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1 Introduction

Current literature contains many attempts at quantizing black hole (BH) metrics, which

focus on the purely gravitational degrees of freedom, and yield a description of the horizon

unrelated to the matter state that sources the geometry [1–4]. However, this point of

view might miss important features emerging from the highly non-linear nature of the

gravitational interaction. One can think in analogy to the hydrogen atom, and note that its

energy levels, which have no classical counterpart, cannot be simply obtained by quantising

the free electromagnetic field. A different perspective is taken in the Horizon Wave Function

(HWF) formalism [5–7], which is instead based on the quantum version of the Einstein

equation relating the size of the gravitational radius (which can be a horizon) to the

(quantum) state of matter. This formalism has been applied to several case studies [8,

9], yielding sensible results in agreement with (semi)classical expectations, and there is

therefore hope that it will help our understanding of the quantum nature of BHs.

In practical terms, the construction of the HWF starts from the spectral decomposition

of the quantum mechanical state that represents a matter source localized in space. By

expressing the energy in terms of the gravitational (Schwarzschild) radius, as it would be

classically determined according to the Einstein equations, the spectral decomposition then

directly yields the HWF. The normalised HWF supplies the probability for an observer to

detect a gravitational radius of a certain areal radius, centred around the source in the

quantum state that was used in the first place. The gravitational radius can then be

interpreted as a horizon if the probability of finding the particle inside it, is reasonably

high. In other words, the horizon size is necessarily “fuzzy” in this QM description, just

like the position of the particles that sources the geometry.

One would expect that quantum modifications of the sort mentioned above should

be important only for small BHs, with masses close to the Planck scale, and that the

quantum corrections to the classical solutions of large mass BHs should be negligible. A
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large BH can have arbitrary small curvature near its horizon, and we have numerous tests

of gravity in such low density regimes. However, BHs are very peculiar objects, in that

they trap any signal inside the horizon by definition, no matter how weak tidal forces are

in its neighbourhood, and it may happen that they are better described as macroscopic

quantum states (see for instance, the Bose-Einstein Condensate model of refs. [10–14]).

Charged BHs were subject to many theoretical studies in the past [15]. In this work, we

shall extend the HWF formalism to the Reissner-Nordström (RN) geometry and investigate

the probability for an electrically charged source represented by a Gaussian wave-packet to

be a BH, and to have an actual inner horizon. In the semiclassical approach, the latter is a

Cauchy horizon and is sometimes associated with an instability known as “mass inflation”:

any small matter perturbation will blue-shift unboundedly just outside this horizon, and

inevitably produce a large deformation to the background geometry [16]. Although the

existence of this effect is still debated (see, e.g. refs. [17–19]), it is clear from the classical

causal structure of the RN geometry that, if there is matter falling through the outer

horizon, it should accumulate outside the inner Cauchy horizon, and eventually lead to a

large backreaction there. On the other hand, matter inside the inner horizon could escape

the Cauchy horizon and produce a deformation as well. It is thus interesting to study

under which conditions the inner horizon survives in the QM treatment.

2 The HWF formalism

The formalism introduced in refs. [5–7] is based on lifting the gravitational radius RH of a

QM system to the rank of a quantum operator. The coordinate r in a spherical metric is

invariantly related to the geometrical area 4 π r2 of the sphere centred on the origin r = 0,

therefore being a suitable candidate for an observable in the quantum theory. Moreover,

the horizon radius r = RH represents the location of trapping surfaces (surfaces where the

escape velocity equals the speed of light) and thus determines the causal structure of the

space-time, which again is likely an observable property in the quantum theory.

We remind the readers that in a neutral spherically symmetric system,

RH(r) = 2 `p
M(r)

mp
, (2.1)

where `p is the Planck length and mp the Planck mass,1 and

M(r, t) = 4π

∫ r

0
ρ(r̄, t) r̄2 dr̄ (2.2)

is the Misner-Sharp mass. Here M = M(r, t) represents the total energy inside the sphere

of area 4π r2 (thus, roughly speaking, including the negative gravitational energy) and is

related to the energy density ρ of the source via the flat space volume. A specific value of

r is a trapping surface if RH(r) = r, while, if RH(r) < r, the gravitational radius is still

well-defined but does not correspond to any causal surface.

1We shall use units with c = kB = 1, and always display the Newton constant GN = `p/mp, so that

~ = `p mp.
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Going back to the HWF formalism, let us start from QM states representing spherically

symmetric objects, which are localized in space and at rest in the chosen reference frame.

