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A GENERALIZED KRYLOV SUBSPACE METHOD FOR ¥4,-£,
MINIMIZATION*
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Abstract. This paper presents a new efficient approach for the solution of the ¢,-£4 minimization
problem based on the application of successive orthogonal projections onto generalized Krylov sub-
spaces of increasing dimension. The subspaces are generated according to the iteratively reweighted
least-squares strategy for the approximation of ¢, /¢4-norms by weighted £2-norms. Computed image
restoration examples illustrate that it suffices to carry out only a few iterations to achieve high-
quality restorations. The combination of a low iteration count and a modest storage requirement
makes the proposed method attractive.
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1. Introduction. This paper is concerned with the computation of approximate
solutions of /,-f, minimization problems of the form

. 1 h
(L.1) min J(@),  J(@)= §||Ax—b|\§+g||<1>(x)||g,

where 0 < p, g <2, 4 >0, A€ R™ "™ bhe R™ x € R" and & : R” — R® is a linear or
nonlinear operator of interest in image restoration problems with particular properties.
Examples of such operators will be given below. The general minimization problem
(1.1) encompasses a wide variety of problems that have been extensively studied
in many different research areas, including numerical linear algebra [1, 33], image
restoration [7, 28], pattern recognition [9, 21], and compressive sensing [6, 7, 10, 22].
Different choices of the parameters p and ¢, the matrix A, and the operator ® yield
a variety of popular models that have been successfully used in many application
fields. For instance, the model (1.1) with p =2, m < n, 0 < ¢ < 1, and ® the identity
matrix can be used to compute sparse solutions of undetermined linear systems; when
p=2,0<gq<1,and A is a sampling operator, the model (1.1) can be applied for
compressive sensing.

In this paper we focus on the efficient solution of the ¢,-¢; problem (1.1) with
application to image restoration. However, the proposed method easily can be used
for the solution of all the other abovementioned applications that use the model
(1.1). In the context of image restoration, the vector x represents the unknown
uncorrupted image that is to be estimated, while the available noise- and possibly
blur-contaminated image is represented by the vector b. Typically, both x and b are
column-major representations of the corresponding two-dimensional images and have
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the same size (that is, m = n); however, this is not a requirement of the proposed
method.

The first term in the definition of J(x) is commonly referred to as the fidelity
term and the second term as the regularization term. The operator ® is chosen to
yield a computed solution with some known desired features. The scalar u > 0 is a
regularization parameter. Its purpose is to balance the influence of the fidelity and
regularization terms on the computed solution in a suitable manner.

In image restoration applications, the matrix A is the identity operator or a
blurring operator. In the former case, the purpose of solving (1.1) is to denoise an
available noise-contaminated image b. Thus, the computed solution z is a denoised
version of b. When A is a blurring operator, the solution = of (1.1) is a deblurred
and denoised version of an available blur- and noise-contaminated image b. Blurring
operators generally are severely ill-conditioned and may be singular. Due to the ill-
conditioning of A and the presence of noise in b, minimization of only the fidelity
term in (1.1) typically yields a meaningless computed solution of very large norm.
The purpose of the regularization term is to be able to determine a useful solution of
(1.1) of moderate norm.

When p = ¢ = 2 and ® is a linear operator that is represented by a regularization
matrix L € R**™ the minimization problem (1.1) turns into a classical Tikhonov-
regularized linear least-squares problem of the form

(1.2) min { || Az = b5 + p||Lall3 } .

rank[A]:n,
L

the problem (1.2) has the unique solution

Assuming that

vt = (ATA+pL"L) ' ATh

for any p > 0. Here and below, the superscript 7 denotes transposition. When L is the
identity matrix, denoted by I, the Tikhonov regularization problem (1.2) is said to be
in standard form and the solution can be efficiently computed by partial Golub—Kahan
bidiagonalization of A; see, e.g., [3, 4, 5]. Golub-Kahan bidiagonalization also can
be applied when L # I, provided that the regularization problem can be transformed
to standard form without too much effort by applying the A-weighted pseudoinverse
of L; see [11] for details. For the situation when the A-weighted pseudoinverse of
L is complicated and unattractive to use, other methods have been proposed in the
literature. A scheme that projects L into a Krylov subspace

Ki(AT A, ATh) = span{ATb, (AT A)AT D, ... (AT A)'=1 ATh}

for some | > 1 and determines an approximate solution of (1.2) in this subspace is
described in [14]. Methods based on reducing both A and L by generalized Golub—
Kahan-type or Arnoldi-type methods are discussed in [15, 25], and a scheme that
computes a partial generalized singular value decomposition of the matrix pair {A4, L}
is advocated in [16]. An efficient iterative algorithm, based on the nonlinear Arnoldi
framework developed by Voss [30], for the solution of large-scale Tikhonov regular-
ization problems (1.2) with automatic selection of the regularization parameter p is
proposed in [18]. The method relies on successive orthogonal projections onto gen-
eralized Krylov subspaces of increasing and low dimension. We refer to this method
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as the generalized Krylov subspace (GKS) method and will present an extension that
can be applied to the solution of (1.1).

The popular total variation (TV) regularization method is obtained by setting
g =11in (1.1) and letting ® = Py : R™ — R™ be the (nonlinear) map from the image
2 to the fo-norm of its gradient field. Thus,

(1.3) Jzllry = [@rv(@)h =Y [(Va), 2= \/(Dlx)f + (Dﬂ)? '
=1 i=1

Each element of x represents a pixel and (V). € R? denotes the discrete gradient
of x at pixel i. The linear operators Dy, Dy € R™ ™ are finite difference approx-
imations of first-order horizontal and vertical partial derivatives, respectively. TV-
norm regularization has been applied extensively and successively to image restoration
[19, 20, 28, 29] because of its ability to preserve edges. Substituting (1.3) into (1.1)
yields the £,-TV restoration model

1
(14 mip { 21z = o + ol }
where the choice of 0 < p < 2 depends on the type of noise in the available con-
taminated image b. For additive Gaussian noise one generally chooses p = 2 and for
impulse noise the standard choice is p = 1. These p-values give the popular ¢5-TV and
£1-TV models, respectively. The ¢1-TV model also has been applied successfully in the
contexts of image cartoon-texture decomposition [31] and multiscale image decompo-
sition [32]. Notice that, except in some special cases, such as for the abovementioned
TV model, the method proposed in this paper requires that the nonlinear operator ¢
be linearized.

