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Abstract. In this paper we review the relevant literature on mathematical optimization with logical implications, i.e.,
where constraints can be either active or disabled depending on logical conditions to hold. In the case of convex functions,
the theory of disjunctive programming allows one to formulate these logical implications as convex nonlinear programming
problems in a space of variables lifted with respect to its original dimension. We concentrate on the attempt of avoiding
the issue of dealing with large NLPs. In particular, we review some existing results that allow to work in the original space
of variables for two relevant special cases where the disjunctions corresponding to the logical implications have two terms.
Then, we significantly extend these special cases in two different directions, one involving more general convex sets and the
other with disjunctions involving three terms.

Computational experiments comparing disjunctive programming formulations in the original space of variables with
straightforward bigM ones show that the former are computationally viable and promising.

1. Introduction

In Mathematical Optimization one is often facing the problem of modeling logical implications. As a
simple example consider the optimization problem

min f(x, z)

subject to h(x, z) ≤ 0

[zk = 0] =⇒ [x ∈ Sk0 ]

[zk = 1] =⇒ [x ∈ Sk1 ]

}
∀ k = 1, . . . ,K (P0)

x ∈ Rm

z ∈ {0, 1}K

where one wants to minimize a function f : Rm+K → R subject to a set of constraints. Global constraints
are expressed by the function h : Rm+K → R. Moreover, K pairs of logical constraints are given, each
one involving a binary indicator variable zk. This variable indicates that either x is constrained to belong
to the set Sk0 or to the set Sk1 . In other words, each zk indicates whether the constraints defining either
of the two sets are imposed or not, i.e., if a set of constraints is “switched on or off”.

Systems like (P0) can be found in the literature in a number of applications. This is either because
they model explicit logical arguments like “if facility j is inactive, then no client i can be assigned to it”,
as in the facility location [19]; or because the mathematical programming formulation is constructed by
imposing a specific order through (otherwise implicit) logical implications like “either job i is executed on
machine k before job j or vice versa”, as in job shop scheduling [13]. Devising efficient and computationally
effective methods to deal with logical implications is one of the most fundamental needs to enhance the
Mathematical Programming solvers’ capability of facing real-world optimization problems [41,37].
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In order to formulate system (P0) as a Mathematical Programming problem one needs to remove the
logical implications and write “explicit” constraints. The most straightforward way of doing that is by
using the so-called bigM formulation, where constraints are activated or deactivated by multiplying the
binary indicator variable by a very large (precomputed) constant. Alternatively, one can use disjunctive
programming techniques [5], which are the main topic of the present paper. Before going into the details
of those two possibilities in Section 2, we anticipate that we will consider the general mathematical
programming problem

min f(x, z)

subject to h(x, z) ≤ 0

(x, zk) ∈
⋃
j∈J

Γ kj ∀ k = 1, . . . ,K (P1)

x ∈ Rm

z ∈ JK

where Γ kj := Skj ×{j} and Skj ⊂ Rm ∀ j, k. Unlike (P0), where zk are binary variables, in the disjunctive
programming problem (P1) we consider an arbitrary set of disjunctive terms indexed in J .

It is worth noting that a somewhat parallel representation of optimization problems including logical
implications in terms of boolean variables is given by the notion of Generalized Disjunctive Programming
(GDP). For a recent review on the GDP modeling paradigms, we refer the reader to [27], and to [39,26]
for the algorithmic aspects. In GDP terms, system (P1) can be equivalently expressed as

min f(x) +

K∑
k=1

ck

subject to h(x) ≤ 0

Lk∨
l=1

 Y kl
gkl (x) ≤ 0
ck = γkl

 ∀ k = 1, . . . ,K (P2)

Ω(Y ) = true

0 ≤ x ≤ U
c ∈ RK

Y kl ∈ {true, false}

where Ω(Y ) denotes logical propositions, often but not necessarily assumed to be expressed in Conjunc-
tive Normal Form [1]. Although technically equivalent, in the remainder of the paper we will work with
system (P1) and abandon the GDP representation (P2).

Paper Contribution. The theory of disjunctive programming [5,6,18] allows to manage the union of bodies
Γ kj as in (P1), provided they are convex sets. However, the drawbacks are the difficulty of practically
solving the resulting Nonlinear Programming problems (NLP)s and the fact that those NLPs are defined
in lifted spaces, i.e., with an increased number of variables.

