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Abstract

This paper proposes a new evaluation approach for the class of small-scale ‘hybrid’ New Keynesian Dy-

namic Stochastic General Equilibrium (NK-DSGE) models typically used in monetary policy and business

cycle analysis. The empirical assessment of the NK-DSGE model is based on a conditional sequence of

likelihood-based tests conducted in a Vector Autoregressive (VAR) system, in which both the low and high

frequency implications of the model are addressed in a coherent framework. If the low frequency behavior of

the original time series of the model can be approximated by non-stationary processes, stationarity must be

imposed by removing the stochastic trends. This gives rise to a set of recoverable unit roots/cointegration

restrictions, in addition to the short-run cross-equation restrictions. The procedure is based on the sequence

‘LR1→LR2→LR3’, where LR1 is the cointegration rank test, LR2 the cointegration matrix test and LR3

the cross-equation restrictions test: LR2 is computed conditional on LR1 and LR3 is computed conditional

on LR2. The type-I errors of the three tests are set consistently with a pre-fixed overall nominal significance

level. A bootstrap analogue of the testing strategy is proposed in small samples. We show that the informa-

tion stemming from the individual tests can be used constructively to uncover which features of the data are

not captured by the theoretical model and thus to rectify, when possible, the specification. We investigate

the empirical size properties of the proposed testing strategy by a Monte Carlo experiment and show the

empirical usefulness of our approach by estimating and testing a monetary business cycle NK-DSGE model

using U.S. quarterly data.

Keywords: DSGE models, LR test, Maximum Likelihood, New-Keynesian model, VAR
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are dominating macroeconomics, in academic re-

search, as well as in economic policy making. Even though these models, by their very nature, cannot

provide a complete description of the business cycle and of any time series, such as inflation, output and

the policy rate, they are widely used to evaluate macroeconomic scenarios and predict economic activity.

Assessing the correspondence between what these models imply and what the data tell us is therefore a

crucial step in the process of analyzing policy options and their effects, especially if one takes the view that

the scientific validity of a model should not be exclusively based on its logical coherence or its intellectual

appeal, but also on its ability to make empirical predictions that are not rejected by the data; see e.g.

De Grauwe (2010) and Pesaran and Smith (2011).

There are several methods which can used to evaluate the empirical performance of DSGE models,

depending on the specific objectives of the analysis. Most common methods include economic reliabil-

ity, statistical fit, and forecasting accuracy; see, e.g., Schorfheide (2000), An and Schorfheide (2007) and

Schorfheide (2011). Each evaluation method is based on a ‘metric’ and different ‘metrics’ may lead to

different conclusions. Our ‘metric’ will be based on testing the restrictions on the data implied by DSGE

models. This approach is by no means new, but dates back to the early literature on the econometrics of

rational expectations models; see Hansen and Sargent (1980), Hansen and Sargent (1981), Wallis (1980) and

Johansen and Swensen (1999).

It is often claimed that Bayesian techniques are preferable to standard likelihood-based methods because

DSGE models typically represent a false description of the Data Generating Process (DGP) and misspecifi-

cation can be important in estimation; see e.g. Canova and Ferroni (2012). Schorfheide (2000) suggests using

a loss function to assess the discrepancy between DSGE model predictions and overall posterior distribution

of the population characteristics that the researcher is trying to match. Del Negro, Schorfheide, Smets, and

Wouters (2007) develop a set of tools within the Bayesian approach that can be used for assessing the time

series fit of a DSGE model based on a systematic relaxation of the set of cross-equation restrictions (CER)

that the structural model implies on the Vector Autoregressive (VAR) representation of the data. Their

method, known as the ‘DSGE-VAR’ approach, provides the investigator with a Bayesian ‘metric’ through

which he/she can evaluate how far/close the DSGE model is from a VAR approximation of the data.

While misspecification in DSGE models is a concrete possibility, we do not think it represents a strong

argument against the idea of confronting these models with data by frequentist (classical) methods. The

knowledge that the DSGE model is ‘misspecified’ in some directions may help the investigator understand

what features of the data the model is missing, how important these features are, and, possibly, how to
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improve the original specification.

We propose a frequentist evaluation approach for a class of small-scale DSGE models grounded in the

New Keynesian tradition and relevant for economic policy analysis, henceforth denoted with the acronym

‘NK-DSGE’ models. These models are investigated in, among many others, Clarida, Gaĺı, and Gertler

(2000), Lubik and Schorfheide (2004), Ireland (2004), Christiano, Eichenbaum, and Evans (2005), Smets

and Wouters (2007), DeJong and Dave (2011), Carlstrom, Fuerst, and Paustian (2009), Benati and Surico

(2009) and more generally, in Woodford (2003) and Gaĺı (2008). They feature both macroeconomic and

monetary policy shocks and typically include a forward-looking aggregate demand equation, a Phillips curve,

and a monetary policy reaction function. They can also accommodate the monetary/fiscal policy mix (e.g.

Bianchi (2012)) and/or financial frictions e.g. Castelnuovo and Nisticò (2010).

In principle, there are two types of restrictions that can be tested in NK-DSGE models. First, there

are the long-run cointegration/common-trend restrictions stemming from the observation that there are

generally more variables to be modelled than there are independent integrated forcing processes; see e.g.

Canova, Finn, and Pagan (1994), Söderlind and Vredin (1996), Fukač and Pagan (2010) and Juselius (2011).

Importantly, these restrictions hold regardless of the uniqueness/multiplicity of the model solution and are

invariant to the specification of the transient dynamics of the system—see Broze, Gourieroux, and Szafarz

(1990) and Binder and Pesaran (1995). Second, there are the short-run CER which apply to the system

conditional on the common trends. The long-run and short-run properties of NK-DSGE models are generally

interdependent and therefore they should be examined jointly. Our method is based on testing both types

of restrictions in a coherent framework. We propose a sequential procedure computed in three steps using

likelihood ratio (LR) tests. We first test whether the cointegration rank (the number of stochastic common

trends) is consistent with the predictions of the NK-DSGE model, using a finite order VAR model. Next,

we test the implied overidentifying cointegrating restrictions, conditional on the chosen rank. Finally, we

test the CER the NK-DSGE model places on the VAR system, conditional on the cointegrating restrictions.

Overall, the suggested method involves computing a sequence of LR tests, called LR1 (LR cointegration

rank test), LR2 (LR cointegration matrix test) and LR3 (LR test for CER). The test LR2 is run conditional

upon LR1 not rejecting the cointegration rank, and LR3 is run if LR2 does not reject the overidentifying

cointegration restrictions. To our knowledge, King, Plosser, Stock, and Watson (1991), Canova, Finn, and

Pagan (1994) and Söderlind and Vredin (1996) are early examples of the use of the test LR1 in related

contexts. Juselius (2011) is a recent example of the use of the test LR2 in the NK-DSGE models, while

Guerron-Quintana, Inoue, and Kilian (2013) propose the inversion of a test like LR3 to build confidence

sets for structural parameters that are robust to identification failure. For ease of exposition, we denote our
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testing strategy with the symbol ‘LR1 → LR2 → LR3’. The novelty of the ‘LR1 → LR2 → LR3’ procedure

is that the empirical evaluation of the NK-DSGE model is treated as a multiple hypothesis testing approach.

This is one of the contributions of our approach, as we will show in the rest of the paper.

Under the null of the NK-DSGE model, the tests LR1, LR2 and LR3, individually considered, are

correctly sized in the sense that their asymptotic size is equal to the pre-fixed nominal type I error. Ac-

cordingly, using simple Bonferroni arguments, we can prove that the overall asymptotic size of the testing

strategy does not exceed the sum of the type I errors pre-fixed for each test. If a practitioner wishes to

test the NK-DSGE model at, say, the 5% nominal level of significance, the critical values of the tests LR1,

LR2 and LR3 can be chosen such that the sum of the individual type I errors does not exceed 5%. The

size of the overall testing strategy can be kept under strict control in small samples by referring to the

bootstrap analogue of the ‘LR1 → LR2 → LR3’ procedure. In this case, the bootstrap version of the test

LR1 is computed following Cavaliere, Rahbek, and Taylor (2012). The bootstrap counterpart of the test

LR2 is computed as in Boswijk, Cavaliere, Rahbek, and Taylor (2013) and Cavaliere, Nielsen, and Rahbek

(2013)—see Gredenhoff and Jacobson (2001) for an alternative approach. The bootstrap analogue of the

test LR3 can be computed as in, e.g., Cho and Moreno (2006) or Fanelli and Palomba (2011).

A discrepancy is often found between what the data tell and what theory implies when long-run restric-

tions are tested in structural forward-looking models. For instance, the balanced-growth-path property of

the standard neoclassical growth model implies that hours worked are stationary. This, however, appears

to be at odds with the persistent movements of per capita hours in the data. Similarly, NK-DSGE models

typically maintain that inflation is a stationary process. In small samples, however, we typically observe

high inflation persistence. The possible failures of the common-trend/cointegration restrictions using the

tests LR1 and LR2 are generally the hardest features to interpret because of the lack of indications about

how to modify the model. Chang, Doh, and Schorfheide (2007) illustrate how the specification of a real busi-

ness cycle DSGE model can be modified to incorporate non-stationary labor supply shocks which generate

permanent shifts in hours worked. Similarly, Juselius (2011) provides a detailed interpretation of monetary

business cycle NK-DSGE models, under different scenarios reflecting the common trends that might be

found in the data. As we show below, proper modifications to the probabilistic structure of the exogenous

shocks that generate fluctuations in NK-DSGE models can be used to generalize trend structures and close

the gap between theory and data. Likewise, when the short-run CER implied by the NK-DSGE model are

rejected by the LR3 test, one should think of alternative structural frameworks to capture the dynamic

features of the data, or the omitted transmission mechanisms of the shocks. For example, dynamically rich,

distributed-lag small scale monetary models have been employed by, e.g., Estrella and Fuhrer (2002, 2003)
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and Fuhrer and Rudebusch (2004), among others, while medium-scale systems which involve a relatively

larger number of variables are considered in Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2007). Thus, we go beyond using the ‘LR1 → LR2 → LR3’ testing strategy as an ‘accept-reject’

proposition. We show that the outcomes of the individual tests can be used constructively to uncover what

features of the data are not captured by the theoretical model and to rectify, when possible, the specification

of the NK-DSGE model.

