The role of whole-grain barley on human fecal microbiota and metabolome

Maria De Angelisa, Eustacchio Montemurnob, Lucia Vanninicd, Carmela Cosolab, Noemi Cavalloa, Giorgia Gozzic, Valentina Maranzanob, Raffaella Di Cagnob, Marco Gobbetti\textdagger, Loreto Gesualdob

aDepartment of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy; bDepartment of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy; cDepartment of Agricultural and Food Sciences, University of Bologna, Bologna, Italy; dInter-departmental Centre for Industrial Agri-Food Research, University of Bologna, Cesena, Italy

Running title: Whole-grain barley and human fecal microbiota

\textdaggerCorresponding author: Marco Gobbetti, Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy, Tel.: +39.080.5442946; fax: +39.080.5442911. E-mail address: marco.gobbetti@uniba.it
This study aimed at comparing the fecal microbiota and metabolome of 26 healthy subjects before (HS) and after (HSB) two months of diet intervention based on the administration of durum wheat flour and whole-grain barley Pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the gene 16S rRNA and community-level catabolic profiles. Pyrosequencing data showed that Clostridiaceae (Clostridium orbiscindens, Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased while other Firmicutes and Fusobacteria decreased in HSB compared to HS fecal samples. Community-level catabolic profiles were the lowest in HSB. Compared to HS, cultivable lactobacilli increased in HSB fecal samples while Bacteroides, Porphyromonas and Prevotella, Enterobacteriaceae, total coliforms, and Pseudomonas, Alcaligenes and Aeromonas decreased.

Metabolome analyses were performed using amino acid analyzer and gas-chromatography mass spectrometry-solid-phase micro-extraction. A marked increase of short chain fatty acids (SCFA) such as 2-methyl-propanoic acid, acetic, butyric and propionic acids was found in HSB with respect to HS fecal samples. Durum wheat flour and whole-grain barley Pasta containing 3% of barley β-glucans appeared to be effective in the modulation of the composition and the metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA.
INTRODUCTION

Whole-grain barley and oat, and some dry-milled bran grain products were authorized to be used according to the health claim “decrease the risk of coronary heart disease” by Food and Drug Administration (1, 2). Whole barley and oat flours contain β-glucans which are soluble dietary fibers. European Food Safety Authority recognized that the “regular consumption of oat β-glucans can actively lower/reduce blood LDL-cholesterol and total cholesterol (3). In addition to reduction of cholesterol, the positive associations between the consumption of β-glucans and the reduction/prevention of cardiovascular diseases, and reduction of glycemia, insulin resistance and metabolic syndrome were well documented (4, 5). The minimum dose of 3 g/day of β-glucans is recommended to get positive effects on human health (1, 3, 6).

Several mechanisms were described for explaining the hypocholesterolemic effect of β-glucans: (i) increased viscosity at the level of the small intestine and, consequently, slowed gastric emptying, digestion, and absorption of molecules, including glucose, dietary cholesterol and bile acids (7, 8); (ii) decreased enter-hepatic bile acids by binding at intestinal level with subsequent increased use of cholesterol for bile acids synthesis (9, 10); (iii) reduced synthesis of hepatic cholesterol due to the improved insulin sensitivity (10, 11); and iv) inhibited hepatic synthesis of cholesterol by acetate and propionate, which are produced by colonic fermentation of β-glucans (12, 13). Saccharolytic and proteolytic fermentations are the major fermentation processes, which are carried-out by metabolically active microbes at the colon level (14). Saccharolytic fermentation was associated with the synthesis of short-chain fatty acids (SCFA) (acetate, propionate and butyrate), intermediate metabolites such as succinate, acrylate, lactate, formate and ethanol, and small final molecules (hydrogen, methane and carbon dioxide) (15). Proteolytic fermentation was associated with the synthesis of SCFA (acetate, propionate and butyrate) and branched-chain fatty acid (BCFA) (isobutyric, iso-valeric and 2-methylbutyric acids), free amino acids (FAA) and some potentially toxic metabolites (phenols, indoles, ammonia and amines) (14, 16, 17). The type of colonic fermentation is mainly depends on the type of microbiota and fermentable substrate availability (17). Based on

3
the key role for human healthy, the intestinal microbiota was acknowledged as a metabolic organ
(18). The major part of the current research on novel functional foods is moved towards the
selection and characterization of prebiotics (e.g. inulin, fructo-oligosaccharides and galacto-
oligosaccharides), which are not digested by human gastrointestinal enzymes but selectively
stimulate the growth and/or activity of GRAS bacteria that may improve host health (19). Indeed, a
prebiotic effect of β-glucans towards the intestinal microbiota was also hypothesized (5). In
particular, the positive effect of β-glucans on the growth of beneficial intestinal lactobacilli and
bifidobacteria was shown by in vitro studies (20, 21) and animal experiments (22, 23).
Nevertheless, other studies that also used animal models did not show significant effects of β-
glucans on lactobacilli and/or bifidobacteria (24, 25). Unfortunately, human clinical challenges that
have dealt with the prebiotic effect of β-glucans are rather scarce. Barley β-glucans increased the
cell density of colonic bifidobacteria on older healthy subjects (26). A pilot study with
polypectomized patients showed no significant effect of β-glucans on the fecal microbiota and the
concentration of SCFA (27). The evidence that β-glucans positively influence the human intestinal
microbiota is still insufficient or difficult to interpret, and additional studies are needed to fill this
gap (5).
This study compared the fecal microbiota and metabolome of healthy subjects before (HS) and after
(HSB) two months of daily administration of durum wheat flour and whole-grain barley Pasta
containing the minimum recommended intake (3 g) of β-glucans. The fecal microbiota was
characterized through integrated approaches, which were based on culture-independent and-
dependent methods.