Many algorithms have been proposed for the efficient solution of problems of the
form (1.4) for certain p values. An ad hoc proposal for image restoration, which uses
the coherence map of the image, has been introduced in [2]. However, to the best of
our knowledge, the only algorithm that can be applied with no or little modification
to the solution of the general ¢,-f, minimization problem (1.1) with 0 <p,q <2 is
the iteratively reweighted norm (IRN) approach introduced in [27]. This scheme is
shown to be equivalent to the half-quadratic (HQ) method [7] and to the gradient
linearization iterative procedure [23]. As will be illustrated in section 2, the IRN
method consists of iteratively solving a sequence of penalized weighted least-squares
problems that differ from each other only by the choice of the diagonal weighting
matrices.

This paper presents a novel efficient numerical method for the solution of the
general £,,-¢, minimization problem (1.1). Our method generalizes the GKS approach
described in [18] for the solution of Tikhonov-regularized least-squares problems (1.2).
The proposed approach significantly improves the computational efficiency of the IRN
method. We will refer to our approach as the GKSpq method.

The organization of this paper is as follows. Sections 2 and 3 introduce the main
ingredients of the GKSpq method by reviewing the IRN and GKS approaches. Our
new GKSpq method is described in section 4, and its convergence is discussed in
section 5. Numerical examples are presented in section 6, and concluding remarks
can be found in section 7.

2. The IRN method. In this section we express the £,-f, minimization problem
(1.1) as an equivalent sequence of weighted £2-f5 minimization problems following the
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HQ technique. The latter has been applied successfully to image restoration; see, e.g.,
[7]. Our formulation of the problem (1.1) gives a solution method that is equivalent
to the one proposed in [27].

Our discussion of the problem (1.1) relies on the following expression for the pth
power of t € R\{0}, 0 < p < 2, shown in [7, Lemma 1],

(2.1) [t} = min {wt2 + Bpllu% } :
where «;, and 3, are positive scalars defined by
PE=
(2.2) op = 2’%}) and Bp = m .
The minimum is achieved at
(2.3) w* = g P2 .

Note that the function inside the curly bracket in (2.1) is quadratic in the parameter ¢,
but not in the optimization variable w; hence the name half-quadratic. In order to be
able to apply (2.1)—(2.3) for t = 0, we need to use the smoothed version |¢t|. := V2 + ¢
for any t € R and some ¢ > 0. For simplicity of notation, we will suppress the
subscript e.

The functional 7 in (1.1) can be written componentwise as

(2.4) T(@) = > - |(Aa) ~ b + 23 (0

where (Ax);, b;, and (®(x)); denote the ith and jth entries of the vectors Az,b € R™
and ®(x) € R®, respectively. The HQ approach presented in [7] exploits the relations
(2.1)—(2.3) to minimize (2.4). Using (2.1) and (2.4), the problem (1.1) can be expressed
as the constrained minimization problem

(2.5) I)Uglggwﬁ(x,v,z) ,
where
L(z,v,2) Z<v1|Aa}-—b|2 1a >+Ezs:<zj|(<b(x)).|2+ 1a ),
Bpv; * q J ﬁqzj !

i=1 j=1

and the constraints v > 0 and z > 0 are considered componentwise. We have

Z mln U1|(Ax) —bi]* + 1%}
Bpvi

i {5 1(#() 2 + ﬁl} }

2 | 1
Z (vz| (Ax); — bi|” + G

5 (swon i) |

TER™ TER™

min J(x) = min {

+

Q= h=R N
HMU,H

(2.6)

= min
x,v>0,2>0

u:l?,; =

u Mm i

which is (2.5).
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To solve the constrained nonlinear problem (2.6), we apply an alternating mini-

mization iterative procedure, namely, for k = 0,1,..., we solve successively
(2.7) o = argmin L(p®,v,20),

(28) Z(kJrl) = arglzrl;g ﬁ(x(k)vv(kJrl)az)a

(2.9) 2D = argmin £(z, oD (D),

The minimization problems (2.7) and (2.8) are separable into one-dimensional sub-
problems for each component. Using (2.1) and (2.3), we see that these subproblems
have the explicit solutions

p—2

(2.10) pHD P ‘(Ax(’“))i . i=1,2,...,m,

(2.11) 2R q‘ k>))]‘ . i=1,2,....s

We solve the minimization problem (2.9) by first defining the diagonal weighting
matrices WI(,kH) € R™*™ and W}(%kﬂ) € R%*% according to

3

2 —
(2.12) VV]’CJr1 =diag(w (]Hl)) w%ﬂ“) p pk+1) |Ax —b|p2,

2 _
2.13) W =diag(wl),  wit = Z 2040 — ()17
q
the right-hand side norm is componentwise. Then we rewrite (2.6) in a more compact
form, in which terms that do not depend on x are omitted,
2
)

This minimization problem is a weighted regularized least-squares problem. The prob-

lem is linear when the operator ® is linear, and nonlinear otherwise. Note that in

all the cases of interest described in section 1, including nonlinear TV-norm regular-

ization, the operator ® is represented in (2.14) by a fixed matrix; see, e.g., [27]. We

therefore from now on assume & to be linear, and represent ® by the matrix L € R*"™.
Introduce the n x n matrix

1/2
(2.14) 2**+D = min { H (W}’““)) (Az —b)

2 1/2
W(k+1)) P
reR™ 2 T H H ( R (ZII)

(2.15) T(Wg, Wg) := ATWpA + uL"WgL .
The normal equations associated with the minimization problem (2.14) read as
(2.16) T(WED WD) g = ATy