In this paper we review the relevant literature on mathematical optimization with logical implications,
and we concentrate on the attempt of avoiding the issue of dealing with large NLPs. In particular, we
review some existing results that allow to work in the original space of variables for two relevant special
cases of single disjunctions with |J | = 2. Then, we significantly extend these special cases by considering
pairs of related disjunctions that lead to either a more general set Sjk or to disjunctions with |J | = 3.

Computational experiments comparing disjunctive programming formulations in the original space
of variables with bigM ones show that the former are computationally viable and promising.

Paper Organization. The paper is organized as follows. In Section 2, we give a more detailed description
of the techniques used to model logical implications and highlight the relevant literature. In Sections
3.1–3.2 we formally discuss the two special cases of (P1) in which a way to avoid additional variables has
been proposed in the literature. In Section 4 we discuss two new special cases and we present the main
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theoretical contribution of the paper. In Section 5 we report on an extensive computational experience
on three of the four discussed special cases. Section 6 draws some conclusions and envisions some future
algorithmic directions.

2. Disjunctive Convex Optimization

Most of the optimization literature dealing with systems of type (P1) or alike is concerned with sets

S = {x ∈ Rm | gi(x) ≤ 0, i = 1, . . . , `}, (1)

which are described as the intersection of the level sets of ` given functions. (Here, we drop, for easiness of
notation, the indices k and j.) With this in mind, the essence of a system like (P1) is the fact that imposing
one or more constraints of the form gi(x) ≤ 0 is linked to discrete decisions. There are two classical ways
of modeling such a phenomenon in Mathematical Programming, leading to Mixed-Integer Nonlinear
Programming models (MINLP)s or Mixed-Integer Linear Programming models (MILP)s, provided the
involved functions are affine.

2.1. The bigM approach

The first modeling technique of expressing a logical implication, widely known as bigM method, is very
straightforward and works as follows. Let us assume that the discrete decision linked to the constraint
gi(x) ≤ 0 is modeled by the binary variable zi. Then, in a mathematical programming formulation, one
can impose the constraint

gi(x) ≤Mi(1− zi), (2)

where Mi is a very large positive constant. If zi = 1, then constraint gi(x) ≤ 0 is imposed. Conversely,
if zi = 0, then constraint (2) is satisfied by any value of x ∈ F , where F describes the feasible set for
x (e.g., the feasible region of the underlying MI(N)LP), and provided that Mi ≥ supx∈F gi(x). Such
a requirement for the definition of Mi already leads to a major difficulty encountered in mathematical
programming with indicator constraints: the quantity supx∈F gi(x) might not be easily (or not even at
all) computable. This might be the case, for example, when the set F itself is unbounded. In such cases,
setting a “reasonably” high value of Mi will usually do the job in practice, but there is no theoretical
guarantee that the system with a bigM constraint (2) is actually equivalent to the original one. In fact,
when the set F is unbounded, the indicator constraints might not be represented as a MILP (see [33]
for a definition of sets that are MILP representable) and there might be no representation too by an
MINLP with a convex feasible region (see [32] for an example). If, instead, one assumes that this difficulty
does not occur, i.e., it is possible, in practice, to compute supx∈F gi(x) or at least an upper bound on
its value, then the bigM method leads to a valid reformulation of (P1). Nevertheless, even under this
assumption, the bigM method has two main drawbacks. The first one is trivially rooted in numerical
risks associated with choosing a bigM value such that 1/Mi comes close to the machine precision, or, in
any case, to the tolerances that are used by any mathematical programming solver working in floating
point arithmetics (see, e.g., [36]). The other drawback affects on a more algorithmic level the current
generation of MI(N)LP solvers, i.e., the solution method that they implement. More precisely, MI(N)LP
solvers heavily rely on the iterative solution of the continuous relaxation of the given MI(N)LP. At
the same time, it is well-known that the bigM formulations involving constraints (2) are characterized
by continuous relaxations whose tightness depends on the value of the Mi, but which are typically
very weak, i.e., very far away from the optimal solution value (see, e.g., [41]). This is because, in the
continuous relaxation, a value of the binary variable zi very close to 1 is enough to satisfy a constraint,
thus deactivating the original implication gi(x) ≤ 0. Note that, recently, a way of improving on both
of the above difficulties is strengthening the Mi values within the branch-and-bound tree by domain
propagation and separation of local cutting planes, i.e., cuts valid only within the subtree they have
been generated [40]. Essentially, based on the branching decisions taken so far, one can compute a better
estimate of the bigM values and replace constraints (2) with stronger versions, although only locally
valid. This is a classical approach followed by Global Optimization solvers, and its use within MILP and
convex MINLP solvers is currently under investigation [40].
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2.2. The Disjunctive Approach

