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Abstract 

The paper presents a Mixed Integer Linear Programming (MILP) model for the solution of the three-

phase volt/var optimization (VVO) of medium voltage unbalanced distribution feeders.  The VVO of 

a distribution feeder is aimed at calculating the most efficient operating conditions by means of the 

scheduling of transformers equipped with an on-load tap changer and distributed reactive power 

resources (such as embedded generators and switchable capacitors banks). The proposed model 

allows the representation of feeders composed by three-phase, two-phase, and single-phase lines, by 

transformers with different winding connections, by unbalanced wye- and delta-connected loads, by 

three-phase and single phase capacitor banks and embedded generators. The accuracy of the results is 

verified by using IEEE Test Feeders. 
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1. Introduction 

One of the active network management functions that modern distribution management systems are 

expected to provide is the so-called volt/var optimization (VVO) [1][2]. 

Different VVO definitions have been used in the technical literature. In general VVO problem refers 

to the determination of the set points of on-load tap changers (OLTCs) and switchable capacitor banks 

regulators with the objective of loss minimization or load reduction, taking into account the usual 

operating constraints such as minimum and maximum voltage limits and ampacity (e.g. [3]). Modern 

and future distribution networks also require the optimization of the reactive power compensation 

capabilities provided by embedded generators (EGs) and by storage systems, with particular reference 

to those equipped by power electronic converters such as photovoltaic inverters (e.g. [4], [5] and 

references therein). 

The typical differences between the VVO in distribution networks and the optimal power flow (OPF) 

problem in transmission systems are: 

- usually VVO does not involve generator active power outputs as control variables, since EG 

outputs are mainly determined by the availability of energy resources and market/regulatory 

constraints; 

- the main VVO control variables are integer (transformer taps and capacitor switching), whilst 

typical OPF control variables are continuous; 

- voltage limits are usually more stringent than ampacity constraints;  

- line and load unbalances appear in general more significant in distribution feeders than in 

transmission networks (this justifies the modelling effort in order to represent all the three 

phases of the system [6]). 

Moreover, with respect to transmission system lines, distribution feeders are characterized by shorter 

length, higher ratio between resistance and reactance of the longitudinal impedance, and they are 

expected to transmit lower power flows. Therefore the influence of active power flows to voltage 

profile is not negligible and, usually, the maximum phase difference between the voltages at a bus in 

different operating conditions is limited to few degrees. On the other hand VVO shares several 



aspects and solution approaches with OPF, so to justify the definition of distribution optimal power 

flow (DOPF) models (e.g. [7]).  

This paper aims at describing a Mixed Integer Linear Programming (MILP) model for the solution of 

the deterministic VVO of unbalanced distribution feeders. As reviewed in [8], among the various 

approaches described in the literature, the use of mixed integer linear programming (MILP) appears to 

have been less explored than other approaches for the solution of VVO problems. The motivation of 

using a MILP approach for VVO lays mainly on the availability of efficient solvers for this class of 

problems [9]. This approach has been recently investigated not only for distribution networks (e.g. 

[10]–[13]) but also for the solution of the classical OPF problem in transmission systems (e.g. [14], 

[15]). 

The proposed model is a development of the one presented in [8] based on the representation of the 

distribution network with voltage – current relationships in Cartesian coordinates. The linear 

representation of loads and EGs is based on the assumption of limited deviations of bus voltage 

phasors with respect to the corresponding rated phasors. The MILP formulation presented in [8] 

assumes that the network is balanced. This paper presents a MILP model for a generic unbalanced 

distribution feeder, taking into account the different types of transformer winding connections, wye- 

and delta-connected loads, the presence of single-phase and three-phase EGs as well as the possibility 

to switch the capacitors on a per phase basis. The unbalanced per phase model is based on the 

representation of both lines and transformers with an equivalent network of uncoupled branches [16]. 

As in [8] the configuration of the feeder is assumed known and it is not changed. The developed 

MILP model determines the optimal solution only for the current time. Time coupling constraints, 

with particular reference to the maximum number of transformers tap changes and on/off switching 

cycles of capacitor banks, are not included. They would require an optimal schedule for the entire day 

(e.g., [2], [7]). If the optimization horizon is larger than some tens of minutes, several uncertainties 

relevant to both renewable generators outputs and loads levels need to be taken into account (see, for 

example, [17]). 