At each (outer) iteration £ = 0,1,..., the standard IRN method [27] solves the
linear system of equations (2.16) with a symmetric positive definite matrix for (an
approximation of) z(**1) with the aid of the conjugate gradient (CG) algorithm, using
as initial iterate the approximate solution (%) obtained from the previous iteration,
and terminating the CG (inner) iterations as soon as a specified stopping criterion is
satisfied; see section 6 for more details. Algorithm 1 illustrates the main steps of the
standard IRN method. Details of the algorithm are commented on below.
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ALGORITHM 1. THE IRN METHOD [27] FOR THE SOLUTION OF THE {,-{, PROBLEM
(1.1).
Inputs: AeR™" LeR*™ beR™ 0<p,g<2,u>0
Output: Approximate solution z* of (1.1)
1. Initialize: 2@ =b or 2(© = (ATA+ ,LLLTL)_l ATh
. for k£ =0,1,... until convergence do
Compute weighting matrices WIEJHI) and W}(%]Hl) by (2.12) and (2.13)
Compute approximate solution z(*+1) by solving the linear system (2.16)

end for
¥ = pk+1)

> ok W

The kth (outer) iteration of Algorithm 1 consists of two main steps. The first step
(line 3) computes the diagonal weighting matrices by (2.12) and (2.13). The cost of
this computation is dominated by the evaluation of one matrix-vector product (MVP)
with A in (2.12) and one with L in (2.13). The second step (line 4) solves the linear
system of equations (2.16) by the CG algorithm. First, the right-hand side vector
of (2.16) is formed with a dominating cost of one MVP with the matrix A”. Then
the cost of each CG (inner) iteration is dominated by one MVP evaluation with the
matrix T(Wp, Wg) defined in (2.15). This matrix is not explicitly formed. Instead,
each MVP with T (Wg, Wg) is computed by evaluating one MVP with each one of
the matrices L, LT, A, and AT; cf. (2.15). The cost of the two MVP evaluations with
the diagonal weighting matrices W and Wx is negligible.

Summarizing, the computational cost of K iterations with Algorithm 1 is domi-
nated by 3K + 4 CGitsg MVP evaluations, with CGitsg denoting the total number
of CG iterations carried out.

3. The GKS method. This section reviews the GKS method proposed in [18].
The method is designed for the solution of large-scale Tikhonov regularization prob-
lems (1.2) with a general regularization matrix L € R**™. We notice that (1.2) rep-
resents a very specific instance of the ¢,-¢, problem in (1.1) obtained for p = ¢ = 2.
The method described in [18] determines the regularization parameter p > 0 by the
discrepancy principle [12]; however, many other approaches to compute this param-
eter can be used (see below). The GKS method computes a sequence of orthogonal
projections of generalized Krylov subspaces onto subspaces of low dimension.

The iterative method starts with a user-chosen subspace Vy C R" of low dimension
I < n. In [18], one lets Vo = K;(AT A, ATb) for | < 5. The columns of the matrix
Vo € R™! form an orthonormal basis for the space V.

Assume for the moment that an estimate § > 0 of the fo-norm of the noise
in b is available. The discrepancy principle then prescribes that the regularization
parameter g in (1.2) be chosen so that the solution z* satisfies ||Ax* — blla = nd
for some user-chosen constant n > 1 that is independent of §. It is applied in [18]
to determine p = py, for each iteration £ = 0,1,... and to compute the associated
solution z*) of the Tikhonov minimization problem (1.2) restricted to the subspace
Vi This subspace is spanned by the orthonormal columns of the matrix V4. Thus,
2(®) is determined as follows:

(3.1) y(k) = arg min { | AViy — bl|3 + pux || LViy||2 }, 2 = ka(k) )
yERI+k
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Define the n X n matrix
T(p):= ATA+uL"L.

The solution y*) of the reduced minimization problem (3.1) can be determined by
solving the associated normal equations,

(3.2) VIT(u)Viey = V;E ATh

and the corresponding approximate solution z(*) of the original unreduced problem
(1.2) is given by z(®) = V;.y*). Note that QR factorizations of the matrices AV} and
LV}, with small (I + k) x (I + k) upper triangular matrices are available and can be
used in the solution process; see [18] for details.

Following the approach of the nonlinear Arnoldi method proposed by Voss [30],
the subspace Vy is expanded to Vi1 by adding a new basis vector vpew to Vi. This
basis vector is determined by normalizing the residual %) of the unreduced problem
(1.2). Thus,

()

- (k) — (k) _ AT
EGIR T T () Ab.

(33) Unew =

Note that the residual vector 7(¥) is parallel to the gradient of the functional minimized
in the original unreduced problem (1.2) evaluated at z(®). In the absence of round-
off errors, 7(¥) is orthogonal to the search space Vj. To enforce orthogonality in
the presence of round-off errors, the residual #(*) can be reorthogonalized against Vy,
before normalization.

We remark that the space Vy is a Krylov subspace only in very special situations.
Since the py are updated during the iterations, so is the matrix 7'(uy). Therefore,
the space Vg, in general, is not a Krylov subspace when L # I. In particular, the
new basis vector v,y cannot be computed with a short recurrence relation. For this
reason, we refer to the search space Vj, as a generalized Krylov subspace. Algorithm
2 describes the main steps of the GKS method.

ALGORITHM 2. THE GKS METHOD [18] FOR THE SOLUTION OF THE {3-{ PROBLEM
(1.2).
Inputs: A e R™" LeR>*™ beR™, §>0
Output: Approximate solution z* of (1.2)
1. Initialize: Vo € R™*! such that VIV = I

2. for k=0,1,... until convergence do

3. Compute regularization parameter py by the discrepancy principle (see [18])
4. Compute solution y*) of reduced problem in (3.1) by solving (3.2)

5. Compute residual 7(*) of unreduced problem (1.2) by (3.3)

6. Compute new basis vector vyew by normalizing residual r®)

7. Enlarge subspace: Vi1 = [Vi, Unew]

8. end for
9. Determine approximate solution z* = Vj,y(*)

We note that Algorithm 2 also can be applied when no estimate of the norm of
the noise in b is available. In this situation, the regularization parameter uj has to
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be determined by a so-called heuristic parameter choice rule. Recent discussions on
heuristic parameter choice rules and computed examples that illustrate their perfor-
mance can be found, e.g., in [17, 24] and references therein.