In this paper we are concerned with reformulating (P1) as a MI(N)LP in a disjunctive programming
fashion. The disjunctive programming paradigm has been originally proposed by Balas [5,6] for the
special case of (1) defined as the intersection of the level sets of affine functions, i.e., polyhedral sets,
and concerns the minimization of a linear function over the union of polyhedra. Dropping this restriction
and extending the point of view to general convex functions, disjunctive programming becomes the
minimization of a convex function over the union of convex sets. Note that this is slightly more general
than (P1): The convex sets Γ jk , whose union is taken in (P1), already have a specific structure, while

this is not true for the sets Sjk. In the affine (linear) case, the theory of disjunctive programming also
provided the foundation of lift-and-project cutting planes [7,8,22], where the problem of optimizing a
linear function over the union of polyhedra is solved as a separation routine for devising linear inequalities
used to strengthen the continuous relaxation of an MILP. Lift-and-project cuts are an ingredient of many
existing commercial and open-source MILP solvers, like Cbc, CPLEX, XPRESS, to mention a few, and
they are part of the default setting of CPLEX [43].

As anticipated, Balas’ results have been extended in a highly influential paper by Ceria and Soares
[18] to the case of optimizing over the union of sets (1), i.e., described as the intersection of the level sets
of convex functions that are allowed to be nonlinear. The key ingredient to be able to optimize over the
union of sets is the ability of describing the convex hull of this union. If this can be done by the level sets

of convex functions, then the union
⋃
j∈J Γ

j
k , as defined by (P1), can be replaced by conv

(⋃
j∈J Γ

j
k

)
,

thus leading to an MINLP. This constitutes the second way of dealing with logical implications, and it
is somewhat opposite to the bigM method. Indeed, the bigM drawback of weak continuous relaxations is
obviously overcome because there is no tighter convex relaxation of a single disjunction than its convex
hull.

The main result in [18] is precisely a theorem that shows how to build the convex hull of the union of
a finite number of sets, each one of which is described by convex functions. Before stating that theorem
we need to introduce the so-called perspective function, which plays an important role in it. Namely,

Definition 1 For a given closed convex function g : Rm → R∪{∞}, the perspective function g̃ : Rm+1 →
R ∪ {∞} is defined as

g̃(x, λ) =

{
λ · g

(
x
λ

)
, λ > 0,

∞, λ ≤ 0.
(3)

The perspective of a closed convex function is known to be convex, but not necessarily closed. We have
now all the required elements to state the main result of [18]. Namely,

Theorem 1 ([18]) Let Cj = {x ∈ Rm | gj,i(x) ≤ 0, i = 1, . . . , `j} 6= ∅, for j ∈ J , and assume each
gj,i : Rm → R is a closed convex function. Then, conv (∪j∈JCj) = projxcl(C), where

C =



(x, x1, . . . , x|J |, λ1, . . . , λ|J |) ∈ R(|J |+1)m+|J |,

x =
∑
j∈J x

j ,

g̃j,i(x
j , λj) ≤ 0, i = 1, . . . , `j , ∀ j ∈ J ,∑

j∈J λj = 1,

λj ≥ 0, ∀ j ∈ J


.

The construction of Theorem 1 begins in a straightforward manner by creating copies xj of the initial
variable x, each one constrained to lie in one of the disjunctive sets Cj . Then, the original x is a convex
combination of these copies with weights λj . In this way, the resulting bilinear terms λjx

j lead to a
set description of the convex hull that is, however, nonconvex. A simple transformation is then used to
obtain the convex set C containing the perspective function. A big effort in [18] is the insight that the
closure of the perspective function also captures the elements in the convex hull that have zero weights
λj for some j ∈ J .