We evaluate the empirical performance of the ‘LR1 → LR2 → LR3’ testing strategy by a small Monte

Carlo experiment whose data generating process (DGP) belongs to the monetary business cycle NK-DSGE

model discussed in Benati and Surico (2009), which is the leading example used in our paper. We further

show the empirical usefulness of our approach by estimating and testing the NK-DSGE model of Benati and

Surico (2009) using U.S. quarterly data.

Our paper has several connections with the existing literature. Canova, Finn, and Pagan (1994) and

Söderlind and Vredin (1996) propose a method to evaluate real business cycle models by eliciting the

(highly) restricted VAR representation underlying them and comparing it with an unrestricted VAR for the

data. They recognize that the driving forces in these models may be integrated, and hence account for the

implied set of cointegration restrictions, as well as considering what Canova, Finn, and Pagan (1994) call the

‘non-cointegrating restrictions’. Our approach differs from Canova, Finn, and Pagan (1994) and Söderlind

and Vredin (1996) in the way the ‘LR1 → LR2 → LR3’ testing strategy is designed. Fukač and Pagan (2010)

propose an evaluation approach to NK-DSGE models in which both the long and short-run behavior of the

data are taken into account by modelling the common stochastic trends in an error-correction framework.

While Fukač and Pagan (2010) put forth a ‘limited information’ approach, our analysis is developed in a ‘full

information’ maximum likelihood (ML) framework. Also, Juselius (2011) applies a ‘full information’ ML

approach, but he limits his attention to the steady-state implications of NK-DSGE models, leaving the CER

untested. Gorodnichenko and Ng (2010) propose robust estimators for the parameters of DSGE models

that do not require researchers to take a stand on whether the shocks have permanent or transitory effects,

while ‘filtering’ is implicitly obtained in our framework by a proper transformation of the model through

the cointegration restrictions. The approach of Gorodnichenko and Ng (2010) is therefore suitable when

the exact underlying cointegrating relationships are not known. Moreover, Gorodnichenko and Ng (2010)

are not concerned with assessing how far/close is the estimated model from/to the data. One advantage of

our method is that if the NK-DSGE model is not rejected by the data, it automatically delivers the ML

estimates of the structural parameters, while the extension of Gorodnichenko and Ng’s (2010) method to

the case of ML estimation is not always practical.
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Finally, apart from the Bayesian approach, we have many points in common with the ‘DSGE-VAR’

approach of Del Negro, Schorfheide, Smets, and Wouters (2007). These authors also use a cointegrated

VAR in error-correction form as the statistical model for the data, but they impose the common-trend

restrictions without testing. The prior distribution for the VAR parameters in Del Negro, Schorfheide,

Smets, and Wouters (2007) is centered on the CER implied by the DSGE model and has dispersion governed

by a scalar (hyper)parameter, denoted λ, such that small values of λ indicate that the VAR is far from the

theoretical model, while large values of λ indicate that the theoretical model is supported by the data. A

cutoff value for λ is not provided, as noticed by Christiano (2007). In our testing strategy, the test LR3 plays

a role similar to λ in Del Negro, Schorfheide, Smets, and Wouters (2007). However, we have by construction

a cut-off value for LR3 which depends on pre-fixed nominal type-I error: values of LR3 smaller than the

cutoff value indicate that the VAR is ‘close’ to the NK-DSGE model, and vice versa.

The paper is organized as follows. We introduce the baseline NK-DSGE model and its assumptions in

Section 2 and discuss a set of testable restrictions, which are usually ignored in the literature, in Section 3.

We present our testing strategy in Section 4 and investigate its empirical size performance by a simulation

experiment in Section 5. We present an empirical illustration in which our reference NK-DSGE model is

evaluated on U.S. quarterly data in Section 6. Section 7 concludes the paper. The Appendix discusses

the asymptotic size of the testing strategy. Additional details about the ML estimation algorithm for

the structural parameters necessary to compute the test LR3, as well as detailed interpretation of the

estimates obtained in the simulation experiment and in the empirical illustration, are reported in a Technical

Supplement.

2 Model and assumptions

Our starting point is the structural representation of a typical NK-DSGE model that aims at capturing

the stylized features of the business cycle. The model is in the form of a system resulting from the log-

linearization around steady-state values of the equations that describe the behavior of economic agents.

Let Wt be the p-dimensional vector collecting all the variables of interest. A typical structural monetary

NK-DSGE model takes the form of the linearized rational expectations model:

AW0 Wt = AWf EtWt+1 +AWb Wt−1 + ηWt , (1)

where AW0 , AWf and AWb are p × p matrices whose elements depend on the structural parameters collected

in the vector θ, and ηWt is a mean zero vector of structural disturbances. The term EtWt+1 = E(Wt | Ft)
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denotes conditional expectations, where Ft is the available stochastic information set at time t and is such

that σ(Wt,Wt−1,...,W1) ⊆ Ft, where σ(Wt,Wt−1,...,W1) is the sigma field generated by the variables. As is

standard in the literature, we posit that the structural disturbance term ηWt obeys a vector autoregressive

processes of order one, i.e.,

ηWt = RW ηWt−1 + uWt , uWt ∼ WN(0p×1,ΣW,u) (2)

where RW is a diagonal stable matrix (i.e. with eigenvalues lying inside the unit disk) and uWt is a White

Noise term with covariance matrix ΣW,u. Hereafter, uWt will be denoted the vector of structural or ‘fun-

damental’ shocks, and it will be assumed that dim(uWt )=dim(Wt) = p, preventing the occurrence of the

‘stochastic singularity’ issue; see e.g. Ireland (2004) and DeJong and Dave (2011). In general, theory

does not provide information about the correlation of the structural disturbances across equations; if cross-

equation correlations are assumed for the structural disturbances, these can be captured by specifying a

non-diagonal covariance matrix ΣW,u. In our setup, the non-zero elements of RW and of vech(ΣW,u) belong

to the vector of structural parameters θ. All meaningful values of θ belong to the ‘theoretically admissible’

(compact) parameter space, denoted P.

A solution of model (1)-(2) is any stochastic process {W ∗
t }

∞
t=0, W

∗
t = W ∗

t (θ), such that, for θ ∈ P,

EtW
∗
t+1 = E(W ∗

t+1 | Ft) exists and if W ∗
t is substituted for Wt into the structural equations, the model is

verified for each t, for fixed initial conditions. A reduced form solution is a member of the solution set whose

time series representation is such that Wt depends on u
W
t , lags of Wt and u

W
t (and, possibly, other arbitrary

martingale difference sequences (MDS) with respect to Ft independent of uWt , called ‘sunspot shocks’).

We confine the class of reduced-form solutions associated with the NK-DSGE model to a known family

of linear models by the assumption that follows.

Assumption 1 [Determinacy] The ‘true’ value θ0 of θ is an interior point of P∗, where P∗ ⊂ P is such

that, for each θ ∈ P∗, the NK-DSGE model (1)-(2) has a unique and asymptotically stationary (stable)

reduced-form solution.

Assumption 1 can be interpreted as the null hypothesis that the DGP belongs to the unique stable

solution of the NK-DSGE system (1)-(2). This assumption is standard in the literature and hinges on

the idea that the time series upon which model (1) is built and estimated are typically constructed (or

conceptualized) as stationary deviations from steady-state values.

Under Assumption 1, the unique stable solution of the model (1)-(2) can be represented as the asymp-
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totically stationary VAR system

Wt = F̃1Wt−1 + F̃2Wt−2 + εWt , εWt =Q̃uWt (3)

where F̃1 = F1(θ), F̃2 = F2(θ) and Q̃ = Q(θ) are p × p matrices that depend nonlinearly on θ through the

implicit set of nonlinear CER:

(AWR
0 −AWf F̃1)F̃1 −AWf (F̃2) +AWb,1 = 0p×p (4)

(AWR
0 −AWf F̃1)F̃2 −AWb,2 = 0p×p (5)

Σ̃W,ε = Q̃ ΣW,u Q̃
′. (6)

In Eqs. (4)-(6), AWR
0 = (AW0 + RWA

W
f ), AWb,1 = (AWb + RWA

W
0 ), AWb,2 = −RWAWb , Q̃ = Q(θ) =(

AW0 −AWf F̃1

)−1
, and Σ̃W,ε is the covariance matrix of εWt under the constraints, see Binder and Pesaran

(1995), Uhlig (1999), Kapetanios, Pagan, and Scott (2007) and Fanelli (2012).

In general, the NK-DSGE model represented in Eq.s (1)-(2) reads as a ‘partial equilibrium’ model, in

the sense that it does not specify how any unobservable components of Wt, denoted W
u
t , are generated. For

instance, in the examples we discuss below, the NK-DSGE model specified in the form (1)-(2) is based on

the output gap and takes as given the process generating the natural level of output.

Let W o
t be the sub-vector of Wt that contains the observable variables. Given the n-dimensional ‘com-

plete’ vector Zt = (W o′
t ,W

u
t )

′, n ≥ p, which collects, without any loss of generality, the observed (first) and

unobserved variables (last), one can interpret the (stationary) vector Wt in systems (1) and (3) as obtained

from the linear combination

Wt=ζ
′Zt (7)

where ζ is a known n× p matrix of full column-rank p that combines the observed and unobserved variables

and/or picks out the stationary elements of Zt that enter the structural model. A further step toward the

‘complete’ specification of the NK-DSGE model is provided by Assumption 2.

Assumption 2 [Unobserved processes are integrated of order one] The sub-vectorW u
t is such that

∆W u
t is covariance stationary.