Such particles are consequently described by wave-functions ψS ∈ L2(R3), which we assume

can be decomposed into energy eigenstates,

| ψS 〉 =
∑
E

C(E) | ψE 〉 , (2.3)

where the sum represents the spectral decomposition in Hamiltonian eigenmodes,

Ĥ | ψE 〉 = E | ψE 〉 . (2.4)

The actual Hamiltonian H needs not be specified yet.2

The expression of the Schwarzschild radius in eq. (2.1) can be inverted to obtain

M = mp
RH

2 `p
, (2.5)

and remembering that M represents the total energy, it can be used to define the (unnor-

malized) “horizon wave-function” as

ψ̃H(RH) = C (mpRH/2 `p) . (2.6)

The normalisation of ψ̃H is finally fixed by means of the scalar product

〈ψH | φH 〉 = 4π

∫ ∞
0

ψ∗H(RH)φH(RH)R2
H dRH , (2.7)

again in agreement with the geometrical meaning of the variable RH as yielding the area

4π R2
H of the corresponding sphere. Our interpretation of the normalised ψH is then that

it yields the probability for an observer to detect a horizon (necessarily “fuzzy”, like the

position of the particle itself) of areal radius r = RH, associated with the particle in the

quantum state ψS.

In more details, starting from the he wave-function ψH associated with ψS, we can

now calculate the probability density for the particle to lie inside its own horizon of radius

r = RH:

P<(r < RH) = PS(r < RH)PH(RH) , (2.8)

where

PS(r < RH) = 4π

∫ RH

0
|ψS(r)|2 r2 dr (2.9)

is the probability that the particle is inside a sphere of radius r = RH, and

PH(RH) = 4π R2
H |ψH(RH)|2 (2.10)

is the probability density that the sphere of radius r = RH is a horizon. Finally, the

probability that the particle is a black hole will be obtained by integrating (3.13) over all

possible values of the horizon radius, namely

PBH =

∫ ∞
0
P<(r < RH) dRH . (2.11)

2This is where, for instance, the self-gravity of the particle may enter.
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To anticipate the calculations in the next section, we note that electrically charged

BHs have two gravitational radii, and we will therefore define two corresponding operators,

namely R̂±. We shall then define a HWF for each one, and obtain the probabilities for

both the inner and outer horizon to exist.

3 Electrically charged spherical sources

We start from the RN metric, which can be written as

ds2 = −f dt2 + f−1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (3.1)

with

f = 1− 2 `pM

mp r
+
Q2

r2
, (3.2)

where M and Q respectively represent the ADM mass and charge of the source. It is now

convenient to introduce the specific charge

α =
|Q|mp

`pM
. (3.3)

The case α = 0 reduces to the neutral Schwarzschild metric, and shall not be reconsidered

here (see refs. [5–9]). For 0 < α < 1, the above metric contains two horizons, namely

R± = `p
M

mp
±

√(
`p

M

mp

)2

−Q2

= `p
M

mp

(
1±

√
1− α2

)
, (3.4)

and represents a BH. The two horizons overlap for α = 1, the so-called extremal BH case,

while for α > 1 no horizon exists and the central singularity is therefore accessible to an

outer observer. This is the prototype of a naked singularity, but we shall not consider this

case here (the corresponding HWF is the topic of ref. [20]).

We shall now investigate the case 0 < α ≤ 1, which classically possesses at least one

horizon, from a QM perspective. We first determine the HWFs and then calculate the

probabilities for both the inner and outer horizon to exist. For this purpose, the classical

relations (3.4) will be lifted to the rank of equations for the operators R̂± and M̂ , which are

chosen to act multiplicatively on the HWF (with the specific charge α viewed as a simple

parameter).

3.1 HWF for Gaussian source

The source for the RN space-time is taken to be an electrically charged massive particle at

rest in the origin of the reference frame, represented by the spherically symmetric Gaussian

wave-function

ψS(r) =
e−

r2

2 `2

`3/2 π3/4
. (3.5)
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The width of the Gaussian ` is assumed to be the minimum compatible with the Heisenberg

uncertainty principle, that is

` = λm ' `p
mp

m
, (3.6)

where λm is the Compton length of the particle of rest mass m (this assumptions is thor-

oughly investigated in ref. [7]). The spectral decomposition of eq. (3.5) is easily obtained

from assuming the relativistic mass-shell relation in flat space,

M2 = p2 +m2 , (3.7)

and by going to momentum space,

ψS(p) =
e−

p2

2 ∆2

∆3/2 π3/4
, (3.8)

where p2 = ~p · ~p is the square modulus of the spatial momentum, and the width ∆ =

mp `p/` ' m.