4. The GKSpq method. It is our aim to improve the efficiency of the standard
IRN approach [27] described by Algorithm 1 for the solution of the £,-¢, minimization
problem (1.1). By using the HQ formulation, the £,-f, minimization problem can be
expressed in the form (2.14) and then be solved by applying ideas that form the
basis for the GKS approach. Thus, our solution subspaces are chosen to be nested
generalized Krylov subspaces of increasing dimension. They are constructed using the
solutions of (2.14) for increasing values of k. This defines the GKSpq method. The
initial subspace Vy is generated in the same manner as for the GKS method, and at
each iteration K = 0, 1,.. ., we first determine the new weighting matrices ngkﬂ) and

WI(%]CH) in the same way as in the IRN algorithm. Having at our disposal the matrix
Vi, whose orthonormal columns form a basis for the generalized Krylov subspace Vj,
the solution y**1 of the current weighted least-squares problem (2.14) restricted to
the subspace Vy, satisfies

2

2 } .

The normal equations associated with this reduced least-squares problem are given
by

1/2 2 1/2
(4.1) min { H(Wg’““)) (AViy —b)| + MH(W;’““)) LViy
2

yeRk-H

(4.2) VITWED Wi ey = v ATw i Dp

with the matrix T(ngkJrl),Wl(%kH)) defined by (2.15). We note that the matrix

VITWED WD), s of small order k 41 < n.
The solution y*+1) of (4.1) is computed by solving the least-squares problem

2
w2

(4.3) min

yERE+1 ’

'ul/QW;t/?LV )

0

[ WAV

where we, for notational simplicity, suppress the subscript & of the subspace matrix
V and the superscripts k + 1 of the weighting matrices. Let V € R"*?¢ d = k41 < n,
and introduce the QR factorizations

(4.4) WH2AV = QaRs with Qa € R™ R, e R,
(4.5) WALV = QLR with Qp e R®*¢ R e R¥Xd,
Thus, the matrices Q4 and @ have orthonormal columns and the matrices R4

and Ry, are upper triangular. Substituting these factorizations into (4.3) yields the
minimization problem

2

R Tyrr1/2
min 1 A - QaWyb
yERk+! 1 /ZRL 0 )
with the associated normal equations
(4.6) (RhRa + nRIRL)y = RAQAWEbD.
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Recalling the definition (2.15) of the matrix T'(Wg, Wr) and using the fact that
D = Vy*+D the residual 7#+1D of (2.16) can be computed according to

rE ) = T(We, Wg) z — ATWgb
= (A"WpA+ pL"WrL)x — ATWgb
(4.7) = ATWp(AVy —b) + pL" Wg(LVy) .

The subspace Vj is then expanded to Vi41 in the same fashion as in the GKS
method, that is, by adding the new unit vector v,ey Obtained by normalizing the
residual 75+ in (4.7). The main steps of the GKSpq algorithm are described by
Algorithm 3.

ALGORITHM 3. THE GKSPQ METHOD FOR THE SOLUTION OF THE {j,-{; PROBLEM
(1.1).
Inputs: AeR™" LeR*™ beR™ 0<p,g<2,u>0
Output: Approximate solution z* of (1.1)

1. Initialize: 2@ =b or 2(© = (ATA+ ,LLLTL)_l ATh

Vo € R™*! such that VOTVO =1

2. for k=0,1,... until convergence do

3 Compute weighting matrices Wl(mkﬂ) and WI({kH) by (2.12) and (2.13)
4. Compute solution y*+1) of reduced problem (4.6)
5
6
7

Compute residual 7*+1) of unreduced problem (2.14) by (4.7)
Compute new basis vector vyew by normalizing residual pk+1)
Enlarge subspace and update matrices:
Virr = Vs Vnew],  AVig1 = [AVi, AVnew|,  LViy1 = [LVi, Lupew]
8. end for
9. Determine approximate solution z* = Vj,y*+1)

We briefly comment on the computational cost of Algorithm 3. First, we note that
the computation of an orthonormal basis for the initial subspace Vo := K;(AT A, ATb)
does not require the matrix A7 A to be explicitly formed; it suffices to carry out [ — 1
steps of Golub—Kahan bidiagonalization of the matrix A with initial vector b. More-
over, for efficiency reasons, the matrices AV and LV are stored and updated during
the iterations. The cost for computing the diagonal weighting matrices in step 3 of
Algorithm 3 is negligible. In fact, the vectors AV,y**1) — b and LV,y*+Y have
already been computed in (4.7) when evaluating the residual r(#+1) in the previous
iteration and are reused. The computation of the QR factorizations (4.4) and (4.5)
required in step 4 of Algorithm 3 demands about 2m(k+1)? and 2s(k +1)? arithmetic
floating point operations (flops), respectively. Since k + | < n, both flop counts are
negligible in comparison with the cost for evaluating MVPs with the large matrices
A, L, and their transposes. The computational effort required in step 5 to determine
the residual by (4.7) is dominated by two MVP evaluations, one with AT and one
with LT. Finally, in step 7 of the algorithm, the matrices AV and LV are updated
for use in the next iteration with a computational cost of two MVPs, one with A and
one with L. In summary, the overall computational cost for K iterations with the
GKSpq algorithm is dominated by the work required to evaluate 4K MVPs.
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5. Convergence analysis. In this section we discuss the convergence of the
GKSpq method. Its main steps are described by Algorithm 3. Our discussion relies
on convergence results reported in [7] for the IRN/HQ method.

To secure that the GKSpq algorithm does not break down, we require that the
solution y**1 of the reduced least-squares problem (4.1) exists and is unique or,
equivalently, that the coefficient matrix of the normal equations (4.2) is of full rank.

We recall that the diagonal weighting matrices Wg”l) and W}(;fﬂ), defined by (2.12)
and (2.13), have strictly positive diagonal entries and that the rectangular subspace
matrix Vi has full rank. Therefore, in order for (4.2) to be solvable for any such

matrices WI(,kH), W}gﬂrl)7 and Vi, we have to assume that

(5.1) Ker (AT A) nKer (LTL) = {0},

where Ker(M) denotes the null space of the matrix M. This requirement typically is
satisfied. For instance, in image restoration problems A represents a blurring operator,
which is a low-pass filter, whereas the regularization matrix L usually is a difference
operator and, hence, is a high-pass filter. Chan and Liang [7] point out that the
property (5.1) also guarantees that the IRN method does not break down.