As expected, the required computational effort is significantly increased with respect to the equivalent 

single phase model presented in [8]. 



The structure of the paper is the following. Section 2 presents the main characteristics of the 

implemented MILP model and the complete model formalization. Section 3 illustrates the 

performances by the results obtained for some IEEE test feeders [18] with additional EGs. Section 4 

concludes the paper. 

2. Description of the optimization problem 

This section presents the implemented formulation of the MILP model. The network has 3N  three-

phase buses each composed by 3 nodes plus a slack bus (that represents the HV bus of the HV/MV 

substation) also composed by 3 nodes. The network has Nb uncoupled branches and it is composed by 

the equivalent networks of the lines or transformers described in one of the following subsections. 

Voltages of each node and the currents of each branch are represented by the Cartesian coordinates of 

their phasors (V re, V im) and (I re, I im), respectively. Voltage phasors at the nodes of the slack bus have 

modulus equal to the rated value and phases so that to form a three-phase symmetrical system. All the 

equations are written in per unit (pu). 

2.1. Objective function 

As in [8], the considered deterministic static VVO aims at minimizing the active power consumption 

from the transmission network (and maximizing the active power injection), whilst minimizing the 

violation of the minimum and maximum voltage limits at all the buses and the violation of a minimum 

power factor constraint enforced for each phase at the slack bus:    
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where 
skP is the active power absorbed from the HV external network through node ks of the slack bus, 

min

k and max

k  indicate the violations of the minimum and maximum voltage bounds at node k, 

respectively, wmin and wmax are the weights that penalize the corresponding violations, 
pf

sk  indicates the 

violation of the minimum power factor at node ks of the slack bus and 
pfw  the relevant penalizing 

weight. 



For each node k, 
min

k  and 
max

k  are provided by a piecewise linear function (PLF) of the square of 

the voltage violation. The set of constraints that define the PLF are the following 

 min min max maxand 1. .. 1V V V V

k i k i k i k i VV V i z      

− +   − − +   −  = −  (2) 

where 
min

kV  and 
max

kV  are the non-negative continuous variables that correspond to the absolute 

value of the voltage violations of the minimum or maximum limits at node k (i.e., 
min

kV  and 
max

kV ), 

respectively; 
V

i 
is the slope and 

V

i

  is the ordinate intercept of PLF interval i; Vz is the number of 

PLF breakpoints.   

Slope 
V

i 
and ordinate intercept 

V

i

  are calculated as: 
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For node ks corresponding to one the three phases of the slack bus, 
pf

sk  is obtained by the following 

inequality constraint 

 ( )1 pf

mintan cos ( ) 0
s s sk k kQ pf P −− −   (4) 

where 
skQ  is the reactive power abortion from the HV external network through node ks of the slack 

bus and minpf  is the power factor minimum operating value. 
skP  and 

skQ value are linked with the 

currents in the branches connected to node ks by the following equality constraints 
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where 
skV  is the fixed voltage phasor at node ks, Bs is the set of branches bs connected to node ks of the 

slack bus and
sbI  is the current in branch bs. Absolute values 

skP  and 
skQ  are obtained by 

 

0 and 0

and

0 and 0

0 and 0

s s s s s s

s s s s s s s s

s s s s s s

s s s s s s

k k k k k k

P P P Q Q Q

k k k k k k k k

k k k k k k

P P Q Q

k k k k k k

P P P Q Q Q

P M w M Q M w M

P P P Q Q Q

P M w Q M w

+ +

+ +

− −

− −

−  − = −  − =

 +   + 

− +  − = − +  − =

 −   − 

 (7) 



where 
skP− ,

skP+ ,
skQ− ,

skQ+  are non-negative continuous variables, 
s

P

kw  and 
s

Q

kw  are binary 

variables, and 
s

P

kM  and 
s

Q

kM  are tight big values.  

As in [8], other than those shown in (1), the objective function includes additional terms that allow the 

penalized disconnection of loads and EGs by means of binary variables if it is needed to find a feasible 

solution. 