Assumption 2 simply states that W u
t is integrated of order one, denoted W u

t ∼ I(1). It does not provide

a detailed specification of the process generating the unobserved variables, but it can be further specialized

according to the specific features of the model under investigation, as shown in the next sub-sections. Given

7



the scope of the present paper, approximating the unobserved components with I(1) processes meets two

requirements. First, Assumption 2 formalizes the property that the NK-DSGE model features stochastic

trends. Second, the I(1) assumption may represent a reasonable and interpretable choice for the typical

unobservable components which characterize the class of small-scale NK-DSGE models used in monetary

policy and business cycle analysis, i.e., the natural level of output (potential output) and/or the inflation

target (or trend inflation), as suggested by Bekaert, Cho, and Moreno (2010), Fukač and Pagan (2010) and

Section 2.1 below.

Given Assumptions 1-2 and a detailed specification of the process generating W u
t , the ‘complete’ (fully-

specified) NK-DSGE model can be given the structural representation

AZ0 Zt = AZf EtZt+1 +AZb Zt−1 + ηZt (8)

ηZt = RZη
Z
t−1 + uZt , uZt ∼ WN(0n×1,Σu,Z), (9)

where the matrices AZ0 , A
Z
f , A

Z
b and Σu,Z not only depend on θ, but also on a set of additional parameters,

denoted with θa, that are associated with the processes specified forW u
t . The ‘extended’ vector of structural

parameters is therefore given by θe = (θ′, θa′)′. Compared to the formulation (1)-(2) of the NK-DSGE model,

the system represented in Eqs. (8)-(9) incorporates the unit-root implication of Assumption 2. We will refer

to the representation in Eqs. (8)-(9) as the ‘complete’ specification of the NK-DSGE model. It is worth

remarking that, albeit Wt in Eq. (7) reads as a sub-vector of Zt, Wt has the finite-order VAR representation

in Eq.s (3)-(6) under Assumption 1.

The next sub-section provides a detailed example about the relationship between the representation in

Eq.s (1)-(2) and (8)-(9) of the NK-DSGE model.

2.1 An example model

We use an example based on Benati and Surico (2009). The model consists of the following equations:

ỹt = γEtỹt+1 + (1− γ)ỹt−1 − δ(it − Etπt+1) + ηỹ,t (10)

πt =
%

1 + %κ
Etπt+1 +

κ
1 + %κ

πt−1 + κỹt + ηπ,t (11)

it = ρit−1 + (1− ρ)(ϕππt + ϕyỹt) + ηi,t (12)

ηa,t = ρaηa,t−1 + ua,t , ua,t ∼WN
(
0, σ2a

)
, a = ỹ, π, i (13)
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hence Wt = (ỹt, πt, it)
′, p = 3, ηWt = (ηỹ,t, ηπ,t, ηi,t)

′ and uWt = (uỹ,t, uπ,t, ui,t)
′ . In this model, ỹt = (yt − ypt )

is the output gap, where yt is the log of output and ypt the natural rate of output; πt is the inflation rate

and it is the nominal interest rate; ηỹ,t, ηπ,t and ηi,t are stochastic disturbances autocorrelated of order

one, while uỹ,t, uπ,t and ui,t can be interpreted as demand, supply and monetary shocks, respectively. The

structural parameters are collected in the vector θ = (γ, δ, %, κ, κ, ρ, ϕπ, ϕy, ρỹ, ρπ, ρi, σ2ỹ , σ
2
π, σ

2
i )

′ and

their economic interpretation may be found in Benati and Surico (2009).

The model (1)-(2) is ‘incomplete’ according to our definition, because it does not specify the process for

the natural level of output ypt . One way to ‘complete’ the model is to specialize Assumption 2 as follows:

Assumption 2’ [Potential output is a Random Walk]

ypt = ypt−1 + ηyp,t , ηyp,t ∼ WN(0, σ2yp). (14)

In addition to the non-stationarity hypothesis, Assumption 2’ provides a simple DGP for ypt consistent

with the representation in Eq.s (8)-(9), see below. The usual interpretation of Assumption 2’ is that the

flexible price level of output ypt is driven by a combination of a stationary demand shock and a non-stationary

technology shock, as in Ireland (2004). In this framework, the vector Wt = (ỹt, πt, it)
′ can be thought of as

being obtained through the linear combination in Eq. (7), which here qualifies in the expression

Wt=


1 0 0 −1

0 1 0 0

0 0 1 0


ζ′



yt

πt

it

ypt


Zt

. (15)

The vector Zt = (W o′
t ,W

u′
t )′ accommodates both the observed W o

t = Zot = (yt, πt, it)
′ and the unobserved

W u
t = ypt variables. Given the relationship in Eq. (15), the Eq.s (10)-(13) jointly with Eq. (14) imply the

following configuration of the matrices A0, Af and Ab:

AZ0 =



1 0 δ −1

−κ 1 0 κ

− (1− ρ)ϕy − (1− ρ)ϕπ 1 0

0 0 0 1


, AZf =



γ δ 0 −γ

0 ωf 0 0

0 0 0 0

0 0 0 0


, AZb =



(1− γ) 0 0 − (1− γ)

0 ωb 0 0

0 0 ρ 0

0 0 0 1


where ωf = %/(1 + %κ) and ωb = κ/(1 + %κ). The ‘extended’ vector of parameters is θe = (θ′, θa)′, where
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θa = σ2yp .

3 Testable restrictions

The relationships between Wt and Zt defined by Eq. (7) and the representation in Eq.s (8)-(9) of the NK-

DSGE model can conveniently be used to analyze the whole set of testable restrictions. Under Assumptions

1-2, Zt ∼ I(1), and all cointegration/common-trend restrictions of the system are subsumed in the vector

Zt. The model which captures the CER after factoring out the cointegrating relations from the system is

given by the finite-order VAR representation for Wt in Eq.s (3)-(6). In this section, we explore the set of

testable implications related to the vector Zt, while in the next section we exploit these implications to

define a coherent testing strategy for the NK-DSGE model.

We consider the n-dimensional vector of transformed variables

Yt=

 β′0

τ ′(1− L)

Zt = G(β0, τ, 1− L)Zt, det(τ ′β0⊥) 6= 0, (16)

where β0 is the n×r identified cointegration matrix, β0⊥ is its orthogonal complement, and τ is a (n− r)×r

selection matrix which is restricted so that it is not orthogonal to β0⊥. The role of τ is to pick out a proper set

of variables in first differences from the vector (1− L)Zt = ∆Zt, where L is the lag operator (LjZt = Zt−j).

The choice of τ in Eq. (16) is not necessarily unique, however. The case discussed below shows that, despite

the many possible choices of τ , not all of them are consistent with the theoretical features of the NK-DSGE

model. In principle, β0 may temporarily depend on some ‘additional’ parameters that we collect in the vector

ν, and which are not necessarily related to θ. We write β0 = β0(ν) to make clear such a dependence. Under

the null hypothesis that the NK-DSGE model is valid, and with all constraints implied by the NK-DSGE

model imposed on the system for Zt, the joint restriction

r = p , β0 = βb0 = ζ (17)

must hold, where the symbol βb0 denotes the counterpart of the identified cointegration matrix β0 that leads

to what we shall define below as a ‘balanced’ (error-correction) representation of the NK-DSGE model. Eq.

(17) maintains that, under the null of the NK-DSGE model, the identified cointegration matrix βb0 must be

equal to the selection matrix ζ of Eq. (7) and, accordingly, must not depend on any parameter. Hence, the

dependence of β0 on ν is suppressed in Eq. (17). We observe that the transformation in Eq. (16) mimics

the one used by Campbell and Shiller (1987) to address the analysis of present value models through VAR

10



systems.

Under the restriction (17), we can recover Wt from Yt as follows:

Yt=

 β′0

τ ′(1− L)

Zt = G(βb0, τ, 1− L)Zt

=

 ζ ′

τ ′(1− L)

Zt =

 ζ ′Zt

τ ′∆Zt

 =

 Wt

τ ′∆Zt


hence it is seen that the vector Wt is part of Yt. Because the G(β0, τ, 1− L) (or G(βb0, τ, 1− L)) matrix in

system (16) is non-singular by construction, the mapping in Eq. (16) can be used in the model in Eq. (8)

to obtain

AZ0G(β0, τ, 1− L)−1Yt = AZf G(β0, τ, 1− L)−1EtYt+1 +AZb G(β0, τ, 1− L)−1Yt−1 + ηZt . (18)

The appealing feature of the representation in Eq. (18) is that, other than involving stationary variables

(i.e. those in Yt), the (inverse of the) difference operator (1 − L) cancels out from the equations if one

restricts β0 as in Eq. (17), and imposes a proper set of restrictions on θ, such that the transformed model is

‘balanced’. With the term ‘balanced,’ we mean that G(β0, τ, 1−L)−1 is replaced with G(βb0, τ, 1−L)−1 and

some restrictions are placed on the elements of θ, so all left-hand and right-hand side variables appearing

in system (17) are stationary. The nature of these restrictions will be demonstrated in the examples that

follow.

Hereafter we use the representation

AY0 Yt = AYf EtYt+1 +AYb Yt−1 + ηYt (19)

ηYt = RY η
Y
t−1 + uYt (20)

to denote the ‘balanced’ counterpart of system (18). The system (19)-(20) can be regarded as an error-

correction representation of the NK-DSGE model.

The structural parameters in the matrices AY0 , A
Y
f , A

Y
b , R

Y and ΣY,u = E
(
uYt u

Y ′
t

)
are collected in

the vector θY , where θY is obtained from θe by imposing the restrictions that map system (18) into the

transformed representation in Eqs. (19)-(20). In general, dim(θY ) = dim(θe)−c, where c is the total number

of restrictions on θe necessary for balancing. Under Assumptions 1-2 (and the other minor assumptions in

Section 2), if the unique stable solution of the NK-DSGE model (19)-(20) exists, it can be represented in
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the form

Yt = Φ̃1Yt−1 + Φ̃2Yt−2 + εYt , εYt = Ψ̃uYt (21)

where Φ̃1 = Φ1(θ
Y ), Φ̃2 = Φ2(θ

Y ) and Ψ̃ = Ψ(θY ) = (AY,R0 − AYf Φ̃1)
−1 are n × n matrices that depend

nonlinearly on θY through the set of nonlinear CER:

(AY,R0 −AYf Φ̃1)Φ̃1 −AYf Φ̃2 +AY,Rb,1 = 0n×n (22)

(AY,R0 −AYf Φ̃)Φ̃2 −AY,Rb,2 = 0n×n (23)

Σ̃Y,ε = Ψ̃ ΣY,uΨ̃
′ (24)

where AY,R0 = (AY0 + RYA
Y
f ), A

Y,R
b,1 = (AYb + RYA

Y
0 ), A

Y,R
b,2 = −RYAYb , and Σ̃Y,ε is the covariance matrix

of the reduced form disturbances εYt under the constraints, see Section 2. The constraints in Eq.s (22)-(24)

mimic those derived in Eq.s (4)-(6) for the ‘original’ specification of the NK-DSGE model, but here refer to

the ‘complete’ specification based on Assumption 2.