MATERIALS AND METHODS

Subjects

The study was carried out in accordance with the Helsinki Declaration (IV Adaptation) and
European Guidelines for Good Clinical Practice. The protocol of the study was approved by the
Institutional Review Board of the Azienda Ospedaliero-Universitaria Consorziale Policlinico of Bari, Italy (Authorization nr. 1570/2014). Written consents were obtained from all volunteers. One group of Caucasian HS (15 female and 11 male), aged between 28 and 57 years, were enrolled in the study (Table 1). Exclusion criteria were history of gastro-intestinal disease, diabetes, cardiovascular diseases, hyperlipidemia and consume of alcohol. Volunteers were not treated with antibiotics and/or functional foods (probiotics and/or prebiotics) for at least three months before recruitment and sampling.

Feeding regime

Pasta Granoro Cuore Mio (Granoro srl, Corato, BA) was used in this study. Pasta was made by using a mixture of durum wheat flour (75%) and whole-grain barley flour (25%). The gross composition of Pasta Granoro Cuore Mio was as follows: moisture, 11%; protein (N x 5.70), 11% of dry matter; carbohydrate, 69% of dry matter; fat, 2% of dry matter; total fibres and β-glucans, 7% and 3% of dry matter, respectively. Before starting with the administration of 100 g Pasta Granoro Cuore Mio Pasta containing 3 g of barley β-glucans (Granoro srl), each volunteer was instructed to follow the usual diet, including 100 g of Pasta every day for two months. Before and after the dietary treatment, a food frequency questionnaire and a 24-h recall questionnaire were administered to each volunteer by a dietitian. These two tools allowed to extrapolate the “weekly cumulative frequency of food” and the “component intake” data, respectively (Table 1), by using official Italian food composition databases (INRAN, http://nut.entecri.it/646/tabelle_di_composizione_degli_alimenti.html and IEO, http://www.bda-ieo.it/uk/index.aspx). All volunteers confirmed that not remarkable changes occurred in meals and medication during the two months of treatment. Additionally, a questionnaire aimed at evaluating intestinal effects (bloating, meteorism, constipation, satiety, diarrhea, reflux and flatulence) was administered (26). Gastrointestinal symptoms were graded from 0 (no symptoms) to 3 (severe symptoms) (26). Before the treatment with durum wheat and whole-grain barley Pasta, colesterolemia, body mass index, fecal microbiota and metabolome were determined.
Determination of blood cholesterol

The level of total cholesterol was measured on the Siemens Dimension RxL Max by using the Siemens enzymatic methods (Siemens Medical Solution Diagnostics, Tarrytown, NY). LDL- and HDL-cholesterol level was estimated by using the Friedewald equation (28) for value below 300 mg/dl.

Collection of fecal samples

Each volunteer had fasted overnight, and fecal sample was collected in the morning pre-prandial. Fecal samples were collected on three different days of the same week. After collection, samples were immediately mixed with RNA later (Sigma-Aldrich, St. Louis, MO, USA) (ca. 5 g, 1:2 wt/vol) or Amies Transport medium (Oxoid LTD, Basingstoke, Hampshire, England) (ca. 15 g, 1:1 wt/wt), under anaerobic conditions (AnaeroGen, Oxoid LTD, Basingstoke, Hampshire, England). Fecal samples suspended in RNA later were stored at –80°C for further RNA and metabolomic analyses. Samples diluted with Amies Transport medium were immediately subjected to plate counts and analysis by Biolog system.

RNA extraction from fecal samples

An aliquot of ca. 200 mg of fecal sample diluted in RNA later was used for RNA extraction with the Stool total RNA purification kit (Norgen Biotek Corp., Ontario, Canada, USA). Quality and concentration of RNA extracts were determined using 1% agarose-0.5X TBE gels and spectrophotometric measurements at 260, 280 and 230 nm through the NanoDrop ND-1000 Spectrophotometer. Total RNA extracted (ca. 2.5 µg) was transcribed to cDNA using random examers and the Tetro cDNA synthesis kit from Bioline (Bioline USA Inc, Tanunton, MA, USA), according to the manufacturer’s instructions (29).

Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) and data analyses

For each volunteer, the three cDNA samples were pooled and used for bTEFAP analysis. Pooled samples cDNA were analyzed for each subject. bTEFAP was performed by Research and Testing Laboratories (Lubbock, TX), according to standard laboratory procedures and using the 454 FLX
Sequencer (454 Life Sciences, Branford, CT, USA). Primers forward 28F: GAGTTTGATCNTGGCTCAG and reverse 519R: GTNTTACNGCGKGGCTG, based upon the V1–V3 region (Escherichia coli position 27–519) of the 16S rRNA gene, were used (30). The bTEFAP procedures were performed based upon RTL protocols http://www.researchandtesting.com (Research and Testing Laboratories, Lubbock, TX). Raw sequence data were screened, trimmed and filtered with default settings, using the QIIME pipeline version 1.4.0 (http://qiime.sourceforge.net). Chimeras were excluded by using the B2C2 (http://www.researchandtesting.com/B2C2.html) (31). Sequences less than 250 bp were removed. The average length of the sequences was 484 bp. Sequences are available at the http://www.researchandtesting.com/docs. FASTA sequences for each sample, without chimeras, were evaluated using BLASTn against the database derived from GenBank (http://ncbi.nlm.nih.gov) (32).

Bioinformatics and data analysis

The sequences were first clustered into Operational Taxonomic Unit (OTU) clusters with 97% identity (3% divergence), using USEARCH (33). To determine the identities of bacteria, sequences were first queried, using a distributed BLASTn.NET algorithm (33) against the database of high-quality 16S bacterial sequences that derived from NCBI. Database sequences were characterized as high quality based on criteria, which were originally described by Ribosomal Database Project (RDP, v10.28) (34).

Alpha diversity (rarefaction, Good’s coverage, Chao1 richness and Shannon diversity indices) and beta diversity measures were calculated and plotted using QIIME. Diversity was examined from two perspectives. First, overall richness (i.e., number of distinct organisms present within the microbiome) (alpha diversity), was expressed as the number of OTU, and was quantified using the Chao1 richness estimator: $S_{\text{cha}} = S_{\text{obs}} + \frac{n_1(n_1-1)}{2(n_2+1)}$

where n_i is the number of OTU with abundance i.

where n_i is the number of OTU with abundance i.