For α < 1, one can now write a HWF for each of the two horizons in eq. (3.4). In fact,

the total energy M can be expressed in terms of the horizon radii as

`p
M̂

mp
=
R̂+ + R̂−

2
, (3.9)

and

R̂± = R̂∓
1±
√

1− α2

1∓
√

1− α2
, (3.10)

where M , R+, and R− were promoted to operators M̂ , R̂+, and R̂− related to the corre-

sponding observables. It is important to remark that our choice is not unique, because of

the usual ambiguities that emerge when going from a classical to the quantum formalism.

The unnormalized HWFs for R+ and R− are obtained by expressing p from eq. (3.7) in

terms of M in eq. (3.9), and then replacing one of the relations in eq. (3.10) into eq. (3.8).

These manipulations yield

ψH(R±) = N±Θ (R± −Rmin±)

× exp

{
−

m2
pR

2
±

2 ∆2 `2p
(
1±
√

1− α2
)2
}
. (3.11)

The step function in the first line above accounts for the minimum energy M = m in the

spectral decomposition of the wave-function (3.5), which corresponds to

Rmin± = `p
m

mp

(
1±

√
1− α2

)
. (3.12)

Finally, the normalisations N± are fixed again by using the scalar product in eq. (2.7) for

both R±.3

3Explicit expressions of N± are very cumbersome and not particularly significant, thus shall be omitted

throughout the paper.
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The probability density that the particle lies inside its own horizons of size r = R±
can now be calculated starting from the wave-functions (3.11) associated with (3.5) as

P<±(r < R±) = PS(r < R±)PH(R±) , (3.13)

where

PS(r < R±) = 4π

∫ R±

0
|ψS(r)|2 r2 dr (3.14)

is the probability that the particle is inside the sphere r = R±, and

PH(R±) = 4π R2
± |ψH(R±)|2 (3.15)

is the probability density that the sphere r = R± is a horizon. Finally, one can inte-

grate (3.13) over all possible values of the horizon radius R+ to find the probability for the

particle described by the wave-function (3.5) to be a BH, namely

PBH+ =

∫ ∞
Rmin+

P<+(r < R+) dR+ . (3.16)

The analogous quantity for R−,

PBH− =

∫ ∞
Rmin−

P<−(r < R−) dR− , (3.17)

will instead be viewed as the probability that the particle lies further inside its inner horizon.

It is already clear from these definitions that PBH− < PBH+, and it is only when PBH− is

significantly close to one that we can say that both R− and R+ are physically realised.

3.2 Inner and outer horizon probabilities

The probabilities PBH± can only be computed numerically, and we shall therefore display

their behaviour graphically.

In the upper panel of figure 1 we show the probability density that the particle lies

inside the outer horizon r = R+ from eq. (3.13) for two values of the Gaussian width

` = λm ∼ m−1 (above and below the Planck scale). This probability clearly decreases

when m decreases below the Planck mass, which corresponds to ` increasing above `p. A

similar analysis is presented in the lower panel of the same figure for the probability density

that the particle lies inside the inner horizon r = R−. It is obvious that the probabilities

in the second case are much smaller with decreasing α. As expected, the two probability

densities are identical for the extremal case α = 1 (thick and thin dashed lines), since the

two horizons coincide.

The probabilities PBH± are obtained by performing the integrations (3.16) and (3.17).

The plot in figure 2 shows these probabilities as functions of α for values of the particle

mass above, equal to and below the Planck mass. When analyzing the outer horizon,

one notices that PBH+ stays very close to one for mass values larger than the Planck

scale. However, for m . mp (when the width of the Gaussian wave-packet ` & `p), PBH+

clearly decreases as the BH specific charge increases to one. Note that this probability is
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Figure 1. Top panel: probability density P<+ in eq. (3.13) that the particle is inside its outer

horizon r = R+, for m = 2mp (thick lines) and m = 0.5mp (thin lines) with α = 0.3 (continuous

lines), α = 0.8 (dotted lines) and α = 1 (dashed lines). Botton panel: probability density P<− in

eq. (3.13) that particle is inside its inner horizon r = R−, for m = 2mp (thick lines) and m = 0.5mp

(thin lines) with α = 0.3 (continuous lines), α = 0.8 (dotted lines) and α = 1 (dashed lines). For