We now come back to our leading example, analyzed in Sub-section 2.1, to discuss some situations which

clarify the essence of the transformations from Zt to Yt and the resulting set of testable restrictions. In

particular, Sub-section 3.1 deals with the ‘desirable’ situation in which the number of common stochastic

trends found in the data, n− r, lines up with the number predicted by the theory, n− p, and the identified

cointegration relationships match perfectly the structure in Eq. (17). Sub-section 3.2 deals, instead, with

the situation where the inferred number of common trends, n − r, is larger than n − p (r < p), hence the

structure of the cointegration relationships in Eq. (17) is no longer valid. We argue that, in these cases, it is

generally possible to rectify the specification of the structural equations to feature the ‘additional’ stochastic

trends, provided these trends can be given a sensible economic interpretation. This process, however, may

give rise to extra (testable) restrictions in other parts of the model. Finally, Sub-section 3.3 deals with the

case in which it is necessary to think about alternative specifications of the transmission mechanisms of the

shocks. This situation may arise when the CER in Eq.s (22)-(24) (or in Eq.s (4)-(6) if the “incomplete”

specification is investigated) are not valid.

3.1 Example 1: the case of a single stochastic trend

Consider the NK-DSGE model in Eqs. (10)-(13) and Assumption 2’. Suppose that given Zt = (yt, πt, it, y
p
t )

′,

the selected cointegration rank r and the identified cointegration relationships β0 perfectly match the re-
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quirements in Eq. (17), i.e.

r = 3, β′0Zt = βb′0 Zt = ζ ′Zt =


1 0 0 −1

0 1 0 0

0 0 1 0





yt

πt

it

ypt


=Wt. (25)

In this case, the output gap, inflation and the short term interest rate are jointly stationary and there is a

single stochastic trend in Zt. The cointegration relationships in Eq. (25) are consistent with the hypothesis

that the system is driven by a non-stationary technology shock; see, e.g., Ireland (2004) and DeJong and

Dave (2011).

The vector Yt in Eq. (16) is given by

Yt = G(βb0, τ, 1− L)Zt =

 βb′0

τ ′ (1− L)

Zt =

 βb′0

(1− L) 0 0 0




yt

πt

it

ypt


= (W ′

t ,∆yt)
′, (26)

where it can be noticed that τ = (1, 0, 0, 0)′, β0⊥ = (1, 0, 0, 1)′, hence det(τ ′β0⊥) = det(1) 6= 0. Using

G(βb0, τ, 1− L)−1 in Eq. (18) generates the system

ỹt = γEtỹt+1 − δ(it − Etπt+1) + (1− γ)ỹt−1 + ηỹ,t

πt = ωfEtπt+1 + ωbπt−1 + κỹt + ηπ,t

it = ρit−1 + (1− ρ)(ϕππt + ϕyỹt) + ηi,t

−ỹt + (1− L)−1(1− L)yt = −ỹt−1 + (1− L)−1(1− L)yt−1 + ηyp,t,

where we have left the operator (1− L)−1 in the final equation to highlight the point about balancing. To

see that (1 − L)−1 cancels out from the former equation, it is sufficient to rewrite it in the form (using

Assumption 2’)

ỹt = ỹt−1 +∆yt + η∗yp,t (27)

where η∗yp,t = −ηyp,t. It is worth emphasizing that Eq. (27) is a reparametrization of the Random Walk

model assumed for ypt in Eq. (14). A similar representation obtains if the chosen τ in G(βb0, τ, 1−L) is given

by τ = (0, 0, 0, 1)′.
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In this case, θY = θe and the matrices AY0 , A
Y
f and AYb , as well as the vector ηYt in the representation

in Eq. (19), can easily be derived and are equal to

AY0 =



1 0 δ 0

−κ 1 0 0

−(1− ρ)ϕy −(1− ρ)ϕπ 1 0

1 0 0 −1


AYf =



γ −δ 0 0

0 ωf 0 0

0 0 0 0

0 0 0 0


AYb =



1− γ 0 0 0

0 ωb 0 0

0 0 ρ 0

1 0 0 0


and ηYt = (ηỹ,t, ηπ,t, ηi,t, η

∗
yp,t)

′. The testable cointegration restrictions relative to the strictly observable time

series in Zt, Z
o
t = (yt, πt, it)

′ =W o
t ∼ I(1), are

ro = 2 ,

0 1 0

0 0 1

Zot ∼ stationary (28)

where ro is the cointegration rank associated with Zot .

3.2 Example 2: the case of two stochastic trends

Consider the NK-DSGE model in Eqs. (10)-(14). Imagine that, given Zt = (yt, πt, it, y
p
t )

′, the selected

cointegration rank is r = 2 6= p, implying the existence of n − r = 4 − 2 = 2 stochastic trends, one more

than the technology trend predicted by the baseline version of the model. We discuss in detail two possible

scenarios which can be used to nest a setup like this, denoted Scenario 1 and Scenario 2, respectively.

Scenario 1: stochastic inflation target

Inflation is typically a highly persistent process, which can sometimes be approximated reasonably well

by I(1) processes. If the quantity %
1+%κ + κ

1+%κ in the NKPC in Eq. (11) is close to 1, the I(1) approximation

for πt is sensible in small samples. While it is implicitly assumed that trend inflation is zero in the system

(10)-(13), it may be the case that trend inflation is determined by the long-run target of the central bank’s

policy rule. A drift in trend inflation could therefore be attributed to shifts in that target. Consider, for

instance, the small monetary NK-DSGE model investigated by Bekaert, Cho, and Moreno (2010). Their

model differs from our leading example only in the specification of the policy rule, which in their framework

is given by

it = ρit−1 + (1− ρ)ϕπ(Etπt+1 − π∗t ) + (1− ρ)ϕyỹt + ηi,t (29)
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where π∗t is a stochastic inflation target generated by the equation

π∗t =
%

1 + %$
Etπ

∗
t+1 +

$

1 + %$
π∗t−1 + (1− %

1 + %$
− $

1 + %$
)πt + επ∗,t. (30)

The term επ∗,t in Eq. (30) is an exogenous shift in the policy stance regarding the long term rate of inflation,

assumed to be i.i.d., and the parameter $ measures the extent to which the monetary authority smoothes

the inflation target in anchoring its inflation target to a properly defined measure of the ‘long-run inflation

expectations’, πLR = (1− %)
∑∞

j=0 %
jEtπt+j (see Eq. (9) in Bekaert, Cho, and Moreno (2010)). Therefore,

with $ = 0, the target π∗t equals long-run inflation expectations in the absence of exogenous shifts, while,

for values of $ close or equal to unity, Eq. (30) collapses to the Random Walk model: π∗t = π∗t−1 + επ∗,t.

If this model can be taken as a reasonable description of the evolution of π∗t in the modelled sample, πt

and π∗t must be cointegrated with cointegration vector (1,-1) for the monetary policy rule in Eq. (29) to

be balanced (note that, if πt-π
∗
t is stationary, (Etπt+1 − π∗t ) also will be stationary). Under this DGP, the

investigator will find two stochastic trends in Zt = (yt, πt, it, y
p
t )

′ and the source of the cointegration rank

failure ( i.e. r < p) will be the omitted stochastic inflation target. A necessary condition for this hypothesis

to be valid is that it holds the restriction

β′0Zt = βb′0 Zt =

1 0 0 −1

0 0 1 0




yt

πt

it

ypt


=

 yt − ypt

it

 ∼ stationary. (31)

The specification in Eq. (31) implies that ypt and πt are I(1) and yt− ypt and it are stationary. The testable

cointegration restrictions relative to the strictly observable time series Zot = (yt, πt, it)
′ =W o

t collapse to

ro = 1 , (0, 0, 1, 0)Zot ∼ stationary. (32)

Scenario 2: stationary real (ex-post) interest rate

Suppose that the two cointegration relationships identified from the data are given by

β′0Zt = β′0(ν)Zt =

1 0 0 −1

0 −ν 1 0




yt

πt

it

ypt


=

 yt − ypt

it − νπt

 ∼ stationary (33)
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where ν is a cointegration parameter not related to the structural parameters θe. The two cointegrating

vectors in Eq. (33) are the output gap and a linear combination of it and πt with cointegration vector

(1, −ν). For values of the parameter ν close to one, the stationary linear combination (it − νπt) can be

interpreted as a measure of the ex-post real interest rate. Hence, other than the technology trend, we can

think about a real interest rate trend (or Fisher parity relationship). The mapping from Zt to Yt is in this

case given by

Yt =



1 0 0 −1

0 −ν 1 0

0 (1− L) 0 0

(1− L) 0 0 0





yt

πt

it

ypt


=



ỹt

it − νπt

(1− L)πt

(1− L)yt


∼ stationary

and by imposing this transformation on the system (10)-(13), the analogue of the system (18) is given by

ỹt = −δ(it − νπt)−
(

νδ

1− L

)
∆πt + γEtỹt+1 +

(
δ

1− L

)
Et∆πt+1 + (1− γ)ỹt−1 + ηỹ,t(

1

1− L

)
∆πt =

%

1 + %κ

(
1

1− L

)
∆Etπt+1 +

κ
1 + %κ

(
1

1− L

)
∆πt−1 + κỹt + ηπ,t

(it − νπt) = (1− ρ)ϕyỹt −
(
ν − (1− ρ)ϕπ

1− L

)
∆πt +

νρ

(1− L)
∆πt−1 + ρ(it−1 − νπt−1) + ηi,t

ỹt = ỹt−1 +∆yt + η∗yp,t.