Although Theorem 1 provides a complete formal description of the convex hull of the union of
the convex sets we are concerned with, it bears two main practical difficulties. First, the closure of the
perspective function does not have an algebraic representation in general. In other words, the perspective
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function becomes non-differentiable for λj → 0. This is a significant difference with respect to the linear
case, where differentiability with respect to λj can be recovered by trivial algebra. In the nonlinear case,
the resulting numerical difficulties were already noticed by Stubbs and Mehrotra [42] in the process of
designing a branch-and-cut algorithm for general 0–1 mixed convex programming problems, based on
lift-and-project cuts separated through an alternative version of Theorem 1. It is worth noting that for
more than ten years there was no significant progress in the separation of lift-and-project cuts for general
mixed-integer convex programming problems. More recently, two major steps towards the effective use
of disjunctive cuts for mixed-integer convex programming have been made by Bonami [14] and Kılınç,
Linderoth and Luedtke [35,34], which circumvent the non-differentiability issue algorithmically through
the solution of “some” (potentially many) easier optimization problems. (The reader is referred to [16]
and [11] for recent surveys on disjunctive cuts for MINLPs and applications and extensions of disjunctive
inequalities, respectively.) However, in the more general setting of Theorem 1, i.e., not restricted to the
separation of cutting planes, there has been and still is active research going on regarding the non-
differentiability issue, see, e.g., [26,25].

The second difficulty associated with the practical use of Theorem 1 is the fact that the initial system
is lifted into a space with a multiple dimension because a copy of the initial space is created for each
disjunctive set. Note that the set C in Theorem 1 is a subset of R(|J |+1)m+|J |, i.e., it is defined in a space
whose dimension makes the optimization over it computationally challenging. The focus of the present
paper is on reviewing and providing new results that deal with this second difficulty. This is done by
projecting out additional variables, which is, of course, a hard task in its most general form, but possible
in several special cases that are presented in the next two sections.

3. Working in the original space of variables: single disjunctions

In this section we review two special cases in which the convex hull description of Theorem 1 can be
projected onto the space of the original variables. More precisely, we assume disjunctions are “unrelated”
and we consider a single disjunction at a time (thus, we then drop the index k throughout the section).
The considered special cases have |J | = 2 and are such that one term of the disjunction is either a single
point (Section 3.1) or a box (Section 3.2).

Further, in the following (including Section 4) we assume that the subset of variables needed to
express the disjunction is of dimension n. In other words, for j ∈ J , we assume the sets Sj to be subsets
of Rn. Note that this might be a subspace of the original space Rm in (P1). The results in this section
and those in Section 4 can be used in a program like (P1) by lifting everything into the original space
Rm. Bold letters like u stand for constant vectors in Rn, and (u)i for its i-th component.

3.1. Constraint vs. nucleus

We consider here the case in which either a subset of variables (those involved in the disjunction)
is forced to zero, or a set of constraints is imposed. This occurs in many applications, for example
uncapacitated facility location with quadratic costs [28], stochastic service systems design [21], scheduling
with controllable processing times [3] or the unit commitment problem [24]. In the notation of (P1), this
special case can be written as

S0 = {x ∈ Rn | x = 0}, and
S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1,i(x) ≤ 0, i = 1, . . . , `}.

In this situation, Theorem 1 translates into

Theorem 2 ([29]) Let J = {0, 1} and for j ∈ J define Γj := Sj × {j}, with Sj specified as above and
non-empty. We then have that if Γ1 is a convex set, conv(Γ0 ∪ Γ1) = cl(Γ ), where

Γ =


(x, z) ∈ Rn+1,

g̃1,i(x, z) ≤ 0, i = 1, . . . , `,

zl1 ≤ x ≤ zu1,

0 < z ≤ 1

 .
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In this first step, a fundamental property that persists throughout all the results in the following sections
can be seen. The indicator variable z of the initial implication (or disjunction) takes over the role of the
weight or multiplier inside the perspective function g̃i. We make two remarks.

– Theorem 2 can also be formulated for the situation in which on the zero side, the variables are not
forced to zero but to an arbitrary single point. Then, everything can be shifted to 0.

– Theorem 2 is also extendable to the situation in which on the zero side the set S0 is not a single
point, but a ray [29]. The two corresponding sets would be

Ŝ0 = {(x, y) ∈ Rn+1 | x = 0, y ≥ 0}, and
Ŝ1 = {(x, y) ∈ Rn+1 | l1 ≤ x ≤ u1, g1,i(x) ≤ 0, i = 1, . . . , `, g1,`+1(x) ≤ y}.

If the form of the functions g1,i is known in more detail, in some cases one can avoid the need to take
the closure and thus the differentiability issue, for example for polynomial functions [29].

The remarkable computational advantages of Theorem 2 are discussed, for example, in [29,24].