α = 1, the two horizons coincide and P<− = P<+.

not exactly zero even for values of the mass smaller than mp. For instance, in the case

m = 0.5mp, corresponding to a width ` = 2 `p of the Gaussian wave-packet, PBH+ ' 0.2

for a considerable range of values of α. It only decreases below 0.1 when α approaches

one, therefore when the BH becomes maximally charged. The situation is very different

for the inner horizon. The same plot shows that the probability PBH− starts from almost

zero for small values of the charge-to-mass ratio and increases with α. The larger the

mass of the particle, the smaller the value of α for which the probability starts to become

significant. Still, there is a considerable range of values of the specific charge for which,

while PBH+ ' 1 thus making the object a BH, the probability for the inner horizon to exist

is approximately zero.

Figure 3 shows the probabilities PBH± as functions of the mass m for α = 0.3, 0.8 and 1.

From this plot it becomes clear that for smaller values of α, the probability PBH+ starts to

increase from zero to one at smaller values of m. The opposite is true when analyzing PBH−.
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PBH

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

α

Figure 2. Probability PBH+ in eq. (3.16) for the particle to be a BH (thick lines) and PBH− in

eq. (3.17) for the particle to be inside its inner horizon (thin lines) as functions of α for m = 2mp

(continuous line), m = mp (dotted line) and m = 0.5mp (dashed line). For α = 1 the two

probabilities merge.

PBH

1 2 3 4

0.2

0.4

0.6

0.8

1.0

m/mp

Figure 3. Probability PBH+ in eq. (3.16) for the particle to be a BH (thick lines) and PBH− in

eq. (3.17) for the particle to be inside its inner horizon (thin lines) as functions of the mass for

α = 0.3 (continuous line), α = 0.8 (dotted line) and α = 1 (dashed line). For α = 1 thick and thin

dashed lines overlap.

For the smallest value of the charge-to-mass ratio considered here, α = 0.3, it is only around

a particle mass of m ' 6mp that both probabilities PBH+ and PBH− have values close to

one, while PBH+ already increases to one around mp. This means that in the range of

masses between mp and 6mp, the probability PBH+ ' 1 while PBH− ' 0. This mass range

increases even more for smaller values of the specific charge, but it decreases to zero in the

maximally charged limit.

Our main finding is therefore that there exists a considerable parameter space for m

(around the Planck scale) and α < 1 in which

PBH+ ' 1 and PBH− ' 0 . (3.18)

Whether the particle is a BH or not is dictated by the existence of the outer horizon,

therefore we interpret PBH+ ' 1 as meaning that the particle is (most likely) a BH.
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However, the presence of an inner horizon at r = R− is important in light of the “mass

inflation” instability and peculiar features of Cauchy horizons. Eq. (3.18) therefore means

that the particle is (most likely) a BH, but no such peculiarities are expected to occur.

3.3 Generalised uncertainty principle

The uncertainty in the horizon size for a neutral BH was already investigated previously.

In particular, it was shown to grow linearly with the BH mass and lead to a generalised

uncertainty principle (GUP) in refs. [5, 6]. We can here repeat the same arguments for the

outer horizon of the charged BH, and obtain similar results.

We first note that the expectation value

〈 R̂+ 〉 = 4π

∫ ∞
Rmin+

|ψH(R+)|2R3
+ dR+

=
4
(

1 +
√

1− α2
)

2 + e
√
π erfc(1)

`2p
`

= R+(M̄) , (3.19)

reproduces exactly the classical expression of R+ in eq. (3.4) for ` = λm ∼ m−1 and

M̄ = 4m/[2 + e
√
π erfc(1)] ' 1.45m.4 From

〈 R̂2
+ 〉 = 4π

∫ ∞
Rmin+

|ψH(R+)|2R4
+ dR+

=

(
1 +
√

1− α2
)2

(10 + 3 e
√
π erfc(1))

2 (2 + e
√
π erfc(1))

`4p
`2

' R2
+(M̄) , (3.20)

one can then calculate the uncertainty

∆R+ =

√
〈 R̂2

+ 〉 − 〈 R̂+ 〉
2 ' R+ ∼ m, (3.21)

which, like in the neutral Schwarzschild case, grows linearly with the mass m of the source.

This signals the fact that the state of such objects would remain QM even in an astro-

physical regime, where we instead expect the horizon has a sharp location, and supports

alternative models of large BHs, such as the ones in refs. [10–14].