In order to make only the stationary variables in Yt enter the model, we need to eliminate the operator

(1 − L)−1 from the equations above. This is achieved by imposing the following additional restrictions:

ν = ϕπ = κ = 1, which, after some algebraic manipulations, lead to the equations

ỹt = γEtỹt+1 + (1− γ)ỹt−1 + δEt∆πt+1 − δ(it − πt) + ηỹ,t (34)

∆πt = %Et∆πt+1 +

(
κ

1 + %

)
ỹt + (1 + %)ηπ,t (35)

(it − πt) = (1− ρ)ϕyỹt − ρ∆πt + ρ(it−1 − πt−1) + ηi,t (36)

∆ỹt = ∆yt + η∗yp,t (or ∆ypt = ηyp,t). (37)

This new system is the counterpart of the error-correction representation of the NK-DSGE system (19)-(20).

It is balanced because it does not involve variables other those in Yt. The vector of structural parameters

is θY = (γ, δ, %, ρ, ϕy, ρỹ, ρπ, ρi, σ
2
ỹ
, σ2π, σ

2
i , σ

2
yp)

′, and is obtained from the ‘complete’ vector θe = (θ′, θa)′

(θa = σ2yp) by imposing the constraints ν = ϕπ = κ = 1. Note that dim(θY )=dim(θe)-2, where 2 is the

number of restrictions required for balancing. The interpretation of the transformed system is not trivial.
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The policy rule in Eq. (36) is now expressed such that the ‘operational/implementation target’ is the real

interest rate, while the decision variables are the output gap and the change in inflation (the so-called

‘acceleration rate’). The condition ϕπ = 1 maintains that the long-run response of the Central Bank to

inflation is equal to one, which stands in sharp contrasts with a widely shared view about the conquest of

the U.S. inflation during the ‘Great Moderation’ era; see e.g. Clarida, Gaĺı, and Gertler (2000) and Lubik

and Schorfheide (2004). The restriction κ = 1 implies ‘full indexation’ and the Phillips curve in Eq. (35)

is expressed as a ‘purely forward-looking’ model for ∆πt. In this case, the testable cointegration restrictions

relative to the strictly observable time series Zot = (yt, πt, it)
′ =W o

t correspond to

ro = 1, (0,−ν, 1, 0)Zot ∼ stationary, with ν = 1. (38)

One can compare the two scenarios by testing whether, for r = 2 (ro = 1), the cointegration relationship

is better described by the structure in Eq. (31) (Eq. (32)), or the structure in Eq. (33) (Eq. (38)), using

the testing strategy we introduce in the next section.

3.3 Example 3: the cost channel

Consider again the leading example model in Eq.s (10)-(14) but suppose now that the short-run CER implied

by this system, summarized in Eq.s (4)-(6) (Eq.s (22)-(23)), are not valid for the sample period used to

evaluate the model. One might conjecture, for instance, that this occurs because the baseline specification

does not account for a cost-channel which might be at work in the economy. In short, a share of firms in

the economy might need to borrow resources to pay workers’ wages before the final goods market opens.

According to this theory, see Christiano, Eichenbaum, and Evans (2005) and Ravenna and Walsh (2006),

the policy rate also should enter firms’ marginal costs as a proxy of the interest rate paid on their loans,

leading to the system

ỹt = γEtỹt+1 − δ(it − Etπt+1) + (1− γ)ỹt−1 + ηỹ,t

πt = ωfEtπt+1 + ωbπt−1 + κỹt + κiκit + ηπ,t

it = ρit−1 + (1− ρ)(ϕππt + ϕyỹt) + ηi,t

∆ỹt = ∆yt + η∗yp,t.

In this model, the parameter 0≤ κi < 1 captures the share of firms acceding the financial markets. The

implied set of CER obtained with 0 < κi < 1 are different in the absence of a cost channel based on κi = 0.
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4 The test sequence

We consider the NK-DSGE model introduced in Section 2, Assumptions 1-2, and focus on the following

hypotheses

H0: the DGP belongs to system (21)-(24) ; H1: the DGP does not belong to system (21)-(24). (39)

The null in Eq. (39) will also be referred to as the null that ‘the NK-DSGE model is valid’. H0 implicitly

maintains that the cointegration/common-trend restrictions subsumed in Eq. (17) are fulfilled, hence it is

possible to map Zt into Yt. Thus, any testing strategy for H0 against H1 is a conditional decision rule.

To simplify the exposition without altering the logic of our method, we assume temporarily that all

variables in Zt (and hence in Yt) can be observed. We turn to the role of unobservables later. Consider the

VAR model for Zt:

Zt =
∑̀
j=1

PjZt−j + µdt + ξt , ξt ∼ WN(0n×1,Σξ) (40)

where Pj , j = 1, ..., ` are n×nmatrices of parameters, ` is the lag order, dt is a vector including deterministic

variables (constant, linear trend dummies, etc.) with associated matrix of coefficients, µ, and ξt is a White

Noise disturbance. Consider also the corresponding error-correction representation

∆Zt = αβ′Zt−1 +

`−1∑
j=1

Θj∆Zt−1 + µdt + ξt , ξt ∼ WN(0n×1,Σξ) (41)

where αβ′ = (
∑̀
j=1

Pj − In), α is the n × r matrix of adjustment coefficients, β is the n × r cointegration

matrix and Θj = −
∑̀
h=j+1

Ph, j = 1, ..., `−1. Suppose that the VAR lag order, `, is determined from the data

and that the vector of deterministic components, dt, is selected in accordance with the time series features

observed for the variables in Zt. Our procedure is based on the following steps:

LR1 [Cointegration rank test] We estimate the VAR system (40) and test for the hypothesis that the

cointegration rank is r = p, corresponding to n − p common stochastic trends driving the system,

against the alternative r = n, corresponding to a stationary system. We suggest using either the

‘one-shot’ version of the LR Trace test (Johansen, 1996), henceforth denoted LR1, or its ‘sequential’

version, denoted LR1seq. The LR1seq test involves starting with r = 0 (n stochastic trends), testing

in turn the hypothesis ‘the cointegration rank is r’ against ‘the VAR is stationary’ for r = 0, ..., n− 1,

until, for a given value of r = r̂, the asymptotic p-value associated with the test statistics exceeds the
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chosen significance level. The bootstrap versions of these tests discussed in Cavaliere, Rahbek, and

Taylor (2012) can be applied in small samples. If the hypothesis r = p is not rejected, we consider

the next step. If instead the hypothesis r = p is rejected, we suggest proceeding by thinking about

an alternative specification which embodies, when possible, the stochastic trends not featured by the

original specification of the NK-DSGE model; see as an example the cases discussed in Sub-section

3.2.

LR2 [Overidentification cointegration restrictions test] Given r = p, we move to the vector error-

correction counterpart of the cointegrated VAR in Eq. (41), and fix the (identified) cointegration

matrix β at the structure implied by the theoretical model, i.e., β = βb0 = ζ as in Eq. (17). Then we

compute a LR test, henceforth denoted with LR2, for the implied set of over-identifying restrictions;

see Johansen (1996). The bootstrap versions of the test LR2 discussed in, e.g., Boswijk, Cavaliere,

Rahbek, and Taylor (2013) and ADDITIONAL BY CAVALIERE can be used to improve the

small sample performance. If the LR2 test does not reject the over-identifying restrictions, we build

the transformed vector Yt in Eq. (16) by keeping β = βb0 = ζ fixed at the non-rejected structure, and

consider the next step. If instead the LR2 test rejects the restrictions, one can proceed similarly to

the case in which the LR1 (LR1seq) test rejects the predicted number of stochastic trends.

LR3 [Test for CER] We estimate the finite-order VAR system in Eq. (21) unrestrictedly, i.e., leaving

the matrices Φ1, Φ2 and ΣY,ε unconstrained, and imposing the CER in Eq.s (22)-(24), using the

ML algorithm summarized in the Technical Supplement. We thus compute a LR test for the CER,

henceforth denoted LR3, and obtain the ML estimate of the structural parameters. The LR3 test can

also be constructed by referring to the ‘partial equilibrium’ representation of the NK-DSGE model for

Wt, given by the system in Eq.s (3)-(6). When computationally feasible, bootstrap versions of the test

LR3 discussed in, e.g., Cho and Moreno (2006) and adapted from Fanelli and Palomba (2011) can be

used in small samples.

The ‘LR1 → LR2 → LR3’ testing strategy is a novel approach in the literature. From a statistical

viewpoint, H0 in Eq. (39) is rejected in favour of H1 if one of the three tests rejects, while it is accepted if

all three tests pass. However, the ‘LR1 → LR2 → LR3’ testing strategy need not be applied mechanically

as an ‘accept-reject’ proposition. The information, stemming from the tests LR1 (LR1seq), LR2 and LR3,

can potentially be used to uncover which features of the data or transmission mechanisms of the shocks are

not captured by the theoretical model, so that the model may be improved; see, e.g., the scenarios discussed

in Sub-sections 3.2-3.3. In principle, it is possible to follow the alternative strategy based on imposing
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(without testing) the restrictions in Eq. (17) on the VAR, testing the CER alone. While such a strategy

is advantageous when the restrictions imposed are ‘true’, one of its perils is that insisting that a root very

close to unity is a stationary root, for example, may lead to large size distortions and power losses in tests

for the CER in rational expectations models; see Johansen (2006) and Li (2007).

The ‘LR1 → LR2 → LR3’ testing strategy discussed so far maintains that the econometrician observes

all components of Zt (and hence of Yt). When it is not possible to proxy all variables, the testing strategy

can be adapted. In these cases, the testable cointegration/common-trend implications of the NK-DSGE

model reflect on the sub-vector Zot = W o
t of Zt. For instance, considering the examples discussed in

Sub-sections 3.1 and 3.2, the relevant log run testable restrictions are given in Eq. (28), Eq. (32) and Eq.