3.2. On/Off constraint

We consider now a slightly more general case where the set S0 is not a point but a box. Namely,

S0 = {x ∈ Rn | l0 ≤ x ≤ u0}, and
S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0}.

We note that the special case of Section 3.1 with ` = 1 is obtained by setting l0 = u0 = 0. Again,
the above case occurs in several applications, for example, in telecommunication for the so-called delay-
constrained routing problem [12].

In order to formulate an extension of Theorem 2 (under an additional condition), we need the following
definition.

Definition 2 ([31]) A function g : Rn → R is called independently non-decreasing (resp. non-increasing)
in the i-th coordinate, if ∀ x ∈ dom(g) and ∀ λ > 0, we have g(x+λei) ≥ g(x) (resp. g(x+λei) ≤ g(x)).
We say that g is independently monotone in the i-th coordinate, if it is either independently non-
decreasing or non-increasing. Finally, g is called isotone, if it is independently monotone in every coor-
dinate.

For any subset I ⊂ N := {1, . . . , n} we denote by Ī the complement of I in N , i.e., Ī := N \ I. For
an isotone function g we denote by J1(g) (resp. J2(g)), the set of indices in which g is independently
non-decreasing (resp. independently non-increasing). If a function g is constant in coordinate i, it is
both independently non-decreasing and non-increasing. In such a case, we assume that the index i is
arbitrarily assigned to exactly one of the sets J1(g) and J2(g). In this way, we always get a partition of
the index set, i.e., for any isotone function g, J1(g) ∪̇ J2(g) = N .

From now on, we assume the existence of an underlying set of closed convex functions {gj : Rn →
R | j ∈ J } with associated bounds lj ,uj and define for all I ⊂ N , x ∈ Rn, z > 0 and j, j′ ∈ J the

function hj,j
′

I : Rn+1 7→ Rn, with

(
hj,j

′

I

)
i
(x, z) :=


(lj)i i ∈ I ∩ J1(gj),

(uj)i i ∈ I ∩ J2(gj),

xi −
(1−z)(uj′)i

z i ∈ Ī ∩ J1(gj),

xi −
(1−z)(lj′)i

z i ∈ Ī ∩ J2(gj),

for i = 1, . . . , n, and qj,j
′

I = gj ◦ hj,j
′

I .
We can now state the main result of [31] in our slightly different notation.

Theorem 3 ([31]) Let J = {0, 1} and for j ∈ J define Γj := Sj × {j}, with Sj specified as above and
non-empty. We then have that if g1 is isotone, conv(Γ0 ∪ Γ1) = cl(Γ ′), where

Γ ′ =


(x, z) ∈ Rn+1,

zq1,0
I (xz , z) ≤ 0, ∀ I ⊂ N,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

0 < z ≤ 1

 .
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Hijazi et al. [31] have shown that formulating the delay-constrained routing problem [12] by means
of Theorem 3 leads to a significant computational advantage over a straightforward bigM formulation.

It is worth discussing the trade-off between applying Theorem 3 versus Theorem 1. On the one side,
the advantage of Theorem 3 is the fact that we project back onto the original space of variables. In fact,
we can express conv(Γ0 ∪Γ1) = cl(Γ ′) as a subset of a (n+ 1)-dimensional space. A direct application of
Theorem 1 would lead to expressing the convex hull as the projection of a subset of a (3n+5)-dimensional
space. On the other side, this gain does not come for free. In Theorem 3, we need exponentially many
constraints. In particular, including all the simple bound constraints, we have 2n + 2n + 2 constraints
opposed to 4n + 9 that would result from a direct application of Theorem 1. Similar considerations
apply to the results presented in the following sections. In essence, an upper bound on the number of
constraints needed to describe the convex hull is always exponential, although only in the number of
variables involved in the constraint. In the following, we will see that sometimes it is possible to detect
redundant constraints among the exponentially many ones. Moreover, these many constraints could be
potentially added in a cutting-plane fashion. In Section 5, we will also show some concrete examples that
illustrate the growth of the number of constraints when applying the results presented in this paper,
depending on the application, and in particular on the number of variables that are involved in the
disjunction.