$S_{\text{cha}} = S_{\text{obs}} + \frac{n_1(n_1-1)}{2(n_2+1)}$
Second, overall diversity (which is determined by both richness and evenness, the distribution of abundance among distinct taxa) was expressed as Shannon Diversity. Shannon diversity (H') is calculated using:

$$H' = - \sum_{i=1}^{R} p_i \ln (p_i)$$

where R is richness and p_i is the relative abundance of the ith OTU.

Measures of diversity were screened for group differences using an analysis of variance (ANOVA). Multivariate differences among groups were evaluated with "Permutational Multivariate Analysis of Variance Using Distance Matrices," function adonis (35). For ADONIS, distances among samples were calculated using un-weighted or weighted UniFrac, and then an ANOVA-like simulation was conducted to test for group differences. In addition, multivariate differences were assessed using "Analysis of Similarities," function anosim (35).

Sequence data were processed using a Research and Testing pipeline that is described at http://www.researchandtesting.com/docs/Data_Analysis_Methodology.pdf. Spearman correlations were computed between OTU and metabolite concentration. All analyses were conducting in R, using the vegan (35), labdsv (36), DESeq2 (37), and phyloseq (38) packages.

Community-level catabolic profiles (CLCP)

Carbon source utilization patterns of the fecal microbiota were assessed using Biolog 96-well Eco micro-plates (Biolog, Inc., Hayward, CA, USA) (39). Micro-plates contained 31 different carbon sources (carbohydrates, carboxylic acids, polymers, amino acids, amines, and miscellaneous substrates) in triplicate. Five grams of feces diluted with Amies Transporst medium (1:1) were homogenized in a filter bag with 45 mL of sterile sodium chloride (0.9% (wt/vol)) solution (Classic Blender) to remove solid particulate of feces. The homogenized feces were centrifuged at 11,000 RPM for 15 min at 4°C. The pellet was washed with 50 mM Tris-HCl (pH 7.0), then with sterile sodium chloride solution and centrifuged at 11,000 RPM for 15 min at 4°C. The cellular suspension was diluted (1:10) into the sterile sodium chloride solution and, subsequently, centrifuged at 2000 RPM for 2 min at 4°C. The cellular suspension was diluted (1:20) into sterile chloride solution and dispensed (150 µL) into each of the 96 wells of the Biolog Eco micro-plates. The micro-plates were
incubated at 37°C in the dark, under anaerobic conditions and slowly stirring. The color development was measured at 590 nm every 24 h with a micro-plate reader (Biolog Microstation). Three indices were determined (40). Shannon’s diversity (H'), indicating the substrate utilization pattern, was calculated as follows:

$$H' = - \sum p_i \ln (p_i)$$ \hspace{1cm} (1)

where p_i is the ratio of the activity of a particular substrate to the sums of activities of all substrates at 120 h. Substrate richness (S), measuring the number of different substrates used, was calculated as the number of wells with a corrected absorbance higher than 0.25. Substrate evenness (E) was defined as the equitability of activities across all utilized substrates:

$$E = H' / \log S$$ \hspace{1cm} (2)

Enumeration of cultivable bacteria

Diluted fecal samples (20 g) were mixed with 80 ml sterilized physiological solution and homogenized. Counts of viable bacterial cells were carried out as described by De Angelis et al. (41). The following selective media were used: Wilkins-Chalgren anaerobe agar (total anaerobes); MRS agar (Enterococcus and Lactobacillus); Slanetz and Bartley (Enterococcus); Rogosa agar, plus 1.32 ml/l of glacial acetic acid (Lactobacillus); M17 (Lactococcus and Streptococcus); Baird Parker (Staphylococcus); Wilkins-Chalgren anaerobe agar, plus GN selective supplements and sheep blood defibrinated (Bacteroides, Porphyromonas and Prevotella); MacConkey agar No2 (Enterobacteriaceae); Chromocult (total coliform) (Merk, Darmstadt, Germany, Europe); GSP agar (Sigma-Aldrich, St. Louis, MO, USA), plus penicillin-G (60 g/l) (Pseudomonas, Alcaligenes and Aeromonas); Bifidobacterium agar modified (Bifidobacterium) (Becton Dickinson, Le Pont de Claix, SA, France); and Hoyle medium (Corynebacterium). Except for Bifidobacterium agar modified, Chromocult and GSP agar, all media were purchased by Oxoid Ltd (Basingstoke, Hampshire, England).

Fecal concentration of free amino acids
FAA of fecal samples were analyzed through the Biochrom 30 series amino acid analyzer (Biochrom Ltd., Cambridge Science Park, England) with a sodium cation-exchange column (20 by 0.46 cm (inner diameter)). A mixture of amino acids at known concentrations (Sigma Chemical Co., Milan, Italy) was added with cysteic acid, methionine sulfoxide, methionine sulfone, tryptophan, ornithine, glutamic acid, and γ-amino-butyric acid and used as standard. Proteins and peptides in the fecal samples were precipitated by addition of 5% (vol/vol) cold solid sulfosaliclyc acid, holding the samples at 4°C for 1 h, and centrifuging at 15,000 x g for 15 min. The supernatant was filtered through a 0.22-µm-pore-size filter and when necessary diluted, with sodium citrate (0.2 M, pH 2.2) loading buffer. Amino acids were post-column derivatized with ninhydrin reagent and detected by absorbance at 440 (proline and hydroxyproline) or 570 (all the other amino acids) nm.