(38), respectively. In this case, W o
t has a state-space (VARMA-type) representation under the null H0 in

Eq. (39) (see the Technical Supplement), and a finite-order VAR for W o
t can provide, with qualifications,

a reasonable approximation of its actual time series properties. The procedure is based on the following

testing steps:

LR1 [Cointegration rank test: the case of unobservables] We specify a VAR for W o
t similar to sys-

tem (40) with a relatively ‘large’ `, and use the test(s) LR1 and/or LR1seq to select the cointegration

rank ro.

LR2 [Overidentification cointegration restrictions test: the case of unobservables] We use the vec-

tor error-correction counterpart of the cointegrated VAR similar to system (41) and, fixing ro, we

compute the LR2 test by considering the over-identifying cointegration restrictions.

LR3 [Test for CER: the case of unobservables] We compute the LR3 test by evaluating the likeli-

hood function associated with the ‘minimal state-space representation’ associated with the system

(21) under the CER in Eq.s (22)-(24) (or the system (3) under the CER in Eq.s (4)-(6)) with the

Kalman filter; see, e.g., Ruge-Murcia (2007) and Fukač and Pagan (2010). We refer to Komunjer

and Ng (2011) and Guerron-Quintana, Inoue, and Kilian (2013) for practical examples where the

‘minimal state-space representation’ is derived from the set of observationally equivalent non-minimal

state-space representations. An alternative to the test LR3 based on the indirect inference approach

may be found in the Technical Supplement.

Under the null H0 in Eq. (39), the asymptotic properties of each of the three tests comprising the

‘LR1→LR2 →LR3’ testing strategy are known. The asymptotic properties of the tests LR1 (LR1seq) and

LR2 may be found in Johansen (1996), while the asymptotic properties of their bootstrap counterparts

are discussed in Cavaliere, Rahbek, and Taylor (2012) and Boswijk, Cavaliere, Rahbek, and Taylor (2013)
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ADDITIONAL BY CAVALIERE, see also Jacobson. The asymptotic properties of the test LR3

are standard (including its bootstrap analogue) under standard regularity conditions. We have postponed

a detailed derivation of the asymptotic size properties of the ‘LR1 → LR2 → LR3’ testing strategy to

the Appendix. Because the three tests are asymptotically correctly sized under the null, if the test for H0

against H1 in Eq. (39) is conducted by fixing the overall significance level at, e.g., the 5% level, the type-I

errors (and hence the critical values) of the tests LR1 (LR1seq), LR2 and LR3 must be chosen accordingly,

e.g. 1% for LR1 (LR1seq), 2% for LR2 and 2% for LR3.

It is worth spending a few words on the tests LR1 and LR1seq. In our framework, the use of the ‘one-shot’

cointegration rank test LR1 reflects the idea that the number of common trends driving the variables are

given and equal to n− r0 = n− p under the null of the NK-DSGE model, where r0 is the true cointegration

rank. By construction, the LR1 test rules out all alternatives in which the number of common trends is,

e.g., larger than n − p, and in which its asymptotic distribution is unknown, if, for instance, r0 < p. The

LR1 test must be applied, therefore, when one is confident that there are no more than n − p stochastic

trends in the data. Instead, the LR1seq test has power asymptotically against the alternative of a number

of stochastic trends different from n − p. Nevertheless, its finite sample performance may be poor, as our

simulation experiment in the next section will document, and therefore it should be applied and interpreted

with caution. When the empirical evaluation of the NK-DSGE model is based on the W o
t = Zot sub-vector,

it is also possible to apply a number of alternative tests to LR1 and LR1seq. These are reviewed in, e.g.,

Lütkepohl and Claessen (1997); see also Stock and Watson (1988).

5 Simulation experiment

To evaluate the finite sample size performance of the ‘LR1 → LR2 → LR3’ testing strategy, we conduct a

small Monte Carlo experiment based on the determinate solution of the model summarized in Eq.s (10)-(14).

We fix the discount rate % at the value % = 0.99, and consider the estimation of ωf = %/(1+ %κ) and derive

that of κ indirectly. Hence the vector of free structural parameters is given by θ = (γ, δ, ωf , ρ, ϕπ, ϕy, ρỹ,

ρπ, ρi, σ
2
ỹ
, σ2π, σ

2
i )

′ and the ‘extended’ vector is θe = (θ′, θa)′, where θa = σ2yp (ηyp,t = uyp,t). The vector

of fundamental shocks uZt = (uỹ,t, uπ,t, ui,t, uyp,t)
′ is assumed White Noise with Gaussian distribution and

diagonal covariance matrix Σu,Z . The parameter vector θ is calibrated to the empirical estimates of Benati

and Surico (2009); see, in particular, the last column of their Table 1 (‘After the Volcker stabilization’).

The variance of the natural rate of output σ2yp is fixed at a value considered reasonable. Recall that, in this

setup, θY = θe. The calibrated values of θe are reported in the first column of Table 1, Panel 2. In line with

the developments in the empirical illustration of Section 6, we assume that the econometrician can observe
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the natural rate of output, ypt .

We generate time series of size T=100, 200 and 500, and compute the test sequence ‘LR1 → LR2 → LR3’

M = 5000 times. The overall nominal level of significance is fixed at 5% (ψ = 0.05), and the nominal type-I

errors of the three tests are 1% for the LR1 test (ψ1 = 0.01), 2% for the test LR2 (ψ2 = 0.02) and 2% for

the test LR3 (ψ3 = 0.02). The (asymptotic) critical values are chosen accordingly.

The results are summarized in Table 1, Panel 1. For samples of size T = 100 and 200 we also compute

the (i.i.d.) bootstrap versions of the tests. The implementation of the bootstrap version of the LR1 test

follows Cavaliere, Rahbek, and Taylor (2012), while the (i.i.d.) bootstrap version of the LR2 test is discussed

in Boswijk, Cavaliere, Rahbek, and Taylor (2013). The bootstrap version of the LR3 test is computed by

adapting the procedure discussed in Fanelli and Palomba (2011) to the non-parametric setup.

We first focus on the empirical size of the components of the test sequence. The null hypothesis of the

test LR1 is a single stochastic trend in the system (r = p = 3) and its empirical size is reported in the first

row of Panel 1, labeled ‘LR1ψ1=0.01 (r = 3)’. We notice that, unexpectedly, this test is slightly under-sized

in samples of size T = 100. One would expect over-rejection but the finite sample performance of the

LR1 test may well depend on the structure of the short-run dynamics of the system, which in our setup

is ‘special’, i.e., highly restricted by the CER. The bootstrap-corrected version of the test produces similar

results. LR2 tests the over-identification restrictions on the cointegration matrix β0 implied by Eq. (25)

and is asymptotically chi-square distributed with 3 degrees of freedom under the null. Its empirical size is

reported in the second row of Panel 1, labeled ‘LR2ψ2=0.02 (β0 = ζ | LR1)’. The test tends to be over-sized.

For a sample size of T = 100, the empirical size is 7.2% as opposed to the 2% nominal size. However,

the bootstrap version of the test guarantees a good size coverage, bringing the rejection frequency down to

2.2% for both T = 100 and T = 200. Finally, the empirical size of the test LR3 for the CER is reported

in the third row of Panel 1, labeled ‘LR3ψ3=0.02 (CER | LR2)’. To compute this test, we maximized the

likelihood of the VAR system (21) under the constraints in Eq.s (22)-(24), using the iterative ML algorithm

discussed in the Technical Supplement. The ML estimates of θe are discussed below. Under the null, LR3

is asymptotically chi-square with 28 degrees of freedom, where 28 is the difference between the number of

unrestricted parameters in the VAR (32+10) and the structural parameters (dim (θe) = 14). The empirical

size is reasonably good in this case although the bootstrap counterpart of the test is under-sized in samples

of T = 100.

The overall empirical rejection frequency associated with the ‘LR1 → LR2 → LR3’ testing strategy is

summarized in the seventh row of Panel 1. It can be noticed that, considering asymptotic critical values,

it ranges from 10.6% (T = 100), via 7.1% (T = 200) to 5% (T = 500), with a nominal level of 5%. The
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bootstrap version of the testing strategy ensures a strict size control in small samples.

Table 1, Panel 2, reports the Monte Carlo means of the structural parameters with the Monte Carlo

standard errors in parentheses. The structural parameters are recovered with surprising precision, the

only exceptions being, in samples of size T=100, the parameters of the policy rule ϕy and ϕπ, although

estimation precision increases with the sample size. This lack of precision, which is usually ascribed to ‘weak

identification’ issues, is a common finding and source of misunderstandings in the literature. The discussion

of these issues goes beyond the scope of the present paper. We suggest an interpretation in the Technical

Supplement.

As observed in Section 4, the first test of the testing strategy can also be the ‘sequential’ cointegration

rank test, LR1seq. The results in Table 2 summarize the marginal acceptance frequencies of the hypotheses

r = r̂, r̂ = 0, 1, 2, 3, 4, considering samples of size T = 100 and T = 200. We also include the acceptance

frequencies corrected with the bootstrap version of the LR1seq test. We notice that, in samples of size

T = 200, the LR1seq test performs as expected, selecting the ‘true’ cointegration rank, r̂ = r0 = 3, in

71.2% of the simulations. Instead, results are less clear-cut in samples of size T = 100. We notice that the

‘wrong’ cointegration ranks 1 and 2 are selected in around 90% of the simulations, compared to the ‘true’

cointegration rank in only 9.4% of the simulations. This phenomenon reflects a well-known small sample

(power) issue of the sequential cointegration rank test, and, in this case, the bootstrap correction does not

seem to keep the risk of a wrong choice under control. The results of our Monte Carlo experiment suggest

using LR1seq with caution in small samples, especially in the absence of a clear alternative about the number

of stochastic trends.

Keeping these results in mind, we next turn to an empirical application of our testing strategy.