2.2. Branch equations 

The equivalent representation as a network of uncoupled branches for both lines and transformers (with 

various types of winding connections) have been presented in several papers (e.g. [16], [19]–[21]). 

Here below we review the models used in this paper to obtain the test results. 

The three-phase line data are the impedance and susceptance 3×3 symmetrical matrices (Z and B). 

Analogously to three-phase lines, the input data for two-phase and single-phase lines are represented 

by 2×2 matrices and two complex numbers, respectively. The input data of the transformers are the 

longitudinal resistance rt, longitudinal reactance xt, shunt admittance y0 and ratio m (tap position at 

primary side is assumed fixed at nominal position). Tables I, II and III show the equations used to 

obtain the branch admittances for the case of a three-phase line, a grounded wye - grounded wye 

transformer and a delta - grounded wye transformer, respectively. A, B, C, and grounded node N 

identify the sending termination, whilst the corresponding lower case letters are used for the receiving 

termination.  

Each branch from node h to k with admittance yb is associated to two linear constraints 
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where 
1

, , ,b t b t b tr jx y−+ =  that for the case of transformers equipped with an OLTC depends on tap 

position t. Each tap position t is associated to auxiliary variables ,

re

b tv  and ,

im

b tv . If t is the selected tap 

position, ,

re

b tv  and ,

im

b tv  are forced to be null by the following constraints, otherwise their value adapt 

to the voltage difference between the transformer terminals. 



,1... b tt n = : 
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and 
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where ub,t is a binary variable associated to each tap position t, nb,t is the total number of tap positions 

and 
max

bI  is the maximum feasible value of bI .
 

re

bM  and 
im

bM  are tight but sufficiently large values 

that do not limit ,

re

b tv  and ,

im

b tv  when , 0b tu = . 

For branches not associated to variable tap changers (e.g. lines and fixed ratio transformers), (8) 

simplifies being  , ,,  re re im im

b t b b t bI I I I= =  and , 0re

b tv = , , 0im

b tv = . 

2.3. Load Model 

Both wye- and delta-connected loads are represented. For the case of wye-connected loads, the voltage 

of the neutral is assumed to be 0 and the load current is assumed positive if drained from the phase 

node. If the load is delta connected, the positive load current is drained from one node (node k in the 

following equations) and injected into a second node (node h). 

Each load is represented by a weighted combination of constant impedance, constant current , and 

constant power components (ZIP model): 
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where the coefficients satisfy the condition 
P, P, P, Q, Q, Q, 1k k k k k ka b c a b c+ + = + + =  and 

0

L,kP ,
0

L,kQ  are 

the real and reactive power consumed at note k with rated voltage 
0

0, 0,
kj V

k kV V e


=  corresponding to a 

three-phase symmetrical system. 

Cartesian coordinates L,

re

kI  and L,

im

kI  of the load current are defined by 
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where 
I, I, 0 0

P, L, , L,

re im

k k k k Q k kIn jIn b P jb Q+ = −  at 0,kV  and 
P, P, 0 0

P, L, , L,

re im

k k k k Q k kIn jIn c P jc Q+ = −  at 

0,kV , whilst  
Z,

L,

re

kI , 
Z,

L,

im

kI  represent the current drawn by a constant impedance load (with admittance 

0 0

L, L, L, P, L, Q, L,k k k k k k kY G jB a P ja Q= + = − ): 
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In (12) 
I,

L,

re

kI , 
I,

L,

im

kI , 
P,

L,

re

kI , 
P,

L,

im

kI  represent the variations of the current components relevant to the 

constant current model and constant power model due to the variation of the bus voltage, as defined by 

the following constraints. The implemented linear representation is based on the assumption of small 

bus-voltage deviations with respect to 0,kV . 

For 
I,

L,

re

kI  and 
I,

L,

im

kI  we write 
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where 1 3k =  and 2 / 6k =  if the load is delta connected, otherwise they are 1 and 0 respectively. 

Analogously, for 
P,

L,

re

kI  and 
P,

L,

im

kI : 
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2.4. Embedded Generators 

Whilst single phase generators are represented as PQ loads (with opposite power sign), three phase 

generators are represented as three symmetrical current sources in parallel with admittance matrix YG 

[20]. 