Both the IRN and GKSpq methods rely on the three main computational steps
(2.7)-(2.9) but differ in how the solution of the step (2.9) is computed. For the
purpose of discussing convergence, it is convenient to consider the computations of
(2.7)-(2.9) as one step. Toward this end, we substitute the expressions for v(*+1) and
2(F+1) given by (2.10)(2.11), into (2.9). Then the minimization problem (2.5) can
be expressed by substituting the solutions of the problems (2.7) and (2.8). We obtain
that at iteration k, both the IRN and GKSpq algorithms compute the next iterate,
2+ by minimizing the following functional over 2 € R™, with 2(*) € R" a constant
parameter vector:

(3l

S

INgE

L\DI’U

Q(z; 2™

@Ir—'

)i — biP2(Ax) — b + 22 P|(Ax®), b|)

7

+
<=

(5.2 <—|Lx 992 (L + 2;q|<Lx<k>>j|q).

Jj=1

This functional has some important properties, which are summarized in the following
proposition.

PROPOSITION 5.1. Let 0 < p,q < 2 and assume that (5.1) holds. Then, for
any F) € R™, the functional Q(x;2™®)) defined in (5.2) is a strictly convex tangent
majorant function at x®) of the £,-t, functional J(z) defined in (2.4) with & = L,
that is,
> J(x) VzeR?,
=J() at x=2®,

e V.Q(z;2")) =VT(z) at x=zW,
o V2Q(z;2™) is positive definite ¥ x € R™.

Proof. The stated properties can be shown by using results from [7, Lem-
ma 2]. O

Thus, in iteration k, the IRN and GKSpq methods replace the minimization of
the original convex or nonconvex f,-f, functional J(z) by minimizing the simpler
surrogate functional Q(z; ™)), which is convex and majorizes J ().
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Using the definition (5.2) of Q(z;x(®)), the IRN algorithm can be written as

2+ = arg mﬁn Q(z; ™M) | k=0,1,...,
TeR™

while the GKSpq algorithm can be expressed as

arg minQ(x;x(k)) for k=0,1,...,n—1—1,
I
argnelg}lQ(x;x(k)) for k=n—In—101+1,....

Here [ > 1 is the dimension of the user-specified initial subspace Vy, and Vj is the
generalized Krylov subspace generated at iteration k. To justify (5.3), we recall that
the subspace Vi, in which in the kth iteration the GKSpq algorithm searches for
the new approximate solution z(**1) is of dimension ! + k. Hence, from iteration
n — [ and onward, the subspace V, is equivalent to the whole space R™ and cannot be
enlarged further. Therefore, for iterations k > n — [, the GKSpq method is equivalent
to the IRN method with initial approximate solution z(®~*=1) . This implies that the
convergence behavior of the GKSpq and IRN algorithms is the same as k — oc.

In the following two subsections, we analyze the convergence of the GKSpq al-
gorithm and first show that the sequence {J(2(¥))}22, of values achieved by the
functional (1.1) is monotonically decreasing and convergent for any 0 < p,q < 2.
Subsequently, we discuss the convergence of the sequence of computed approximate
solutions {z(M}2° | for 1 < p,q < 2.

5.1. Monotonicity and convergence of J(w(k)) for 0 < p,q < 2. We first
show the following result.

LEMMA 5.2. Let 0 < p,q < 2 and assume that (5.1) holds. Let {x®¥)}32 | denote
the sequence of approximate solutions generated by the GKSpq method using (5.3).
Then, for any initial approzimate solution x®) € R™ and any k > 1, we have

(5.4) Q(x(kﬂ);x(k)) < Q(x(k);x(k)) '

Proof. We show (5.4) by considering the cases 1 < k < n—{land k > n —1
separately, starting with the former. Recall that generically at iteration k£ — 1, the ap-
proximate solution z(¥) computed by the GKSpq algorithm (5.3) lives in the subspace
Vi—1. Moreover, by construction Vi_; C Vi, C R™. Given a:(k), the new approximate
solution z**t1) is determined by minimizing Q(z; x(k)) with the constraint that x be-
longs to the subspace Vy; cf. (5.3). Since z*) €V, and 2**D is the unique minimizer
of Q(z;2™)) for x € V4, it follows that (5.4) holds.

We turn to the case when k > n—1. Then, given z(*), the GKSpq algorithm (5.3)
computes the new approximate solution z(*+1) as the unique unconstrained global
minimizer of Q(x;x®), and (5.4) follows. O

THEOREM 5.3. Let0 < p,q < 2, assume that (5.1) holds, and let {x*)}3° | denote
the sequence of approzimate solutions generated by GKSpq method (5.3). Then, for
any initial approzimate solution x(©) € R", the sequence {J ()}, of values is
monotonically decreasing and convergent where [J is defined by (2.4).

Proof. The sequence {7 (z"))}2° | is bounded from below by zero and is mono-
tonically decreasing, since we can write

J(x(kﬂ)) < Q(x(kﬂ);x(k)) < Q(x(k);x(k)) - j(x(k)) )

Here the first inequality and last equality follow from the fact that Q(z; z(®)) is a tan-
gent majorant of J(x), i.e., they follow from the first two properties of Lemma 5.1.
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The second inequality is a consequence of Lemma 5.2. Finally, since the sequence
{T (™)<, is monotonically decreasing and bounded from below, it is conver-
gent. g

5.2. Convergence of () for 1 < p,q < 2. When 0 < p,q < 1, the Lp-Ly
minimization problem (1.1) is not guaranteed to be convex. We therefore analyze
the convergence of the sequence ), k = 1,2,..., generated by the GKSpq method
for 1 < p,q < 2 only. Since after n — [ iterations the GKSpq method turns into the
IRN method, the convergence behavior of the sequence {x(k)}zozl is the same as for
sequences generated by the IRN method. Therefore, the convergence results shown
in [7] for the IRN method also hold for the GKSpq method. We state the following
convergence result from [7].