Gas-chromatography mass spectrometry-solid-phase microextraction (GC-MS/SPME) analysis of fecal volatile compounds

After preconditioning, according to the manufacturer’s instructions, a polydimethylsiloxane/Divinylbenzene fiber (65 µm) and a manual solid phase micro-extraction (SPME) holder (Supelco Inc., Bellefonte, PA, USA) were used. Before headspace sampling, the fiber was exposed to GC inlet for 1 h for thermal desorption at 250°C. Three grams of fecal sample were placed into 10 ml glass vials and added of 10 µl of 4-methyl-2-pentanol (final concentration of 33 mg/l), as the internal standard. Samples were then equilibrated for 10 min at 40°C. SPME fiber was exposed to each sample for 40 min. Both equilibration and absorption phases were carried out with stirring. The fiber was then inserted into the injection port of the gas chromatograph for 10 min of sample desorption. GC-MS analyses were carried out with an Agilent 7890A gas chromatograph (Agilent Technologies, Palo Alto, CA) coupled to an Agilent 5975C mass selective detector operating in electron impact mode (ionization voltage, 70 eV). A Supelcowax 10 capillary column (length, 60 m; inside diameter, 0.32 mm; Supelco, Bellefonte, PA) was used. The temperature program was 50°C for 1 min, followed by an increase at a rate of 4.5°C/min to 65°C, an increase at
a rate of 10°C/min to 230°C, and then 230°C for 25 min. The injector, interface, and ion source temperatures were 250, 250, and 230°C, respectively. The mass-to-charge ratio interval was 30 to 350 Da at a rate of 2.9 scans per sec. Injection was carried out in splitless mode, and helium (flow rate, 1 ml/min) was used as the carrier gas. Molecules were identified based on comparison of their retention times with those of pure compounds (Sigma-Aldrich, Milan, Italy). Identities were confirmed by searching mass spectra in the available databases (NIST, version 2005; Wiley, version 1996). Quantitative data for the compounds identified were obtained by interpolation of the relative areas versus the internal standard area (42). All the GC-MS/SPME raw files were converted to netCDF format via Chemstation (Agilent Technologies, USA) and subsequently processed by the XCMS toolbox (http://metlin.scripps.edu/download/). XCMS software allows automatic and simultaneous retention time alignment, matched filtration, peak detection, and peak matching. GC-MS/SPME data were organized into matrix for subsequent statistical analysis.

Statistical analysis

Culture dependent data were obtained at least in triplicates. The analysis of variance (ANOVA) was carried out on transformed data followed by separation of means with Tukey’s HSD, using the statistical software Statistica for Windows (Statistica 6.0 per Windows 1998, StatSoft, Vigonza, Italy). Letters indicate significant different groups ($P<0.05$) by Tukey’s test. In order to identify differences between HS and HSB samples, GC/MS/SPME data were analyzed by Canonical discriminant Analysis of Principal Coordinates (41). The total variance obtained in the principal coordinates used to perform the CAP was higher than 80% for all the samples. Significance testing was carried out using 999 permutations. The correctly performed permutation test assigns ca. 90% of the samples. Moreover, models based on projection on latent structures (PLS) in its discriminant (DA) version were built based on the normalized concentration of the significant molecules identified (43). Metabolically active bacterial families/genera and fecal volatile compounds were
analyzed by Principal Component Analysis (PCA) using the statistical software Statistica for Windows (Statistica 6.0 per Windows 1998, StatSoft).

Nucleotide sequence accession number

The sequence data were submitted to the Sequence Read Archive database of the National Center for Biotechnology Information under accession no. PRJNA290897.

RESULTS

Diet and clinical evaluation

In this study, the diet was monitored for two months before starting the administration of durum wheat flour and whole-grain barley Pasta containing the minimum recommended intake (3 g) of β-glucans. This was done to ascertain that every volunteer consumed equivalent amounts of carbohydrates, total protein and fat. The only statistically (P<0.05) difference in the diet, before and after administration of durum wheat flour and whole-grain barley Pasta, was the amount of total fibers (Table 1). All volunteers well tolerated barley flour including β-glucans and no statistical (P>0.05) effects regarding bloating, abdominal pain score, flatulence, frequency or consistency of evacuations of feces were observed (Table S1). The observed reduction of non-HDL cholesterol confirmed the European Food Safety Authority healthy claim. The estimation of cholesterol was used as an internal control to validate the adherence of each volunteer to the diet and, consequently, the consistency of the study.

Richness and diversity of the fecal microbiota based on 16S rRNA gene sequencing data analysis

Total metabolically active bacteria from fecal samples of healthy subjects before (HS) and after (HSB) administration of durum wheat flour and whole-grain barley Pasta were analyzed by pyrosequencing of 16S rRNA gene. After quality control, pyrosequencing analysis yielded 156,563 total bacterial reads sequences with a mean of 3010 (ranged from 1146 to 5621) for sample. The metabolically active bacterial community was analyzed by rarefaction curves (Fig. S1), estimated
Operational taxonomic units (OTU), richness estimator (Chao 1) and diversity index (Shannon).

The Good’s Estimated Sample Coverage was ca. 97%. The mean number of estimated OTU of 127.19 vs 132 (P=0.605) for HS and HSB, respectively. According to OTU values, the mean values of Chao1 (152 vs 160.8) and Shannon index (3.27 vs 3.3) values were not significantly different (P=0.466; P=0.794 for Chao1 and Shannon index, respectively) between HS and HSB (Fig. S2).

According to alpha diversity values, the three phylogeny-based beta-diversity measures did not show clear separation between the microbiota composition of HS and HSB in weighted and unweighted UniFrac distance principle coordinate analysis plots (Fig. 1; Fig. S3). Besides, Adonis statistical test indicated no significant (P=0.199) differences between the microbial diversity of HS and HSB. However, ANOSIM results, which were based on weighted UniFrac testing for multivariate difference, differed (P=0.04; TestStat 0.05) between HS and HSB. Overall, seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Lentisphaerae, Proteobacteria and Verrucomicrobia) and one candidate division (TM7) were identified (Fig. S4). However, Firmicutes and Bacteroidetes represented more than 85% of all 16S rRNA sequences. No significant (P>0.05) differences were found for the phyla relative abundances between HS and HSB. The only exception was the phylum Fusobacteria, which was higher in HS compared to HSB (average relative abundance of 3.06 vs 1.85%, P=0.019).