In order to include the choice of different reactive power outputs levels in the MILP model, nEG,k 

discrete compensation levels are represented. Each level g corresponds to reactive power output 
EG

,k gQ or 

power factor 
EG

,k gpf , whilst active output 
EG

kP is assumed fixed. In [13] a different MILP formulation 

based on the use of McCormick’s envelopes is proposed. 

For three-phase EGs at bus k (with nodes ka, kb, and kc) we write 
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where kV  is the triplet of voltage phasors at bus k; EG,

re

kI  and EG,

im

kI  are the triplets of the real and 

imaginary coordinates of the currents phasors injected by the EG in each phase of bus k; 
EG,

,

re

k gI  and 

EG,

,

im

k gI are the triplets corresponding to the reactive power compensation level g (only those 

corresponding to the selected level are not null due to the following constraints). 
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with 
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EG
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1
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For phase a of bus k (indicated as ka): 
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with 
,

,a

P re

k gI  and 
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k gI  defined by, analogously to (15), 
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where kV  is the variation of kV  with respect to 0,kV ; 
1

re

kV  and 
1

im

kV  indicate the positive 

sequence component of kV ; 
EG,

,a

re

k gIn  and 
EG,

,a

im

k gIn  correspond to the active and reactive power 

injections at compensation level g and at rated voltage 0,kV  calculated by 
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being 
10,kV  the positive sequence phasor of 0,kV  and * the conjugate (transpose). 

Current phasors 
EG

,bk gI  and 
EG

,ck gI  in phase b and phase c, respectively, are constrained so to obtain a 

three-phase positive symmetrical current source. 



2.5. Capacitor Banks 

A binary variable 
C

,k swu  is associated to each switch sw of a bank with C,kn  capacitors connected to 

node k. Current C, C,

re im

k kI jI+  derived by the capacitor is provided by the summation of the currents 

associated with each switch position: 
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At least one current 
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with 
C,

C
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im

kM  are tight values that do not limit 
C,

,
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C
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. 

2.6. Distribution Voltage Regulators 

If the internal impedance can be neglected, voltage regulators are represented by the following model 

that is simpler than the one adopted for transformers equipped with an OLTC (8)-(10). 

,1... b tt n = : 

 , ,0 and 0re re re im im im

h t k b t h t k b tV m V v V m V v− +  = − +  =  (28) 

being h and k the nodes of the same phase at the primary and secondary side respectively, mt is the ratio 

corresponding to tap position t. 



Constraints (9) and (10) still apply also for this simplified model where, for each phase, bI  refers to the 

current at the primary side. In order to calculate the Cartesian coordinates of the corresponding current 

phasor at the secondary side (
''

bI ), the following constraints are added: 

 
, ,

'' ''

, ,

1 1

0 and 0
b t b tn n

re re im im

b t b t b t b t

t t

I m I I m I
= =

− = − =   (29) 

2.7. Bus Equations 

In each node k that does not belong to the slack bus the equilibrium of the currents is forced:  
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im im im im im

b b k k k

b B b B
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+ −

+ −

 

 

− + + − =

− + + − =

 

 
 (30) 

where Bk is the set of branches b connected to node k (being kB+
 the set to the branch leaving k and kB−

 

the set of those entering in k). If k is connected to the secondary side of a distribution voltage regulator 

represented with the simplified model then 
re

bI  and 
im

bI  are replaced by 
''re

bI  and 
''im

bI  of  (29). 

2.8. Bus Voltage and Branch Current Limits 

The minimum and maximum node voltage and maximum branch current constraints are represented 

through the description of the feasible region by means of polygons, as described in [8]. 

3. Test results 

The model described in the previous section has been implemented in Matlab R2012a and solved by 

using IBM ILOG CPLEX V12.5 MIP on a computer with two 3.07 GHz Intel six-core processors and 

48 GB of RAM, running 64-bit Windows. 

Numerical tests have been carried out for the following networks adapted from IEEE test feeders: 

TS1 IEEE 13 Node Test Feeder, with two additional EGs, namely a single-phase unit at bus 646 and a 

three-phase unit at bus 680 (Fig. 1); 



TS2 IEEE 34 Node Test Feeder with a three-phase EG unit at bus 888 (Fig. 2);  

TS3 IEEE 123 Node Test Feeder, with a three-phase EG unit at node 56 and a single-phase EG unit at 

node 104 (Fig. 3).  