THEOREM 5.4. Let 1 < p,q < 2, assume that (5.1) holds, and let {x(k)}iozl
denote the sequence of approzimate solutions determined by the GKSpq method (5.3).
Then, for any initial approzimate solution x(®) € R™, we have the following:

(a) limp_yo0 [|2®) — =Dy = 0.

(b) The sequence {x*)1° | converges to the unique minimizer of the £y-£y func-

tional (2.4).

An analysis of the behavior of 2% for k < n—1is beyond the scope of this
paper and will be considered in future work. The following section provides some
illustrations of this behavior.

6. Numerical examples. We compare the performances of the GKSpq method
described by Algorithm 3 and of the IRN method outlined by Algorithm 1 when
applied to the restoration of two gray-scale test images cameraman and brain depicted
in Figures 1(b) and 2(b). These images are synthetically corrupted by blur and noise.
They are represented by arrays of 256 x 256 pixels stored columnwise in vectors in R™
with n = 65536. Let £ € R™ represent the original blur- and noise-free image. This
image is assumed not to be available. A block Toeplitz with Toeplitz blocks blurring
matrix A € R™ " is generated with the function blur from [13]. This function
has the parameters band and sigma, which determine the half-bandwidth of each
Toeplitz block in A and the standard deviation of the underlying Gaussian point
spread function, respectively. The blurred image AZ is corrupted by different types
and amounts of noise to obtain the image b € R™. This image is assumed to be known.
It is our aim to determine an accurate approximation z* of z, given A and b, by using
the £,-f, model (1.1).

We compare the GKSpq and IRN methods both in terms of accuracy and effi-
ciency. The former is measured by the relative error e and by the signal-to-noise ratio
(SNR) defined by

2" — 2|2

]2

7 — E(@)|I3

(6.1) e(z",z) = ,  SNR(z*,z) := 10log,, ” —— 5~ (dB),
[l — 2|13

where E(Z) denotes the mean gray-level of the uncontaminated image z. These quan-
tities provide quantitative measures of the quality of the restored image: a large
SNR-value and a small e-value indicate that x* is an accurate approximation of Z.
Computational efficiency is measured in terms of the total number of MVP eval-
uations with the matrices A, AT, L, LT required by the algorithms to satisfy the
following stopping criterion. The (outer) iterations of the IRN and GKSpq algo-
rithms are terminated as soon as the relative error of the computed approximate
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solution z(®) drops below a user-specified threshold 7 > 0, i.e., when
(6.2) e(z® z) < 7.

Results for the IRN algorithm are computed by using the freely available imple-
mentation in the NUMIPAD library [26]. This code implements the variable auto-
adapted CG tolerance policy that yields the best timings [27]. The IRN implemen-
tation requires the user to specify the regularization parameter. We therefore choose
the regularization parameter empirically to give the most accurate restorations, i.e.,
restorations with the highest SNR-values. To be able to compare the restorations de-
termined by the IRN and GKSpq methods, we choose the regularization parameter in
the same manner for the latter method. The GKSpq algorithm uses the initial search
space Vo = K1 (AT A, ATb). All computations are carried out in MATLAB with about
15 significant decimal digits.

Example 1. We consider the restoration of contaminated test images cameraman
and brain that have been degraded by Gaussian blur with different parameters band
and sigma, and by salt-and-pepper noise of different intensity. Recall that salt-and-
pepper noise corrupts images by changing a given percentage of pixels into either the
minimum or maximum possible gray-level-value with equal probability. The other
pixels are left unchanged. We consider the popular TV-regularized ¢,-TV restoration
model (1.4), which corresponds to letting ¢ = 1, ® = ®py, and 0 < p < 2 in
(1.1). Specifically, we consider the two models ¢1-TV and ¢y 1-TV. The ¢1-TV model
represents the standard choice for the restoration of images corrupted by salt-and-
pepper noise, see [7], since it forces sparsity of the residual while keeping the functional
convex. The ¢y1-TV model is not convex but holds the potential to better induce
sparsity. We are interested in comparing the two models in terms of restoration quality
and computational effort required by the IRN and GKSpq minimization algorithms.

Figures 1 and 2 show restorations obtained by the GKSpq algorithm when applied
to the test images. The degraded images in Figures 1(b) and 2(b) were obtained from
the original blur- and noise-free images in Figures 1(a) and 2(a), respectively, by
first applying Gaussian blur with parameters band = 5 and sigma = 1.5, and then
corrupting 30% of the pixels by salt-and-pepper noise. Figures 1(c), 2(c) and Figures
1(d), 2(d) depict restorations obtained by using the GKSpq method to solve the ¢;-
TV and ¢y 1-TV models, respectively. For both test images, the latter model yields a
significantly more accurate restoration than the former both in terms of visual quality
and SNR-value. The SNR-values are displayed in Tables 1 and 2.

Tables 1 and 2 report quantitative results of the performances of the IRN and
GKSpq methods when applied to the ¢,-TV and ¢y 1-TV models for different choices
of the parameters band and sigma that define the Gaussian blur and for different
percentages of pixels corrupted by salt-and-pepper noise. Columns 4 to 7 show, from
left to right, the value of the regularization parameter p used for each example, the
value of the threshold 7 for the relative error used to terminate the iterations ac-
cording to (6.2), and the total number of MVP evaluations as well as the number
of outer iterations (in parentheses) required by the algorithms to satisfy the stop-
ping criterion or to yield a relative change smaller than 10~ in the successive com-
puted restorations. Thus, the iterations are terminated when (6.2) is satisfied or
when ||z — 20|, /||z*)||; < 107%. The SNR-values of the so-obtained computed
restorations are reported in the last two columns of the tables. The dimension of the
solution subspace generated by the GKSpq algorithm at convergence is not reported
explicitly but can be easily obtained as the sum of the dimension of the initial sub-
space and the number of iterations carried out. The latter are reported in parentheses
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(b) corrupted (SNR = —2.24)

(e) zoom: original (f) zoom: ¢1-TV (g) zoom: £y 1-TV

Fic. 1. Ezample 1. Restoration results obtained by the GKSpq algorithm applied to the
cameraman image that has been contaminated by Gaussian blur with band = 5 and sigma = 1.5,
and salt-and-pepper noise corrupting 30% of the pizels.

in the seventh column of Tables 1 and 2. We recall that the GKSpq method increases
the dimension of the solution subspace by one in each iteration. The dimension of
the initial solution subspace is [ = 1. The tables illustrate both the superiority of the
£y.1-TV model in terms of accuracy of the restoration and the faster convergence of
the GKSpq method.