According to alpha and beta-diversity and considering the 35 most dominant OTU (representing 95% of the total microbiota) of all fecal samples, HS and HSB volunteers were variously distributed (Fig. 2). Compared to fecal microbiota of HS, only few statistically (P<0.05) differences were detected (Table 2). HSB samples showed the highest relative abundance of Clostridiaceae (Clostridium orbiscindens; Clostridium sp.), Lachnospiraceae (Roseburia hominis), Ruminococcus sp. Other Ruminococcaceae (Faecalibacterium prausnitzii and Faecalibacterium sp.), Dialister invisus and Fusobacteriaceae (Fusobacterium) were the lowest in HSB.

OTU correlation
OTU correlation was investigated considering family- (Fig. 3A,B) or genus-level (Fig. 3C,D) taxonomic assignments and significant correlations at FDR<0.050. Several family positive correlations were always found (e.g., Coriobacteriaceae and Streptococcaceae; Porphyromonadaceae and Clostridiaceae). Other positive correlations were lost in HSB compared to HS (e.g. Eubacteriaceae with Coriobacteriaceae, Oscillospiraceae and Streptococcaceae).

Similar trend was detected also at genus-level. The only exception was for Bacteroides, which showed an increased number of positive correlations in HSB compared to HS.

Community level catabolic profiles and cultivable bacteria

The substrate utilization pattern (H’ index) and substrate richness (S index) values were calculated (Fig. 4). Compared to HS, the H and S indices of HSB decreased. The E index, which measures the statistical significance (equitability) of the H’ and S index values, confirmed the above-described significant (P <0.05) differences.

Selective media were used to enumerate cultivable bacteria (Table 3). Compared to HS, HSB showed a lower (P=0.05) number of total anaerobes. The median values of presumptive Lactobacillus was lower than those found for HSB. Other significant (P<0.05) differences concerned the number of presumptive Bacteroides, Porphyromonas and Prevotella, Enterobacteria, total coliforms and Pseudomonas, Alcaligenes and Aeromonas, which were the lowest in HSB fecal samples.

The fecal metabolome

Compared to HS, fecal samples of HSB had lower (P<0.05) levels of some FAA (Pro, Trp, Thr, and Arg) and metabolites from the catabolism of FAA (γ-amino butyric acid) (Fig. S5). The levels of some volatile organic compounds (VOC), which was detected in fecal samples of HS, markedly differed in HSB (Fig. 5A; Fig. S6). Compared to HS, fecal samples of HSB showed increased content of several short chain fatty acids (SCFA) (2-methyl-propanoic acid, acetic acid, butanoic acid and propanoic acid) (Fig. 5B). Pentanoic acid was the only SCFA found at the highest level in
HS. The other statistically significant differences for VOC regarded the levels of phenylethyl alcohol, benzaldehyde, indole, 2,3-butanedione, 6-methyl-5-hepten-2-one and acetophenone, which were the highest in HSB. FAA and GC-MS/SPME data were also analyzed using the Principal Component Analysis (PCA). The discrimination of fecal samples between HS and HSB was evident (Fig. S7).

OTU-metabolite correlations

Correlations between metabolically active bacterial families/genera and metabolome data (FAA and VOC) were found (Fig. 6). *Coriobacteriaceae, Streptococcaceae, Faecalibacterium, Ruminococcaceae* and *Ruminococcus* were positively correlated with hexanoic and propanoic acids. Other positive correlations were found for *Ruminococcaceae* and Tpr and γ-amino-butyric acid, and *Ruminococcus* and Tpr, γ-amino-butyric acid, acetic and butanoic acids. Hexanoic acid was also positively correlated with *Parabacteroides, Clostridiaceae* and *Clostridium, Bacteroidaceae, Bacteroides* and *Alcaligenaceae* were positively correlated with Tpr, acetic, butanoic, and propanoic acids, NH₃, indole, Arg, acetocephone and benzaldehyde. *Roseburia* and *Lachnospiraceae* showed various positive correlations, including Thr, γ-amino-butyric acid, acetic acid, butanoic acid, NH₃, indole, propanoic acid, phenyl ethyl alcohol and 2,3-butanedione.

