 2, . . .

SQ−1(Γi) = CQ−1(Γi).
Since the sets Γi are disjoint, and HQ−1, SQ−1 and CQ−1 are equivalent
measures, by (4.29) and (4.30), we get that

SQ−1(Γ) = CQ−1(Γ) .

�
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