In all the models, the magnetizing branches of the transformers are neglected. The capacitors banks are 

independently switchable on a per phase basis with one or two equal step increments if the maximum 

power is equal or greater than 50 kvar, respectively. YG of the three-phase EG models is neglected. 

Distributed loads along a line are assumed to be concentrated at the remote line termination. The lower 

and upper bus voltage limits are 0.95 pu and 1.05 pu, respectively, and the minimum power factor limit 

on each phase at the substation is 0.8, whilst the current branch limits are set large enough so they are 

never binding the solution. 

The following subsections present the results obtained for the considered test feeders by means of 

tables that report the optimal values of the control variables calculated by the MILP model, the number 

of variables (total number and number of binary variables), the number of constraints, the final relative 

objective gap (i.e. the difference between the best solution and its best lower bound divided by the best 

solution value) and the computer time spent to obtain the solution. In parenthesis, the tables indicate 

the percentage differences between the MILP results and those obtained by the corresponding power 

flow (PF) calculation (the EMTP-rv 2.5 software is used). These differences provide an indication of 

the influence of the adopted linear approximation on the accuracy of the results obtained by using the 

MILP model. 

3.1. TS1 

The slack bus is at the primary side of the 5 MVA D-Y substation transformer with voltage equal to 

Vs=115 kV. This transformer is equipped with an OLTC with ±12 tap increments of 1.25% with rated 

ratio equal to 115/4.16 kV. The fixed ratio of the Y-Y transformer feeding bus 634 is 4.16/0.48 kV. 

One-phase switched capacitor bank with maximum power of 100 kvar is connected at node 611c and a 

three-phase bank at bus 675 (maximum power of 200 kvar at each phase). The two additional EGs are: 

a 400 kW single-phase unit at node 646b and a 1200 kW three-phase unit at bus 680. The EGs have the 



possibility to control the reactive output in ±12 discrete levels with a minimum power factor limit of 

0.7. 

Table IV shows the results obtained with and without the presence of EGs for two different load levels: 

normally loaded (i.e. as in IEEE Test Feeder data) and light-loaded (i.e. obtained by multiplying each 

load demand by 0.5). 

Without EGs, the system without regulation (i.e. with all capacitors disconnected and OLTC in the 0 

tap position) has 

- at normal load: losses = 211.01 kW, minimum bus voltage = 0.804 pu (node 611c) and min 

power factor at the substation = 0.71 (phase b);  

- at light load: losses = 45.9 kW, min voltage = 0.911 pu (node 611c) and min power factor = 

0.77 (phase b). 

With the action of the OLTC and capacitor banks, the calculated operating condition slightly violates 

the ±5% voltage limits as well as the minimum power factor constraint (the relevant penalties are 

added to the objective function value) whilst all the constraints are met at light load. Losses are reduced 

by around a quarter in both load conditions. 

With the EGs, the system without regulation (i.e. with all capacitors disconnected, OLTC in the 0 tap 

position and EG at unity power factor) has 

- at normal load: losses = 129.7 kW, min voltage = 0.817 pu (node 611c), max voltage = 0.982 

pu (node 680b) and min power factor at the substation = 0.35 (phase b); 

- at light load: losses = 29.9 kW, min voltage = 0.92 pu (node 611c), max voltage = 1.00 pu 

(646b) and min power factor = 0.18 (phase b).  

Losses are significantly reduced in both load conditions thanks to the action of the OLTC, of capacitor 

banks and of EG regulation. At normal load, the power factor on phase b of slack bus is lower than 0.8 

and the maximum voltage limit is exceeded at node 680b, whilst at light load the power factor 

constraint is violated on phase b and c (the relevant penalties are added to the objective function value). 

Although the internal YG matrix is neglected, due to the network imbalance, different active and 

reactive powers are obtained on each phase of the three-phase EG at bus 680: 416, 386, 397 kW and 



380, 456, 375 kvar at normal load whilst 433, 368, 394 kW and 400, 433, 373 at light load on phase a, 

phase b and phase c, respectively. 