DISCUSSION

This is one of the few studies showing the effects of durum wheat flour and whole-grain barley Pasta on the human fecal microbiota and metabolome, using a meta-omics approach. As shown through pyrosequencing analysis, the intervention with durum flour wheat and whole-grain barley Pasta, resulting in the ingestion of 3 g/day of β-glucans, did not affect the values of alpha and beta diversity. Previously, high-throughput sequencing techniques revealed that alpha diversity decreased with dietary supplementation of β-glucans from sea cucumber (*Apostichopus japonicas*) (44) and mirror carp (*Cyprinus carpio*) (45). The phylogenetic composition of the analyzed samples confirms that the Firmicutes and Bacteroidetes phyla constitute the most abundant bacterial OTUs
of human intestinal microbiota. The composition of the main bacterial phyla (Firmicutes and Bacteroidetes) within the enrolled volunteers was variously affected, without an unique statistically significant trend. According to the 16S rRNA gene-based high-throughput sequencing, wide variation among individuals was found (46, 47). Clostridiaceae (Clostridium orbiscindens, Clostridium sp.), Roseburia hominis and Ruminococcus sp. increased following the intervention. Previously, it was shown that barley and oat β-glucans induced clostridial cluster IX populations and Clostridium histolyticum subgroup during in vitro fermentation by human fecal microbiota (48). On the contrary, oat β-glucans did not favor the growth of Clostridium sp. in SHIME and C57BL/6J mice models (21, 24, 49). However, several discrepancies between the different studies could be due to the different models and methods used. Faecalibacterium prausnitzii, Faecalibacterium sp. and Dialister invisus decreased following the diet intervention with barley β-glucans. A similar trend was found for the genus Fusobacterium, belonging to Fusobacteria. Based on OTU correlations, β-glucans negatively impacted on bacterial interactions. The positive bacterial interactions also decreased during dietary supplementation with β-glucans from sea cucumber (44). In agreement, the community level catabolic profiles showed decreased substrate utilization pattern (H’ index) and Shannon index after diet intervention with barley β-glucans. All these results indicated a low metabolic diversity. Culture-dependent methods showed that diet intervention with whole-grain barley markedly decreased the total number of fecal anaerobic cultivable bacteria. Decreased levels of cultivable anaerobes were also found during in vitro fermentation of oat β-glucans by human fecal slurry (20). According to the in vitro study of Hughes et al. (48), cultivable presumptive thermophilic and mesophilic Lactobacillus increased following diet intervention with barley β-glucans. No positive effects were observed regarding the genus Bifidobacterium. A randomized, placebo-controlled, double-blind human intervention trial showed that cultivable fecal lactobacilli of 26 healthy volunteers were not affected by 0.75 g of barley β-glucans (26). The same study showed a statistically significant increase of the cell density of bifidobacteria. After grouping volunteers according to age, a significant bifidogenic effect was
detected only in subjects older than 50 years. The administration of 3 g/day of β-glucans to 33 polypectomized patients showed no effects on the fecal cultivable lactobacilli and bifidobacteria (27). An increased level of lactobacilli was found in animal models after barley or oat containing diet, especially using high-viscosity β-glucans (22, 23, 24). At the same time, oat product based diet or β-glucans from *Laminaria digitata*, *Laminaria hyperborea* and *Saccharomyces cerevisiae* did not increase the levels of lactobacilli in pigs and rats (25, 50). Taken together, these results suggested that the prebiotic potential of whole-grain barley/β-glucans was not always reproducible *in vivo*. The complex biochemical interactions and antagonistic activities within the intestinal microbiota prior treatment might be responsible for the different response to β-glucans enriched diet. Presumptive cultivable *Bacteroides*, *Porphyromonas* and *Prevotella* decreased following the diet intervention with barley β-glucans. Overall, abundance of *Prevotella* is higher in humans which consume more vegetable based diet (14). During *in vitro* fermentation, *Prevotella-Bacteroides* increased only with low molecular weight β-glucans (48). Cultivable *Bacteroides* decreased in SHIME model after oat bran feeding (21), while no significant differences were found in rats after feeding with products enriched of oat fiber (50). A barley reach diet was associated with reduced cultivable *Bacteroides* in the intestinal tract of rats (22). According to this study, cultivable *Bacteroides* were negatively affected in polypectomized patients after intake of barley β-glucans (27). In *vitro* and animal trials support that *Enterobacteriaceae* could not utilize β-glucans (20, 25, 50). According to in *vitro* and animal trials, this study showed a significant reduction of cultivable *Enterobacteriaceae* and total coliforms. Similar trend was found in administration of 3 g/day of β-glucans to 33 polypectomized patients (27). On the contrary, small amounts of β-glucans (0.75) were not effective to decrease total cultivable coliforms or *Esherichia coli* (26). First, this study showed that cell density of cultivable *Pseudomonas*, *Alcaligenes* and *Aeromonas* markedly decreased after the diet intervention with Pasta enriched of barley β-glucans. In *vitro* and animal trials support that high barley β-glucans consumption is associated with a significant increase of the synthesis of SCFA (46, 49, 50). This study confirmed the previous GC-
MS data showing a noticeable increase of 2-methyl-propanoic acid, acetic acid, butanoic (butyric) acid and propanoic (propionic) acid after the diet intervention with durum wheat flour and whole-grain barley Pasta. SCFA induce positive gastrointestinal and systemic effects (51). SCFA are also important modulators of the host immune function (52). Acetate is used as energy source for liver and peripheral tissues, and acts as signaling molecules in gluconeogenesis and lipogenesis (53).

Propionate serves as precursor for gluconeogenesis and it reduces the synthesis of hepatic cholesterol (54). Propionate was also associated with a decrease of insulin secretion in pancreatic islet cells of rats (55). Butyric acid serves as the main energy source for colonocytes and protects from inflammation (56, 57). Butyrate affects also the regulation of apoptosis and cellular proliferation, resulting in reduced risk of colon cancer (58). BCFA (e.g., iso-butyrate and iso-valerate) were not affected by whole-grain barley, indicating that the highest synthesis of SCFA was obtained without increasing undesirable protein fermentation (44). Previously, it was demonstrated that the intake of dietary fibers or symbiotic foods (e.g., fructooligosaccharides, *Lactobacillus helveticus* and *Bifidobacterium longum*) leads to a modulation of the gut metabolic activities with an increase of SCFA (59-61). Previously, *in vitro* data shows that barley and oat β-glucans or other oligosaccharides support the growth of Clostridia strains which synthesize acetate and butyrate (62, 63). *Bacteroides* strains are propionate producers by the succinate pathway (64) and they were positively correlated with propionic acid.

This study highlighted some *in vivo* effects of whole-grain barley towards fecal microbiota and metabolome. Whole-grain barley appeared to be effective in the modulation of the composition and the metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA.

Acknowledgements

This work was funded by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Ministero dello Sviluppo Economico and Fondo Europeo di Sviluppo Regionale (P.O.N. Ricerca e Competitività” 2007 – 2013 per le Regioni della Convergenza, project code
Obiettivo Operativo: “Reti per il rafforzamento del potenziale scientifico-tecnologico delle Regioni della Convergenza” – Azione I: “Distretti di Alta Tecnologia e relative Reti”). We thank Maria Piccolo (Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy) and Giuseppe Dalfino and Stella Diamante (DETO, Nephrology Unit - University of Bari Aldo Moro, Bari) for technical assistance.

Conflict of Interest Statement: None

REFERENCES

Figure legends

FIG 1 Principle Coordinate Analysis (PCoA) of metabolically active bacteria. PCoA was based on weighted UniFrac analysis of all 16S rRNA gene sequences found on fecal samples of healthy subject before (HS) and after two months of diet intervention (HSB) with durum wheat flour and whole-grain barley Pasta.