Figure 3 shows the computational efficiency of the IRN and GKSpq methods.
We plot efficiency curves for some of the parameter combinations of Table 1 for the
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(a) original (b) corrupted (SNR = —1.53)

(¢) restored by ¢1-TV (SNR = 16.25) (d) restored by £y.1-TV (SNR = 19.08)

(e) zoom: original (f) zoom: £;-TV (g) zoom: £y1-TV

Fia. 2. Example 1. Restoration results obtained by the GKSpq algorithm applied to a test MRI
brain image that has been contaminated by Gaussian blur with band = 5 and sigma = 1.5, and

salt-and-pepper noise corrupting 30% of the pizels.

IRN and GKSpq methods. Each sub-plot of Figure 3 displays for both methods

log,(e™™) as a function of the number of MVP evaluations, where e(*) denotes the

relative error (6.1) in the restored image available after k steps. The graphs of Figure
3 show the GKSpq method to require fewer MVP evaluations than the IRN method
to reduce the error in all contaminated images. In fact, the GKSpq method requires
about one third of the MVP evaluations needed by the IRN method to reduce the
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TABLE 1
Ezxzample 1. Comparison of the IRN and GKSpq algorithms applied to the minimization of the
£1-TV and £o.1-TV functionals for the restoration of cameraman test images corrupted by different
kinds of Gaussian blur and salt-and-pepper noise.

Blur Noise || Parameters MVPs (outer its) SNR
Band | sigma | % w | T IRN | GKSpq IRN | GKSpq
£1-TV
10 ][ 0.050 [0.0450 || 206 (7) | 76 (19) | 18.05 | 18.06
3 1 20 |[0.130]0.0641 || 264 (8) | 92 (23) | 15.88 | 15.89

30 0.190 | 0.0776 || 380 (10) | 128 (32
10 0.013 | 0.0647 || 308 (6) 136 (34

14.22 14.22
15.80 15.84

)

)
5 | 15 | 20 |l0.025|0.0715 || 204 (7) | 112 (28) | 14.92 | 14.93
30 || 0.050 | 0.0787 || 364 (10) | 108 (27) | 14.10 | 14.11
10 || 0.005]0.0779 || 516 (6) | 200 (50) | 14.18 | 14.19
7 | 2 | 20 |l0.010|0.0851 || 462 (7) | 156 (39) | 13.42 | 13.43
30 || 0.015|0.0011 || 436 (8) | 124 (31) | 12.83 | 12.83

£o.1-TV

10 || 05 |0.0219][ 1154 (9)] 420 (105) | 25.23 | 25.12
3 1 | 20 || 3.2 |0.0372]| 498 (7) | 176 (44) | 20.60 | 22.16
30 10.1 | 0.0436 || 580 (10 192 (48) 19.23 19.95
10 0.1 |0.0321 || 2484 (8 928 (232) 21.89 21.61
5 1.5 20 0.3 |0.0374 || 1728 (8 632 (158) 20.57 20.46
30 0.4 |0.0416 || 1778 ) 19.64 19.52

7 2 20 0.11 | 0.0469 || 2936 1032 (258) | 18.60 18.35

)
)
)
9) | 588 (147
)
)
)| 848 (212) | 17.89 | 17.76

(
(
10 || 0.06 [0.0415 || 4418 (9) | 1460 (365) | 19.66 | 19.66
(
(

30 0.17 | 0.0508 || 2994

error in the available contaminated images in all examples with ¢1-TV and £y 1-TV
models.

Finally, in Figure 4 we provide empirical evidence of the numerical convergence
of the proposed GKSpq algorithm applied to the ¢,-TV and ¢y1-TV models for the
restoration of the cameraman test image perturbed by Gaussian blur with band = 5
and sigma = 1.5, and salt-and-pepper noise corrupting 20% of the pixels. (See the
fifth rows in Table 1.) In particular, the graphs reported in the first and second rows
of Figure 4 display, respectively, the quantities log;y(—(J®*) — J*=1)/7¢=1) and
logo(lz®) — z*=1 |5 /|2 |3) as functions of the iteration count k, where J*)
denotes the value J(z(*)) achieved after k iterations by the £,-¢, functional defined
in (2.4). These graphs show that numerical convergence of the GKSpq algorithm
is fast both in terms of the computed approximate solutions z(*) and in terms of
the corresponding functional values J(x(*)). Moreover, the plots in the first row of
Figure 4 show that the sequence of function values J(z*)), k = 1,2, ..., is monotoni-
cally decreasing, thus confirming experimentally the theoretical result in Theorem 5.3.
Similar convergence behavior can be observed for all the other examples.

Ezxample 2. We consider the restoration of the test image cameraman corrupted
by Gaussian blur with band = 5 and sigma = 1.5, and by additive zero-mean white
Gaussian noise with different standard deviations o. It is well known that for this
kind of noise, accurate restorations can be achieved with the £,-¢, restoration model
(1.1) for p = 2. We refer to this model as the ¢3-¢, model and compare the IRN
and the GKSpq methods when applied to the minimization of the ¢3-¢, functional for
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TABLE 2
Ezxzample 1. Comparison of the IRN and GKSpq algorithms applied to the minimization of the
£1-TV and £o.1-TV functionals for the restoration of brain test images corrupted by different kinds
of Gaussian blur and salt-and-pepper noise.