3.2. TS2 

The slack bus is at the primary side of the 2.5 MVA D-Y substation transformer with voltage equal to 

Vs=69 kV. This transformer is assumed at fixed ratio equal to 2.56. There are two 4.16/4.16 kV 

distribution voltage regulators connected before nodes 850 and 832, each enabling ±12 tap increments 

of 1.25% at the secondary side. Two three-phase capacitor banks are connected to bus 844 (with 

maximum 100 kvar per phase) and to bus 848 (with maximum 150 kvar per phase), respectively. The 

additional EG at bus 888 is a 500 kW three-phase unit with the possibility to control the reactive output 

in ±6 discrete levels with a minimum power factor limit of 0.7. 

Table V shows the results obtained without and with the EG. 

Without the EG, the system without regulation (i.e. with all capacitors disconnected and all OLTCs in 

the 0 tap position) has losses = 298.57 kW, minimum bus voltage = 0.743 pu (node 890a), total load 

equal to 1.502 MW, min power factor at the substation = 0.84 (phase b). With the action of the 

distribution voltage regulators and capacitor banks, the calculated operating condition slightly violates 

the ±5% voltage limits with improved power factors. Due to the voltage dependence of the loads that 

causes a 20% increase of the load consumption, the power loss rises by 8.85%. 

With the EG and without regulation (i.e. with all capacitors disconnected, OLTC in the 0 tap position 

and EG at unity power factor) the system has losses = 188.4 kW, minimum bus voltage = 0.834 pu 

(node 890a), total load equal to 1.588 MW, min power factor at the substation = 0.77 (phase c). With 

the action of the voltage regulators and capacitor banks, the calculated operating condition only slightly 

violates the +5% voltage limit at node 800c. The load rises by 13% whilst the power loss increases less 

than 1%. 

3.3. TS3 

The slack bus voltage is equal to Vs=115 kV. The 5 MVA D-Y OLTC substation transformer has rated 

ratio equal to 115/4.16 kV with ±12 tap increments of 1.25%. Moreover there is a three-phase 



4.16/4.16 kV distribution voltage regulator connected before node 67 with ±12 tap increments of 

1.25%. The other two distribution voltage regulators and the 4.16/0.48 kV transformer shown in Fig. 3 

(connected between buses 25-26, 9-14, 61-610, respectively) are considered at fixed ratio. A three-

phase capacitor bank is connected to bus 83 (with maximum 200 kvar per phase). Three single-phase 

capacitor banks are connected to node 88a, 90b, and 92c (with maximum 50 kvar). The two additional 

EGs are a 1.2 MW three-phase unit at bus 56 and a 400 kW single-phase unit at node 104c both 

allowing ±6 discrete reactive power levels with a minim power factor limit of 0.85. 

Also the results obtained for TS3 without and with the EGs are shown in Table V. Without EGs, the 

system without regulation (i.e. with all capacitors disconnected and OLTCs in the 0 tap position) has 

losses = 152.7 kW, minimum bus voltage = 0.85 pu (node 114a), total load equal to 3.269 MW, min 

power factor at the substation = 0.76 (phase b). With the action of the voltage regulators and capacitor 

banks, the calculated operating condition meets all the constraints. Although a roughly 5% load 

increase, power loss decreases by 9%. With the EGs and without regulation (i.e. with all capacitors 

disconnected, OLTC in the 0 tap position and EGs at unity power factor) the system has losses = 

102.46 kW, minimum bus voltage = 0.85 pu (node 114a), total load equal to 3.3 MW, min power factor 

at the substation = 0.53 (phase c). With the action of the voltage regulators and capacitor banks, the 

calculated operating condition meets all the constraints, load increases by 4.7% and the power loss 

decreases by nearly 30%. 

4. Conclusions 

The paper presents a MILP model for the solution of the VVO in unbalanced three-phase distribution 

feeders. The model includes the specific characteristics of the components and takes the usual 

operating constraints into account. 

The method has been applied to three different IEEE test feeders with OLTC transformers, distribution 

voltage regulators, switchable capacitor banks, and EGs. The comparison between the obtained results 

and those provided by the three-phase PF calculations (for the optimal configuration) shows that the 

achieved accuracy is adequate.  