If we now combine the horizon uncertainty (3.21) with the usual QM uncertainty in

the radial size of the source,

∆r2 = 4π

∫ ∞
0
|ψS(r)|2 r4 dr −

(
4π

∫ ∞
0
|ψS(r)|2 r3 dr

)2

' `2 , (3.22)

4This mass renormalisation, with M̄ > m, can be easily understood by noting that the source wave-

function ψS contains energy contributions from momenta p > 0.

– 9 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
6

∆r
`p

0 1 2 3 4

1

2

3

4

∆p/mp

Figure 4. Uncertainty relation (3.23) (solid line) as a combination of the QM uncertainty (dashed

line) and the uncertainty in horizon radius (dotted line), for γ = 1.

we can finally obtain a total uncertainty

∆r ≡
√
〈∆r2 〉+ γ

√
〈∆R2

+ 〉

' `p
mp

∆p
+ γ `p

∆p

mp
, (3.23)

where γ is a coefficient of order one. The result is plotted in figure 4, where it is also

compared to the usual Heisenberg uncertainty in the size ∆r of a state with an uncertainty

in momentum given by

∆p2 = 4π

∫ ∞
0
|ψS(p)|2 p4 dp−

(
4π

∫ ∞
0
|ψS(p)|2 p3 dp

)2

' ∆2 ' `−2 . (3.24)

We can therefore conclude that the outer horizon behaves qualitatively like the neutral

Schwarzschild radius.

4 Conclusions and outlook

In this work we transparently applied some basic QM methods to the case of the RN BH.

In our formalism, the location of the horizon is not given by a sharp classical value, instead

it is described by a quantum wave-function with associated uncertainties. In addition, one

can define a quantity which corresponds to the probability for a horizon to be formed.

Since the RN BH has the inner and outer horizon, the structure of a quantum BH might

be quite different from the structure of the classical one.

We first note here that, if one models a BH as a point-like source (i.e. one very narrow

Gaussian wave-function), the uncertainty in the location of the outer horizon ∆R+ grows

with the mass of the source (since ` ∼ m−1). This is in agreement with many postulated

GUPs in the presence of gravity [21, 22], but implies that when the source is of astrophysical
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size, the fluctuations become unacceptably large. This might imply that there must be

a regime where the GUP gets replaced by the standard (non-gravitational) uncertainty

principle of QM. In other words, the parameter γ in eq. (3.23) becomes very small in the

semi-classical regime.

The other (somewhat related) option is that the single Gaussian source (3.5) does not

appear to be a sensible model for large BHs. The fact that the uncertainty in the horizon

location does not decrease for increasing rest mass m, might imply that a semiclassical

behavior cannot be recovered at all in such a setup [5, 6]. This result was remarked in ref. [9],

where it was then shown that modelling a BH as a large number of light constituents [10–14]

does not suffer of this limitation. Because of that, we cannot here extend our findings to

arbitrarily large BH mass straightforwardly.

We also note that modelling the source with some shape different from the Gaussian

will not make qualitative differences. For example, using a step function will give a result

in qualitative agreement with the Gaussian of similar width. In fact, one can reliably

approximate any localised state ψS with a superposition of Gaussians. Given the linearity

of the formalism, a superposition of, say, N Gaussians of roughly similar mass m will lead

to a total HWF given by a superposition of the corresponding HWFs. In particular, if the

width ` of the Gaussians are very narrow (` ≤ `p), we can understand what happens by

simply replacing the superposition with one Gaussian of same ` and mass equal to N m.

The latter will increase 〈 R̂H 〉 � `, and also increase the probability PBH. However, if

` ∼ 1/N m, the uncertainty ∆RH ∼ 〈 R̂H 〉 and the system will never look classical. In

contrast, if we model the source as N Gaussians of large width `� `p, but m� mp, like

in the Bose-Einstein Condensate model of Dvali and Gomez [10–14], then 〈 R̂H 〉 ∼ RH and

∆RH � 〈 R̂H 〉 for large N, which does instead look classical. If the source has electrical

charge, the above argument then holds for R+. Since the N constituents of the condensate

have width ` ∼ R+, it immediately follows that the inner horizon R− will have very small

probability to exist (expect perhaps in a near-extremal configuration).

To conclude, we can speculate that, at least in a quantum regime of BH masses,

say m . 10mp, quantum fluctuations around the inner horizon are strong enough to

prevent the instability expected according to the semiclassical analysis. More generally,

the probability that any instability occurs will be as small as the probability PBH− that

the source is located inside the inner horizon.
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