6 An estimated NK-DSGE model of the U.S. economy

In this section, we apply the ‘LR1 → LR2 → LR3’ testing strategy to evaluate the NK-DSGE monetary

model summarized in Eq.s (10)-(13), using U.S. quarterly data. Unlike Benati and Surico (2009), we do not

force the covariance matrix of the structural disturbances to be diagonal, see, e.g., Kapetanios, Pagan, and

Scott (2007) Dufour, Khalaf, and Kichian (2013) and Castelnuovo and Fanelli (2013) for similar choices. We

fix the discount rate at the value %=0.99 and split the vector of structural parameters θ as θ = (θ′s, θ
′
σ)

′, where

θs = (γ, δ, κ, κ, ρ, ϕπ, ϕy, ρỹ, ρπ, ρi)′ and θσ = vech(ΣW,u). The natural rate of output is approximated

with the official measure provided by the Congressional Budget Office (CBO) estimation, following, e.g.,

Cho and Moreno (2006) and Castelnuovo and Surico (2010) (see also Table 1 in Gorodnichenko and Ng

(2010)). Approximating ypt with the CBO time series allows us to treat the ‘complete’ vector Zt = (yt, πt,
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it, y
p
t )

′ (n = 4) as observable. The other variables are the real GDP yt; the inflation rate πt, which is the

quarterly growth rate of the GDP deflator; and the short-term nominal interest rate it, measured by the

effective federal funds rate expressed in quarterly terms (averages of monthly values). The data source is

the web site of the Federal Reserve Bank of St. Louis.

Our data cover the ‘Great Moderation’ period, 1985q1-2008q3, hence we have T = 95 observations (not

including initial lags). The choice of the sample is motivated in our Technical Supplement in detail. We fix

the overall nominal level of significance at the 5% level, and the type-I errors of the tests LR1, LR2 and

LR3 at the 1%, 2% and 2% levels, respectively. The empirical analysis starts with the estimation of an

unrestricted VAR system for Zt as specified in Eq. (40). We include a constant in the equations (i.e., dt = 1

and µ is a n× 1 constant) because the variables in Zt are not demeaned prior to estimation. As discussed

in Sub-sections 2.1 and 3.1, the system should be driven by a single stochastic trend under the null of the

NK-DSGE model, and the cointegration relationships should match the specification of β0 = βb0 = ζ in Eq.

(25). In other words, the variables ỹt = (yt − ypt ), πt and it should be jointly stationary.

The LR1 (LR1seq), LR2 and LR3 tests are reported in Table 3, Panel 1. We complement the asymptotic

p-values of the tests with their bootstrap analogues. Results indicate that the evidence in favour of a single

stochastic trend is not clear-cut, but defendable. While the test LR1 provides ample support for the

hypothesis r = 3 = p (n − r = 1) at the 1% level, considering both asymptotic and bootstrap p-values, a

different picture emerges from the test LR1seq, which selects r = r̂ = 1 at the 1% level, irrespective of whether

asymptotic or bootstrap p-values are considered. The outcome r = r̂ = 1 would lead us to conclude that

there are three common stochastic trends in the data, two more than expected, and it would be difficult

to reconcile such an evidence with a substantial body of work on the drivers of the ‘Great Moderation’.

Actually, the test LR1seq has a poor small sample (power) performance, as we have documented in Section

5; hence, it is reasonable to conjecture that the high persistence characterizing the time series πt and it in

the period 1985q1-2008q3 induces the test to select two unit roots instead of two stationary roots. Hence,

we do not have sufficient evidence to refute the result of the ‘one-shot’ cointegration test LR1. This finding

strongly supports the case r = 3 (n − r = 1). The LR2 test provides another piece of evidence in favour

of this hypothesis. Indeed, while the asymptotic p-value associated with the LR2 test statistic implies

rejection, its bootstrap counterpart is equal to 0.04 and does not lead us to reject the structure in Eq. (25)

at the 2% level. We therefore consider the last step of the ‘LR1 → LR2 → LR3’ testing strategy.

The last step requires testing the short-run CER. We take the ‘partial equilibrium’ finite-order VAR

representation for Wt = (ỹt, πt, it)
′ in Eq.s (3)-(6) directly to the data. To compute the LR3 test, the

VAR system (3) is estimated unrestrictedly and under the CER in Eqs. (4)-(6), using the ML algorithm
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summarized in the Technical Supplement. We split θs as θs = (θ′g, θ
′
ng)

′, where θg = (δ, κ, κ, ϕπ, ϕy)′ and

θng = (γ, ρ, ρỹ, ρπ, ρi)
′, and combine a grid-search approach for the elements of θg, which are notoriously

difficult to estimate through non-Bayesian techniques, with a numerical Newton-type estimation approach

for the elements of θng. The ML estimate of θσ is obtained indirectly, given the estimate of θs. Estimation

results are summarized in Table 3, Panel 2.

The p-value associated with the LR3 test is equal to 0.022, while its bootstrap analogue is 0.80; hence, we

do not reject the CER implied by the NK-DSGE model at the 2% level. The point estimates of the structural

parameters turn out to be quite similar to those found in a variety of contributions in the literature, hence

we do not discuss these results in detail. A note of caution is needed for the parameters of the policy

reaction function. As we have learned from the Monte Carlo experiment, it is extremely difficult to estimate

these parameters precisely in small samples. Weak identification of the parameters might be an important

concern; see Mavroeidis (2010), Castelnuovo and Fanelli (2013) and the Technical Supplement. As is well

known, weak identification issues may affect the asymptotic (and bootstrap) distribution of the estimators

and tests commonly used, hence the evidence stemming from the LR3 test should be taken with caution.

Overall, the ‘LR1 → LR2 → LR3’ testing strategy does not lead to rejection of the NK-DSGE model

in Eq.s (10)-(13) at the 5% nominal level, during the ‘Great Moderation’ period 1985q1-2008q3, with the

caveats discussed above.

7 Concluding remarks

DSGE models are interpreted as inherently misspecified systems, hence it is often claimed that testing their

implied restrictions is an exercise which is inevitably destined to fail. According to this interpretation,

only Bayesian methods are meaningful and can successfully be applied in empirical work. Our paper has

shown that a ‘frequentist’ VAR-based evaluation approach can provide interesting insights with small-scale

NK-DSGE models. We have proposed the ‘LR1 → LR2 → LR3’ testing strategy as a conditional sequence

of likelihood-ratio tests which evaluates the long-run and short-run restrictions implied by the NK-DSGE

model jointly through a multiple hypothesis testing exercise.

We derive three main lessons from our analysis. First, if the information stemming from the individual

tests is used constructively, our approach can be exploited to rectify/modify the structural equations when

misspecification is detected. Second, an important cause of rejection may be the poor performance of the

tests in small samples. The risk of falsely rejecting the structural model in applied work can be reduced

considerably by considering the bootstrap counterpart of the ‘LR1 → LR2 → LR3’ procedure. Third,

in samples of the size typically available to practitioners, the weak identification phenomenon of some of
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the structural parameters is a concrete possibility that deserves attention. However, despite the highly

constrained nature of the model, a properly conducted testing approach is not necessarily destined to lead

one to reject the model, but will most likely lead to better models and better understanding of the business

cycle.
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Appendix A Size properties of the testing strategy

In this Appendix we discuss the asymptotic size of the ‘LR1→LR2 →LR3’ testing strategy. Denote with

LRi,T , i = 1, 2, 3, the three LR test statistics of the sequence, and let ψi be the nominal significance level

(type-I error) pre-fixed for the i-th test; moreover, let ψi,T = PH0
i,T (LRi,T ≥ crψi

i,T ) be the exact size of the

i-th test based on a sample of size T , where PH0
i,T (·) is the probability measure associated with the (marginal)

null distribution of LRi,T and crψi

i,T is the corresponding critical value at nominal level ψi. Under the null

H0 in Eq. (11), the three tests, individually considered, are correctly sized; in particular, they satisfy the

condition ψi,∞ =lim sup ψi,T = ψi, i = 1, 2, 3, where ψi,∞ is the asymptotic size of the i-th test and ‘lim sup’

is intended for T → ∞. Let PH0
1,2,T (· ; ·) and PH0

2,3,T (· ; ·) be the (joint) probability measures associated

with the null distributions of the test statistics LR1,T and LR2,T and the test statistics LR2,T and LR3,T ,

respectively. It turns out that the overall asymptotic size of the testing strategy is given by ψ∞ =lim supψT ,

where

ψT = PH0
1,T (LR1,T ≥ crψ1

1,T ) + PH0
1,2,T (LR1,T < crψ1

1,T ; LR2,T ≥ crψ2

2,T )

+ PH0
2,3,T (LR2,T < crψ2

2,T ; LR3,T ≥ crψ3

3,T ). (A42)

The first addend of Eq. (A42) captures the probability that the test LR1 incorrectly rejects the cointegration

rank in a sample of size T ; the second addend captures the joint probability that the LR2 test incorrectly

rejects the structure of the cointegration matrix; the LR1 test correctly selects the cointegration rank in a

sample of size T ; and, finally, the last addend captures the joint probability that the LR3 test incorrectly

rejects the CER and the LR2 correctly rejects the structure of the cointegration matrix in a sample of

size T. By using the inequalities PH0
1,2,T (LR1,T < crψ11,T ;LR2,T ≥ crψ22,T ) ≤ ψ2,T and PH0

2,3,T (LR2,T < crψ2

2,T ;

LR3,T ≥ crψ3

3,T ) ≤ ψ3,T , the asymptotic size ψ∞ is such that

ψ∞ ≤ ψ1,∞ + ψ2,∞ + ψ3,∞ = ψ1 + ψ2 + ψ3. (A43)

This result suggests that, in empirical analyses, it is convenient to fix the overall nominal significance level

of the procedure at the level ψ =(ψ1 + ψ2 + ψ3).
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Table 1: Monte Carlo results: size of the testing strategy and ML estimates of the structural parameters.