As expected, the computational effort significantly increases with respect to a previously presented 

MILP model that assumes a balanced network. However, with acceptable CPU time, accurate results 

are obtained also for medium size feeders. 
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Figure captions 

Fig. 1 Test system TS1. The different thickness of the segments represents power lines with different 

number of conductors, namely: three phase lines (the thickest ones), two phase lines and single phase 

lines (the thinnest ones). Figure adapted from [18]. 

 

Fig. 2 Test system TS2. Figure adapted from [18]. 

 

Fig. 3 Test system TS3. Figure adapted from [18]. 
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Fig. 1. Test system TS1. The different thickness of the segments represents power lines with different number of conductors, 

namely: three phase lines (the thickest ones), two phase lines and single phase lines (the thinnest ones). Figure adapted from 
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Fig. 2. Test system TS2. Figure adapted from [18]. 

 

 



 
Fig. 3. Test system TS3. Figure adapted from [18]. 

 



TABLE I - CONNECTION TABLE FOR THREE-PHASE LINES 

admittances between nodes 

1
diag( )   with   

−
=Y Y Z  A-a, B-b, C-c 

0.5sum( ( ,:)) 1, 2, 3B i i =  
A-N, B-N, C-N 

equal to a-n, b-n, c-n 

( , )   , 1, 2, 3   Y i j i j i j=   A-b, A-c, B-a, B-c, C-a, C-b 

( ( , ) 0.5 ( , ))

, 1, 2, 3   

Y i j j B i j

i j i j

− +

= 
 

A-B, B-C, A-C 

equal to a-b, b-c, a-c 

 

 

 



TABLE II - CONNECTION TABLE FOR GROUNDED WYE – GROUNDED WYE TRANSFORMER. 

Admittances between nodes 

1
   with   

t t

t t

y m y
r jx

=
+

 A-a, B-b, C-c 

0
(1 )

t
y m y− +  A-N, B-N, C-N 

( 1)
t

y m m −  a-n, b-n, c-n 

 



TABLE III - CONNECTION TABLE FOR DELTA – GROUNDED WYE TRANSFORMER. 

Admittances between nodes 

3
t

y m  A-a, B-b, C-c 

0
y  A-N, B-N, C-N 

3
t

y  A-B, B-C, C-A 

3
t

y m−  A-b, B-c, C-a 

2

t
y m  a-n, b-n, c-n 

 



TABLE IV - MILP SOLUTIONS FOR TS1 (IN PARENTHESIS THE PERCENTAGE DEVIATION WITH 

RESPECT TO THE PF RESULTS). 

 
without EG with EG 

normal load light load normal load light load 

Cap. steps at nodes 

611c,675abc 
2,2,0,2 2,2,1,2 2,2,0,2 0,2,0,0 

OLTC tap -7 0 -2 1 

EG Q steps 

at bus 646,680 
  0,12 -8,12 

losses 161.79 kW (3.3%) 
34.94 kW 

(0.83%) 

70.22 kW 

(2.47%) 

32.25 kW 

(0.34%) 

min voltage 

elsewhere than slack bus 

0.9536 pu 

(-0.22%) 

0.9503 pu 

(0.035%) 

0.9514 pu 

(0.008%) 

0.9509 pu 

(0.01%) 

at node 611c at node 652a at node 634c at node 611c 

max voltage 

elsewhere than slack bus 

1.056 pu  

(-0.039%) 

0.9886 pu 

(0.006%) 

1.0552 pu 

(0.058%) 

1.0477 pu 

(-0.01%) 

at node 650b at node 650c at node 680b at node 680a 

tot. active load 3.507 MW (1.59%) 
1.723 MW 

(0.51%) 

3.486 MW 

(0.8%) 

1.733 MW 

(0.06%) 

tot. reactive load 
2.096 Mvar 

(-0.12%) 

1.033 Mvar 

(-0.53%) 

2.095 Mvar 

(-0.05%) 

1.053 Mvar 

(-0.11%) 

EG tot. active injection   
1.605 MW 

(0.31%) 