3.2.1. On/Off linear constraint. We now assume that g1 is an affine function. Such functions are easily
seen to be isotone, and thus Theorem 3 is still valid. However, the constraints needed to describe the
convex hull have a form that allows to avoid the need to take the closure. For any affine function
gj(x) = aj,0 +

∑n
i=1 aj,ixi, j

′ ∈ J and I ⊂ N we define the linear function

Hj,j′

I (x, z) :=
∑
i∈Ī

aj,ixi + z

aj,0 +
∑

i∈I,aj,i>0

aj,i (lj)i +
∑

i∈I,aj,i<0

aj,i (uj)i


− (1− z)

 ∑
i∈Ī,aj,i>0

aj,i (uj′)i +
∑

i∈Ī,aj,i<0

aj,i (lj′)i

 .

It is easy to check that, for example, H1,0
I (x, z) = zq1,0

I (xz , z). Then, Theorem 3 reads as

Corollary 1 ([30]) Consider the situation of Theorem 3. If g1 is affine, conv(Γ0 ∪ Γ1) = Γ ′′, where

Γ ′′ =


(x, z) ∈ Rn+1,

H1,0
I (x, z) ≤ 0, ∀ I ⊂ N,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

0 ≤ z ≤ 1

 .

Observation 1 In this special case of g1 being an affine function, we note that in Corollary 1 we can
restrict to subsets I ⊂ Ñ := {i ∈ N | a1,i 6= 0}.

Observation 2 Consider the case where S1 is described by several linear constraints, for example S1 =
{x ∈ Rn|Dx ≤ b, l1 ≤ x ≤ u1} with D ∈ Rm×n. If the coefficients of D are monotonous for every
column, i.e., if for all j ∈ N , and for any pair i, i′ ∈ {1, . . . ,m}, dijdi′j ≥ 0 holds, then Corollary 1 can
be naturally extended.

Observation 3 Consider the context of Corollary 1 and assume further that

S1 ⊂ S0. (4)

This is equivalent to saying projxΓ1 ⊂ projxΓ0 and holds, for example, if l0 = l1 and u0 = u1, which
is the case in many applications. Furthermore, it is easy to see that the non-redundant facets of Γ ′′

among the set of inequalities H1,0
I (x, z) ≤ 0 indexed in I ⊂ Ñ are binding on at least one point (x′, 1) ∈

Γ1, i.e., H1,0
I (x′, 1) = 0. Now, if

∂H1,0
I

∂z (x, z) was negative, then we would have H1,0
I (x′, 0) > 0, which
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contradicts the fact that projxΓ1 ⊂ projxΓ0 and that H1,0
I (x, z) is valid for Γ0. Thus, in order to describe

conv(Γ0 ∪ Γ1) in Corollary 1, under assumption (4) we can further restrict to subsets I ∈ N̂ , where

N̂ :=

{
I ⊂ Ñ

∣∣∣∣ ∂H1,0
I

∂z
(x, z) ≥ 0

}
.

The derivatives are also easy to compute. Namely,

∂H1,0
I

∂z
(x, z) = a1,0 +

∑
i∈I,a1,i>0

a1,i (l1)i +
∑

i∈I,a1,i<0

a1,i (u1)i +
∑

i∈Ī,a1,i>0

a1,i (u0)i +
∑

i∈Ī,a1,i<0

a1,i (l0)i .

To the best of our knowledge, there is no computational investigation so far on the quality of the
bound achievable by the reformulation based on Corollary 1. We will show in Section 5.1 some results
on it by solving supervised classification problems [17] with the standard bigM formulation and with the
perspective one.

4. Working in the original space of variables: pairs of related disjunctions

In this section we consider the case where two disjunctions of the type introduced in Section 3.2 are
related to each other. Of course, we are still interested in characterizing the cases in which the convex
hull description of Theorem 1 can be projected onto the space of the original variables. Namely, in Section
4.1 we show how to deal with the case in which two disjunctions are “complementary”, i.e., precisely
one of their associated indicator variables must take value one. This is a significant generalization of the
result in Section 3.2 also because it can be interpreted as if both terms of a binary disjunction are actual
constraints given as the level sets of a single function. Moreover, in Section 4.2 we consider the case in
which “at most” one of the indicator variables associated with a pair of related disjunctions can take
value one and we examine its relationship with a ternary disjunction.

4.1. Complementary disjunctions

We now consider a pair of disjunctions of the type discussed in Section 3.2, which are complementary
to each other in the sense that the indicator constraint g0(x) ≤ 0 described by the first disjunction is
deactivated when the indicator constraint of the second disjunction, g1(x) ≤ 0, is active and vice versa.
To describe this situation we consider the sets

S0 = {x ∈ Rn | l0 ≤ x ≤ u0},
S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0},
S̄0 = {x ∈ Rn | l0 ≤ x ≤ u0, g0(x) ≤ 0} and
S̄1 = {x ∈ Rn | l1 ≤ x ≤ u1}.