Blur Noise || Parameters || MVPs (outer its) SNR
Band | sigma | % m | T IRN | GKSpq IRN | GKSpq
£1-TV

10 [[0.150 | 0.0594 [[ 200 (6) | 60 (15) | 21.59 | 21.60
3 1 20 | 0.250 | 0.0774 || 354 (9) | 112 (28) | 19.51 | 19.52
30 0.300 | 0.0975 || 398 (9) | 168 (42) | 17.52 17.52
10 0.015 | 0.0901 || 208 (4) | 36 (9) 17.76 17.79
5 | 1.5 | 20 |[0.035]0.0077 || 206 (5) | 44 (11) | 17.04 | 17.05
30 |[0.060|0.1002 || 212 (6) | 52 (13) | 16.25 | 16.25
10 || 0.010 | 0.1104 || 280 (4) | 52 (13) | 16.35 | 16.36
7 2 20 0.020 | 0.1178 || 216 (4) | 52 (13) 15.62 15.63
30 0.040 | 0.1265 || 206 (5) | 56 (14) 15.00 15.00

£o.1-TV
10 4 ]0.0347 || 392 (6) )
3 1| 20 8 |0.0440 || 356 (6) )

30 || 11 |0.0559 || 402 (7) )| 2108 | 23.11

10 1.0 | 0.0568 || 558 (5) )| 21.99 22.40

5 | 15 | 20 || 1.2 |0.0702 || 610 (5) | 124 (31) | 20.17 | 20.24

(5) )

(5) )

(5) )

(5) )

26.16 26.38
24.27 24.63

128 (32

30 1.9 |0.0813 || 566 18.74 19.08
10 1.0 [0.0736 || 662 19.88 20.01
7 2 20 1.2 |0.0828 || 686 18.90 18.97
30 2.0 |0.0908 || 614 18.12 18.18

164 (41

several values of ¢. Specifically, we let ¢ € {3, 2,2}. The regularization matrix L is
chosen to be the first-order discrete derivative operator for two space dimensions,

-1 1
with L; = e RU4-Dxd
-1 1

Ly ® I
Is ® Ly

L =

where I; denotes the identity matrix of order d, d is the number of pixels in each row
and column of the image considered, the matrix L; is bidiagonal, and ® denotes the
Kronecker product.

Table 3 reports results for the IRN and GKSpq methods for several g-values (first
column), and for additive white Gaussian noise of different standard deviations o (sec-
ond column). The other columns display the value of the regularization parameter
w1 used for each test, the value of the threshold 7 for the relative error used in the
stopping criterion (6.2), and the total number of MVP evaluations needed to satisfy
the stopping criterion. The last column of Table 3 reports the SNR-~values for the
restorations obtained by the IRN and GKSpq methods. Analogously to Example 1,
the dimension of the Krylov subspace generated by the GKSpq algorithm at conver-
gence is the sum of the number iterations carried out and the dimension of the initial
solution subspace. The latter is equal to one.

The GKSpq method is seen to require fewer MVP evaluations than the IRN
method. The quality of the restoration is higher for ¢ < 2 than for ¢ = 2. We
remark that ¢ = 0.5 corresponds to a nonconvex functional [8]. Therefore, the IRN
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0 500 1000 1500 2000 2500
MVPs

(b) £o1-TV, 10%

1000 1500
MVPs MVPs

(d) Lo.1-TV, 20%

l0g,,(@)

500 1000 1500
MVPs
(e) £1-TV, 30% () £o1-TV, 30%

Fic. 3. Ezample 1. Logarithm of the relative error versus the number of matriz-vector product
evaluations performed by the IRN and GKSpq algorithms when applied to the minimization of the ¢1-
TV (left-hand side column) and £o.1-TV (right-hand side column) functionals for the restoration of
cameraman test images that have been contaminated by Gaussian blur with band = 5 and stgma = 1.5,

and salt-and-pepper noise corrupting 10% (first row), 20% (second row), and 30% (third row) of the
pizels.

and GKSpq methods are not guaranteed to converge to the same restoration in this
situation.

7. Conclusions. We presented a new method for the efficient solution of the
¢y-f4 minimization problem based on successive orthogonal projections onto gener-
alized Krylov subspaces of increasing dimensions. The subspaces are generated ac-
cording to the iteratively reweighted least-squares strategy for the approximation of
¢, /lnorms by weighted fo-norms. Computed examples with application to image
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Fic. 4. Ezample 1. Convergence results for the GKSpq method applied to £1-TV (left-hand side
column) and £o.1-TV (right-hand side column) functionals for the restoration of the cameraman test
image that has been contaminated by Gaussian blur with band = 5 and stigma = 1.5, and salt-and-
pepper noise corrupting 20% of the pizels.

TABLE 3
Ezxzample 2. Comparison of the IRN and GKSpq algorithms applied to the minimization of the
la-Lyq functional for the restoration of cameraman test images contaminated by Gaussian blur with
band = 5 and sigma = 1.5, and additive zero-mean white Gaussian noise with standard deviation o.

Model | Noise Parameters MVPs (outer its) SNR
aq o I IRN | GKSpq | IRN |GKSpq
10 0.050 |0.1293 | 12 (1) 12 (3) 11.60 11.60
2 20 | 0.190 [0.1191] 8(1) | 8(2) | 10.50 | 10.50

30 | 0.410 [0.1049 | 14 (1) | 8 (2) 9.79 | 9.79
10 | 0.012 [0.0990 ] 40 (2) | 24 (6) | 12.11 | 1211
1.5 | 20 | 0.038 |0.1128| 64 (2) | 24 (6) | 10.97 | 10.97
30 | 0.080 [0.1225| 80 (2) | 20 (5) | 10.26 | 10.26
10 [0.00025 [0.1025 [ 272 (2) | 148 (37) | 11.87 | 12.03
0.5 | 20 |0.00100 |0.1171 | 372 (2) | 180 (45) | 10.65 | 10.93
30 | 0.00250 | 0.1259 | 560 (2) [ 312 (78) | 10.02 | 10.37

restoration indicate that subspaces of fairly small dimension suffice for the deter-
mination of high-quality restorations. The numerical experiments demonstrate that
the proposed method requires a smaller number of matrix-vector product evaluations
to yield restorations of required accuracy than the standard implementation of the
iteratively reweighted least-squares method.
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