FIG 2 Heatmap summarizing the relative abundance of the 35 most dominant species in RNA samples directly extracted from healthy subjects before (HS) and after (HSB) two months of diet intervention with durum wheat flour and whole-grain barley Pasta. The color key defines the percentages of OTU in the samples.

FIG 3 Significant correlations between family (A, B) and genus (C, D) bacterial OTU before (A, C) and after (B, D) two months of diet intervention with durum wheat flour and whole-grain barley Pasta. The colors of the scale bar denote the nature of the correlation, with 1 indicating a perfectly positive correlation (red) and -1 indicating a perfectly negative correlation (green) between two microbial families or genera. Only significant correlations (FDR<0.05) are shown.

FIG 4 Community level catabolic profiles. CLCP indices (utilization pattern substrate (H’), substrate richness (S), and equitability (E)) of the fecal microbiota of healthy subjects before (HS) and after (HSB) two months of diet intervention with durum wheat flour and whole-grain barley Pasta. Data are the means of three independent experiments (n=3). The center line of each box represents the median, and the top and bottom of the box represent the 75th and 25th percentiles of the data, respectively. The top and bottom of the error bars represent the 5th and 95th percentiles of the data, respectively. The circles in each box plot extend to the outliers of the data.

FIG 5 Score (A) and loading coefficient (B) plots of Canonical Discriminant Analysis of Principal Coordinates (CAP) of volatile organic metabolites in feces of healthy subjects before (HS) and after (HSB) diet intervention with durum wheat flour and whole-grain barley Pasta. Compounds significantly associated with the feces of HSB (negative axis) or HS samples (positive axis) Data are the means of three independent experiments (n=3).
FIG 6 Significant correlations between metabolically active bacterial OTU (family and genus level) and after free amino acids and volatile organic compounds after two months of diet intervention with durum wheat flour and whole-grain barley Pasta. The colors of the scale bar denote the nature of the correlation, with 1 indicating a perfectly positive correlation (red) and -1 indicating a perfectly negative correlation (green) between two microbial families or genera. Only significant correlations (FDR<0.05) are shown.
TABLE 1. Basic characteristics and diet of volunteers. Each healthy subject was analyzed before (HS) and after (HSB) two months of diet intervention with 100 g/day of durum wheat and whole-grain barley pasta containing 3% (wt/wt) of β-glucans.

<table>
<thead>
<tr>
<th>Basic characteristics</th>
<th>HS</th>
<th>HSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>39±9</td>
<td>39±9</td>
</tr>
<tr>
<td>Male (%)</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>22.6±3ᵃ</td>
<td>22.6±3ᵃ</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dl)</td>
<td>183.8±30.2ᵇ</td>
<td>173.25±27.4ᶜ</td>
</tr>
<tr>
<td>LDL Cholesterol (mg/dl)</td>
<td>107.4±25.2ᵇ</td>
<td>93.25±24.5ᶜ</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dl)</td>
<td>62.48±16.63ᵃ</td>
<td>62.41±16.56ᵃ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weekly cumulative frequency of food</th>
<th>HS</th>
<th>HSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>50ᵃ</td>
<td>50ᵃ</td>
</tr>
<tr>
<td>Pasta</td>
<td>100ᵇ</td>
<td>0ᵇ</td>
</tr>
<tr>
<td>Pasta β-Glucan</td>
<td>0ᵃ</td>
<td>100ᵇ</td>
</tr>
<tr>
<td>Bread</td>
<td>97ᵃ</td>
<td>100ᵃ</td>
</tr>
<tr>
<td>Meats</td>
<td>85ᵃ</td>
<td>84ᵃ</td>
</tr>
<tr>
<td>Cured meats</td>
<td>73ᵃ</td>
<td>68ᵃ</td>
</tr>
<tr>
<td>Fish</td>
<td>77ᵃ</td>
<td>81ᵃ</td>
</tr>
<tr>
<td>Dairy Products</td>
<td>81ᵃ</td>
<td>77ᵃ</td>
</tr>
<tr>
<td>Eggs</td>
<td>89ᵃ</td>
<td>84ᵃ</td>
</tr>
<tr>
<td>Legumes</td>
<td>77ᵃ</td>
<td>76ᵃ</td>
</tr>
<tr>
<td>Leafy vegetables</td>
<td>100ᵃ</td>
<td>100ᵃ</td>
</tr>
<tr>
<td>Components Intake</td>
<td>HS</td>
<td>HSB</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Water (g)</td>
<td>717.0±274.6 a</td>
<td>853.4±512.7 a</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>69.9±29.5 a</td>
<td>77.6±41.7 a</td>
</tr>
<tr>
<td>Lipid (g)</td>
<td>58.3±31.3 a</td>
<td>68.7±42.2 a</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>199.8±73.9 a</td>
<td>237.4±101.6 a</td>
</tr>
<tr>
<td>Starch (g)</td>
<td>130.1±54.9 a</td>
<td>151.1±70.3 a</td>
</tr>
<tr>
<td>Soluble sugars (g)</td>
<td>58.7±27.9 a</td>
<td>73.4±37.6 a</td>
</tr>
<tr>
<td>Alcohol (g)</td>
<td>7.9±13.3 a</td>
<td>6.5±12.1 a</td>
</tr>
<tr>
<td>Total fiber (g)</td>
<td>13.4±8.2 a</td>
<td>22.0±11.7 b</td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>1613.1±609.6 a</td>
<td>1894.3±908.9 a</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>1233.3±886.5 a</td>
<td>1498.5±1180.4 a</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>2091.7±888.6 a</td>
<td>2408.5±1433.0 a</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>11.7±20.7 a</td>
<td>8.3±6.1 a</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>446.2±274.6 a</td>
<td>533.0±339.8 a</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>986.1±705.8 a</td>
<td>940.6625.7 a</td>
</tr>
<tr>
<td>Thiamine (mg)</td>
<td>0.7±0.3 a</td>
<td>0.9±0.8 a</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>0.9±0.4 a</td>
<td>1.0±0.8 a</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>11.5±6.3 a</td>
<td>12.78.5 a</td>
</tr>
<tr>
<td>Vit. C (mg)</td>
<td>64.6±39.7 a</td>
<td>179.3±340.3 a</td>
</tr>
<tr>
<td>Vit. E (mg)</td>
<td>5.0±8.9 a</td>
<td>5.8±12.1 a</td>
</tr>
</tbody>
</table>

a–cValues within a row with different superscript letters are significantly different (P<0.05).
TABLE 2. Pyrosequencing data summary.