We denote by z the indicator variable associated with the first two sets: when it is equal to one, the
constraint g1(x) ≤ 0 is active. Conversely, the indicator variable z̄ is associated with the second pair of
sets: when it is equal to one, the constraint g0(x) ≤ 0 is active. The complementarity is assured by the
fact that the two indicators have to sum up to one. Therefore, we define

H= := {(z, z̄) | z + z̄ = 1} and L= := Rn ×H=.

Then, we can prove the following result.

Theorem 4 Let J = {0, 1} and for j ∈ J define Γj := Sj × {j} × [0, 1], with Sj specified as above
and non-empty and Γ̄j := S̄j × [0, 1] × {1 − j}, with S̄j specified as above and non-empty. If g0 and g1

are isotone functions with J1(g0) = J2(g1), then conv
(
(Γ0 ∪ Γ1) ∩

(
Γ̄0 ∪ Γ̄1

)
∩ L=

)
= conv (Γ0 ∪ Γ1) ∩

conv
(
Γ̄0 ∪ Γ̄1

)
∩ L= = cl(Γ ∗), where

Γ ∗ =



(x, z, z̄) ∈ Rn+2,

zq1,0
I (xz , z) ≤ 0

z̄q0,1
I (xz̄ , z̄) ≤ 0

}
∀ I ⊂ N,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

0 < z, z̄ < 1,

z + z̄ = 1


.
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Proof. We will first show the second equality above. First of all, we note that

Γ0 ∪ Γ1 = ((S0 × {0}) ∪ (S1 × {1}))× [0, 1]

and thus
conv (Γ0 ∪ Γ1) = conv ((S0 × {0}) ∪ (S1 × {1}))× [0, 1].

To the convex hull on the right-hand-side one can apply Theorem 3 and then lift it to its cartesian
product with [0, 1] and the same applies to Γ̄0 ∪ Γ̄1. By intersecting the two resulting sets and L=, one
gets exactly the set cl(Γ ∗) after noting that the constraints:

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

and
zl0 + (1− z)l1 ≤ x ≤ zu0 + (1− z)u1

are identical after substituting z̄ by 1− z.

Now, we come to the first equality and prove it by showing two set inclusions. First, the left-hand-side
set is trivially included in the right-hand-side one. The converse set inclusion requires a bit more work.
Note that we can write

(Γ0 ∪ Γ1) ∩
(
Γ̄0 ∪ Γ̄1

)
∩ L= =

(
S̄0 × {0} × {1}

)
∪ (S1 × {1} × {0}) .

Using this identity and according to the classical result in [18], we can formulate conv
(
(Γ0 ∪ Γ1) ∩

(
Γ̄0 ∪ Γ̄1

)
∩ L=

)
as the projection onto (x, z, z̄) of the closure of{

(x, x0, x1, z, z0, z1, z̄, z̄0, z̄1,λ0, λ1) ∈ R3n+8 | x = x0 + x1, z = z0 + z1, z̄ = z̄0 + z̄1, λ0 + λ1 = 1,

g̃0(x0, λ0) ≤ 0, g̃1(x1, λ1) ≤ 0, λ0l0 ≤ x0 ≤ λ0u0,

λ1l1 ≤ x1 ≤ λ1u1, z
0 = 0, z1 = λ1, z̄0 = λ0, z̄1 = 0, λ0, λ1 > 0

}
.

By eliminating z0 = 0 and z̄1 = 0, identifying z = z1 = λ1 and z̄ = z̄0 = λ0, and substituting
x0 = x− x1, we obtain{

(x, x1, z, z̄) ∈ R2n+2 | g̃0(x− x1, z̄) ≤ 0, g̃1(x1, z) ≤ 0, x− z̄u0 ≤ x1 ≤ x− z̄l0,
zl1 ≤ x1 ≤ zu1, 0 < z, z̄ < 1, z + z̄ = 1

}
.