Panel 1: Empirical size of the ‘LR1 → LR2 → LR3’ testing strategy

Tests T = 100 T = 200 T = 500

Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic

LR1ψ1=0.01 (r = 3) 0.006 0.006 0.009 0.009 0.012

LR2ψ2=0.02 (β0 = ζ | LR1) 0.072 0.022 0.043 0.022 0.022

LR3ψ3=0.02 (CER | LR2) 0.028 0.008 0.019 0.019 0.016

Overall rejection: ψ̂ =
∑3

i=1 ψ̂i 0.106 0.036 0.071 0.050 0.050

Panel 2: ML estimates and s.e. of structural parameters: ÊMC

(
θ̂i

)
(s.e.MC

(
θ̂i

)
)

True parameters T = 100 T = 200 T = 500

κ = 0.044 0.095
(0.111)

0.067
(0.058)

0.049
(0.029)

δ = 0.124 0.149
(0.082)

0.136
(0.053)

0.129
(0.032)

γ = 0.744 0.740
(0.079)

0.745
(0.053)

0.744
(0.033)

ωf = 0.935 0.955
(0.180)

0.932
(0.148)

0.912
(0.122)

ρ = 0.834 0.826
(0.085)

0.832
(0.060)

0.832
(0.037)

ϕy = 1.146 1.440
(1.197)

1.356
(0.841)

1.207
(0.390)

ϕπ = 1.749 2.436
(1.680)

2.155
(1.206)

1.859
(0.592)

ρy = 0.796 0.768
(0.141)

0.784
(0.079)

0.789
(0.043)

ρπ = 0.418 0.404
(0.205)

0.380
(0.079)

0.362
(0.157)

ρi = 0.404 0.394
(0.135)

0.402
(0.098)

0.404
(0.062)

σ2ỹ = 0.055 0.072
(0.041)

0.062
(0.024)

0.058
(0.013)

σ2π = 0.391 0.450
(0.181)

0.429
(0.108)

0.421
(0.079)

σ2i = 0.492 0.515
(0.164)

0.508
(0.106)

0.496
(0.053)

σ2yp = 0.020 0.020
(0.003)

0.020
(0.002)

0.020
(0.001)

NOTES: Results are obtained using M = 5000 Monte Carlo replications generated under the null of the NK-DSGE
model in Eq.s (10)-(14). Given the initial conditions, the observations Y1, ..., YT are generated from the VAR system
(21)-(24) and then transformed into Z1, ..., ZT using the restriction β0 = βb

0 = ζ from Eq. (25) and the mapping

Zt = G
(
βb
0, τ , 1− L

)−1
Yt. For each replication, a sample of T + 200 observations is generated and the first 200

observations are then discarded. PANEL 1: empirical rejection frequencies (erf) of the tests LR1, LR2 and LR3
and of the overall ‘LR1 → LR2 → LR3’ testing strategy; the column ‘Asymptotic’ reports the erf computed using
the asymptotic critical values taken from Doornik (1998); the column ‘Bootstrap’ reports the erf computed using the
bootstrap p-values associated with the tests; the ‘one-shot’ cointegration rank test LR1 evaluates the null of a single
stochastic trend versus the alternative of stationary VAR and is computed from a VAR system for Zt as in Eq. (40)
with ` = 2 and no deterministic components; the (iid) bootstrap counterpart of the test LR1 is computed using the
method discussed in Cavaliere, Rahbek, and Taylor (2012) with B = 399 replications; the over-identified cointegrating
restrictions test LR2 is computed from the error-correction system as in Eq. (21) with ` = 2 and no deterministic
components and evaluates whether β0 has the structure in Eq. (25) and has 12 − 9 = 3 degrees of freedom; the (iid)
bootstrap counterpart of the test LR2 is computed using the method discussed in Boswijk, Cavaliere, Rahbek, and
Taylor (2013) with B = 399 replications; the test LR3 is computed by estimating a VAR system for Yt as in Eq. (21)
unrestrictedly and under the CER in Eq.s (22)-(24) by the ML algorithm summarized in the Technical Supplement, and
has 42− 14 = 28 degrees of freedom; the bootstrap p-value for the test LR3 is computed with B = 99 replications and
using the non-parametric analogue of the procedure discussed in Fanelli and Palomba (2011, Section 3), case t = T .
PANEL 2: Averages of the ML estimates of the structural parameters and Monte Carlo standard errors in parentheses;
averages are computed considering only DGPs for which the ‘LR1 → LR2 → LR3’ testing strategy does not lead to
rejection; ML estimates are obtained by maximizing the Gaussian log-likelihood of the VAR system for Yt, see system
Eq. (21), unrestrictedly and under the CER in Eq.s (22)-(24); see Technical Supplement.
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Table 2: Simulated and bootstrapped marginal acceptance frequencies of LR1seq and rejection
frequencies of the ‘LR1seq → LR2 → LR3’ testing strategy of the NK-DSGE model.

Panel 1: Empirical acceptance frequencies of the LR1seq test

Tests T = 100 T = 200

Asymptotic Bootstrap Asymptotic Bootstrap

LR1seq r = 0 0.010 0.036 0.000 0.000

r = 1 0.353 0.445 0.000 0.001

r = 2 0.539 0.437 0.276 0.326

r = 3 0.094 0.078 0.712 0.663

r = 4 0.004 0.004 0.012 0.010

Panel 2: Empirical size of the ‘LR1seq → LR2 → LR3’ testing strategy

LR1seq ψ1=0.01 (r = 3) 0.004 0.004 0.012 0.010

LR2ψ2=0.02 (β0 = ζ | LR1seq) 0.140 0.059 0.044 0.022

LR3ψ3=0.02 (CER | LR2) 0.049 0.014 0.022 0.011

Overall rejection: ψ̂ =
∑3

i=1 ψ̂i 0.193 0.077 0.078 0.043

NOTES: Results are obtained using M = 5000 Monte Carlo replications generated as detailed in the

notes of Table 1. Panel 1: The column ‘Asymptotic’ reports the empirical acceptance frequencies (eaf )

computed using the asymptotic critical values; the column ‘Bootstrap’ reports the eaf computed using

the bootstrap p-values associated with the tests; the (iid) bootstrap counterpart of the test LR1seq

is computed following Cavaliere, Rahbek, and Taylor (2012) using B = 399 replications. Panel 2:

Empirical rejection frequencies of the tests LR1seq, LR2 and LR3 and of the overall ‘LR1seq → LR2 →
LR3’ testing strategy. The tests LR2 and LR3, including their bootstrap counterparts, are computed

as detailed in the notes to Table 1.

34



Table 3: The tests LR1seq, LR1, LR2 and LR3, ‘LR1seq → LR2 → LR3’ testing strategy and ML estimates
of the structural parameters of the NK-DSGE system on U.S. quarterly data, 1985q1-2008q3.

Panel 1: tests of NK-DSGE model

Tests Trace Asymptotic Bootstrap

LR1seq : r = 0 107.10 0.000 0.000
r = 1 32.33 0.024 0.071
r = 2 15.07 0.056 0.248

LR1ψ1=0.01 (r = 3) r = 3 2.43 0.119 0.491

LR2ψ2=0.02 (β0 = ζ | LR1) 11.665 0.009 0.040

LR3ψ3=0.02 (CER | LR2) 17.94 0.022 0.80

Panel 2: ML estimates of structural parameters

Parameters θs: Interpretation ML

γ AD, forward look. term 0.777
(0.025)

δ AD, inverse elasticity of sub. 0.030
(0.006)

κ NKPC, indexation 0.014
(0.015)

implied value of ωf = 0.99
1+0.99κ NKPC, forward-looking 0.977

(0.034)

κ NKPC, slope 0.083
(0.022)

ρ Policy rule, smoothing term 0.573
(0.358)

ϕỹ Policy rule, react. to out. gap 0.073
(1.145)

ϕπ Policy rule, react. to inflation 5.37
(2.47)

ρỹ AD, disturbance persist. 0.935
(0.010)

ρπ NKPC, disturbance persist. 0.875
(0.011)

ρi Policy rule, disturbance persist. 0.810
(0.451)

Parameters θσ : Σ̂W,u=


0.0145
(0.0002)

−0.0019
(0.0003)

−0.0008
(0.0018)

0.0051
(0.0007)

−0.0223
(0.0041)

0.222
(0.032)


NOTES: Results are obtained from a VAR system for Zt = (yt, πt, it, y

p
t )

′ as specified in Eq. (40) with ` = 2, dt = 1

and µ unrestricted. PANEL 1: The column ‘Trace’ reports the LR cointegration rank Trace statistic; the column

‘Asymptotic’ reports the p-values of the test computed with asymptotic critical values from Doornik (1998); the

column ‘Bootstrap’ reports the p-values of the test computed with the bootstrap; the ‘one-shot’ cointegration rank

test LR1 evaluates the null of a single stochastic trend versus the alternative of a stationary VAR and is highlighted

in the fourth row; the bootstrap p-values for the tests LR1 and LR1seq are computed using the method discussed

in Cavaliere, Rahbek, and Taylor (2012) with B = 399 replications; the test LR2 evaluates the over-identification

cointegration restrictions in Eq. (25) and has 3 degrees of freedom; the (iid) bootstrap counterpart of the test

LR2 is computed using the method discussed in Boswijk, Cavaliere, Rahbek, and Taylor (2013), with B = 399

replications; the test LR3 evaluates the CER implied by the NK-DSGE model and has 8 degrees of freedom; the

bootstrap p-value for the test LR3 is computed with B = 99 replications and using the non-parametric analogue of

the procedure discussed in Fanelli and Palomba (2011, Section 3), case t = T . PANEL 2: ML estimates have been

obtained from the finite-order VAR for W o
t = (yt−yp

t , πt, it)
′ in Eq. (3) by maximizing the Gaussian log-likelihood

under the CER in Eq.s (4)-(6) by combining the BFGS method for γ, ρ, ρỹ, ρπ and ρi with a grid search for δ (range

[0.01, 0.20]), κ (range [0.01, 0.10]), κ (range [0.01, 0.10]), ϕỹ (range [0.05, 1.50]) and ϕπ (range [0.5, 5.50]) (see

Technical Supplement); the covariance matrix ΣW,u is not diagonal and its elements are estimated indirectly (see

Technical Supplement); the variables in W o
t have been preliminarily demeaned; ML estimates are robust to different

choices of the initial values used for γ, ρ, ρỹ, ρπ and ρi; asymptotic standard errors are reported in parentheses

below estimates; ‘AD’ stands for aggregate demand; ‘NKPC’ stands for New Keynesian Phillips curve.
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