1603 kW 

(0.2%) 

EG tot. reactive 

injection 
  

1.230 Mvar 

(0.48%) 

924 kvar 

(0.01%) 

P at slack bus 3.668 MW (1.67%) 
1.758 MW 

(0.52%) 

1.952 MW 

(1.27%) 

162 kW 

(-1.19%) 

Q at slack bus 2.298 Mvar (1.08%) 
0.617 Mvar 

(-0.73%) 

647 kvar 

(-0.18%) 

-2 kvar 

(-46.5%) 

pf at slack bus (a, b, c) 0.85, 0.78, 0.89 0.95, 0.89, 0.98 0.96, 0.74, 1.00 0.90, 0.43, 0.78 

no. of variables 1520 (237 binary) 2182 (289 binary) 

no. of constraints 2878 (899 equality) 4092 (1313 equality) 

obj. function 5.13 103 1.76 103 4.23 103 2.99 103 

relative obj. gap 0 0 9.41 10-5 0 

CPU time 2.05 s 1.07 s 37.59 s 54.28 s 

 



TABLE V - MILP SOLUTIONS FOR TS2 AND TS3 (IN PARENTHESIS THE PERCENTAGE DEVIATION 

WITH RESPECT TO THE PF RESULTS). 

 
without EG with EG 

TS2 TS3 TS2 TS3 

Cap. Steps 
844abc: 2,2,0 

848abc:2,0,2 

83abc: 2,0,1 

88a:1, 90b:0, 92c:0 

844abc: 2,0,0 

848abc:0,0,0 

83abc: 2,1,1 

88a:1, 90b:0, 92c:0 

OLTC taps 
850: -4 

832: -8 

149: -1 

67: -1 

850: -2 

832: -6 

149: -2 

67: -2 

EG Q steps   2 
56abc: 6 

104c: 0 

losses 329.7 kW (1.43%) 
140.4 kW 

(1.17%) 

190.7 kW 

(0.69%) 

73.3 kW 

(0.67%) 

min voltage 

elsewhere than 

slack bus 

0.9350 pu 

(-0.28%) 

0.9505 pu 

(-0.03%) 

0.9525 pu 

(-0.65%) 

0.9489 pu 

(-0.02%) 

at node 890c at node 66c at node 890a at node 160a 

max voltage 

elsewhere than 

slack bus 

1.0552 pu  

(-0.14%) 

1.0140 pu 

(-0.002) 

1.0513 pu 

(-0.05%) 

1.0367 pu 

(0.03%) 

at node 832a at node 149b at node 800c at node 300b 

tot. active load 1.817 MW (0.43%) 
3.447 MW 

(0.77%) 

1.795 MW 

(0.098%) 

3.469 MW 

(0.33%) 

tot. reactive load 1.079 Mvar (0.06%) 
1.873 Mvar 

(-0.26%) 

1.078 Mvar 

(0.01%) 

1.9 Mvar 

(-0.03 %) 

EG tot. active 

injection 
  

500 kW 

(-0.05%) 

1.602 MW 

(0.12%) 

EG tot. reactive 

injection 
  

245 kvar 

(1.1%) 

744 kvar 

(0.04%) 

P at slack bus 2.147 MW (0.58%) 
3.588 MW 

(0.79%) 

1.486 MW 

(0.22%) 

1.940 MW 

(0.5%) 

Q at slack bus 753 kvar (1.32%) 
2.026 Mvar 

(0.06%) 

765 kvar 

(0.55%) 

909 kvar 

(0.09%) 

pf at slack bus 

(a, b, c) 
0.97, 0.93, 0.92 0.91, 0.82, 0.87 0.92, 0.88, 0.86 0.98, 0.85, 0.83 

no. of variables 3531 (350 binary) 7672 (563 binary) 3787 (364 binary) 8022 (591 binary) 

no. of constraints 6053 (2377 equality) 10981 (5828 equality) 
6532 (2544 

equality) 
11619 (6050 equality) 

obj. function 7.52 103 3.59 103 1.66 103 1.94 103 

relative obj. gap 4.12 10-5 0 9.55 10-5 9.98 10-5 

CPU time 214 s 42.9 s 474 s 388 s 

 