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Family</th>
<th>Avg (%)</th>
<th>Avg (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HS*</td>
<td>HSB</td>
<td>S/SB</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Clostridiaceae</td>
<td>5.26</td>
<td>8.08</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Eubacteriaceae</td>
<td>8.82</td>
<td>5.13</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>Ruminococcaceae</td>
<td>31.55</td>
<td>23.37</td>
<td>0.023</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>Fusobacteriaceae</td>
<td>3.06</td>
<td>1.85</td>
<td>0.019</td>
</tr>
<tr>
<td>Specie</td>
<td>Clostridium orbiscindens</td>
<td>0.22</td>
<td>0.68</td>
<td>0.045</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Clostridium sp.</td>
<td>2.95</td>
<td>4.69</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>Roseburia hominis</td>
<td>0.01</td>
<td>0.12</td>
<td>0.047</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Faecalibacterium prausnitzi</td>
<td>12.27</td>
<td>6.08</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Faecalibacterium sp.</td>
<td>11.29</td>
<td>6.32</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>Ruminococcus sp.</td>
<td>5.60</td>
<td>8.82</td>
<td>0.047</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Dialister invisus</td>
<td>0.52</td>
<td>0.13</td>
<td>0.034</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>Fusobacterium sp.</td>
<td>3.06</td>
<td>1.85</td>
<td>0.019</td>
</tr>
</tbody>
</table>

*Each healthy subject was analysed before (HS) and after (HSB) two months of diet intervention with 100 g/day of durum wheat and whole-grain barley pasta containing 3% (wt/wt) of β-glucans. Relative abundance (average value, Avg %) of predominant bacterial taxa, showing significant (P<0.05) differences between fecal samples of HS and HSB.
TABLE 3. Fecal cultivable bacteria of the main microbial groups.

<table>
<thead>
<tr>
<th>Microbial group</th>
<th>Mean no. of cultivable cells, log CFU/ml (range)</th>
<th>HS*</th>
<th>HSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total anaerobes</td>
<td></td>
<td>9.80(^a) (9.33 – 9.93)</td>
<td>8.42(^b) (4.98 – 9.81)</td>
</tr>
<tr>
<td>Lactobacillus (thermophilus 42°C)</td>
<td></td>
<td>6.61(^b) (4.60 – 8.93)</td>
<td>7.53(^a) (4.93 – 9.16)</td>
</tr>
<tr>
<td>Lactobacillus (mesophilus 25°C)</td>
<td></td>
<td>6.61(^b) (3.26 – 8.98)</td>
<td>7.38(^a) (4.46 – 9.28)</td>
</tr>
<tr>
<td>Enterococcus</td>
<td></td>
<td>7.05(^a) (5.36 – 8.55)</td>
<td>7.29(^a) (3.90 – 9.19)</td>
</tr>
<tr>
<td>Lactococcus and Streptococcus</td>
<td></td>
<td>7.74(^a) (5.36 – 8.55)</td>
<td>7.57(^a) (4.25 – 9.26)</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td></td>
<td>5.68(^a) (2.84 – 8.11)</td>
<td>6.14(^a) (4.38 – 8.08)</td>
</tr>
<tr>
<td>Bacteroides, Porphyromonas and Prevotella</td>
<td></td>
<td>9.09(^a) (3.00 – 9.92)</td>
<td>5.17(^b) (2.52 – 6.44)</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
<td>7.07(^a) (5.11 – 9.27)</td>
<td>6.11(^b) (4.19 – 7.14)</td>
</tr>
<tr>
<td>Total Coliforms</td>
<td></td>
<td>6.94(^a) (1.91 – 8.93)</td>
<td>6.48(^b) (1.00 – 5.32)</td>
</tr>
<tr>
<td>Pseudomonas, Alcaligenes and Aeromonas</td>
<td></td>
<td>6.42(^a) (1.97 – 7.95)</td>
<td>3.68(^b) (1.00 – 4.81)</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td></td>
<td>7.16(^a) (4.33 – 9.80)</td>
<td>6.90(^a) (4.19 – 9.09)</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td></td>
<td>4.93(^a) (1.74 – 7.68)</td>
<td>5.35(^a) (2.00 – 7.17)</td>
</tr>
</tbody>
</table>

*Each healthy subject was analysed before (HS) and after (HSB) two months of diet intervention with 100 g/day of durum wheat and whole-grain barley pasta containing 3% (wt/wt) of β-glucans.

\(^a\)–\(^b\)Values within a row with different superscript letters are significantly different (P<0.05).
Figure 1
Figure 3

[Figure 3 contains detailed images of phylogenetic trees with color-coded nodes. Each tree is labeled with specific bacterial taxonomies, and the color scale ranges from Min = -1.00 to Max = 1.00.]

A

B

C

D
Figure 5

A

Canonical axis 1
Total variance 84.7%

B

2,3-butanedione
2-methyl-propanoic acid
n.d. (ion 59)
n.d. (ion 73)
acetonphenone
indole
6-methyl-5-hepten-2-one
acetic acid
propanoic acid
n.d. (ion 97)
butanoic acid
n.d. (ion 102)
2-butyl-1,1,3-trimethyl-cyclohexane
benzaldehyde
phenylethyl alcohol
acetic acid, methyl ester
ethyl alcohol
acetone
1-chloro-heptane
2-methyl-1-propanol
4-methyl-phenol
1-chloro-octane
2-methyl-butanoic acid
pentanoic acid

Canonical axis 1
Total Variance 84.7%