Define the above set as Γ̂ and for ease of notation substitute x1 by y, that is,

Γ̂ =



(x, x1, z, z̄) ∈ R2n+2,

zg1(y/z) ≤ 0,

z̄g0 ((x− y)/z̄) ≤ 0,

x− z̄u0 ≤ y ≤ x− z̄l0,
zl1 ≤ y ≤ zu1,

0 < z, z̄ < 1


.

It remains to show that cl(Γ ∗) ⊂ proj(x,z,z̄)cl(Γ̂ ). Therefore, let (x, z, z̄) ∈ Γ ∗ and define y ∈ Rn as

yi = max{z (l1)i , xi − z̄ (u0)i} ∀ i ∈ J1(g1), and
yi = min{z (u1)i , xi − z̄ (l0)i} ∀ i ∈ J2(g1).

Then, one can check that there is a set I ⊂ N such that h1,0
I (x/z, z) = y/z. Furthermore, taking

into account that J2(g1) = J1(g0), we can also check that h0,1

Ī
(x/z̄, z̄) = x−y

z̄ . Because zq1,0
I (x/z, z) =

zg1(y/z) ≤ 0 and z̄q0,1

Ī
(x/z̄, z̄) = z̄g0 ((x− y)/z̄) ≤ 0, we deduce that g1(y/z) ≤ 0 and g0 ((x− y)/z̄) ≤ 0.

The lower and upper bounds on y are easily checked to hold and we have that (x, y, z, z̄) ∈ Γ̂ .
We now come to the closure. Consider any point (x, z, z̄) ∈ cl(Γ ∗) and let (xk, zk, z̄k) be a sequence of
points in Γ ∗ such that limk→∞(xk, zk, z̄k) = (x, z, z̄). For every k ∈ N one can define yk as above to get
a point (xk, yk, zk, z̄k) ∈ Γ̂ , and yk converges to some y ∈ Rn. Thus, limk→∞(xk, yk, zk, z̄) = (x, y, z, z̄) ∈
cl(Γ̂ ). With this, the proof is complete. �
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The interpretation of Theorem 4 is somewhat surprising. Under the technical condition that the
functions g0 and g1 be isotone, and that in addition J2(g1) = J1(g0), the theorem shows that computing
the convex hull of the intersection of the two disjunctions does not allow any improvement with respect
to intersecting the individual convex hulls of the two single disjunctions considered in isolation. Without
this technical condition, this may not be true (see Example 2). Of course, Theorem 4 also shows that
everything can be done in the original space of variables.

Observation 4 Because the two disjunctions above are complementary, i.e., z̄ = 1 − z, the whole sit-
uation could be described as a single disjunction with a single indicator variable, that is, as a subset of
Rn+1. For example,

(x, z) ∈
(
S̄0 × {0}

)
∪ (S1 × {1}) .

Its convex hull is then just the projection of the closure of Γ ∗ from Theorem 4 onto the first n + 1
variables, which is trivial to compute. The fact that the whole situation can be managed by projecting out
z̄ was already somewhat anticipated in the proof of Theorem 4.

We formalize Observation 4 in the following corollary.

Corollary 2 Let Γ̊0 := S̄0 × {0} and Γ̊1 := S1 × {1}, with S̄0 and S1 specified as above and non-empty.
Thus, we have that if J2(g1) = J1(g0), then conv(Γ̊0 ∪ Γ̊1) = cl(Γ̊ ), where

Γ̊ =



(x, z) ∈ Rn+1,

zq1,0
I (xz , z) ≤ 0,

(1− z)q0,1
I ( x

1−z , 1− z) ≤ 0,

}
∀ I ⊂ N,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

0 < z < 1


.

The condition about the index sets of the isotone functions required for Theorem 4 and Corollary 2 is
interpreted in the following observation.

Observation 5 If J2(g1) = J1(g0), then there is a vertex v of the rectangle [l0,u0] such that g0(v) ≤ 0.
In fact, because S̄0 6= ∅, there is a x0 ∈ [l0,u0] with g0(x0) ≤ 0. If we set

vi :=

{
(l0)i i ∈ J1(g0)

(u0)i i ∈ J2(g0)
,

then g0(v) ≤ g0(x0) ≤ 0. Furthermore, because also S1 6= ∅, there is a x1 ∈ [l1,u1] with g1(x1) ≤ 0. If
we then define w ∈ [l1,u1] as the opposing vertex, i.e.,

wi :=

{
(u1)i vi = (l0)i
(l1)i vi = (u0)i

,

due to J2(g1) = J1(g0), we get that g1(w) ≤ g1(x1) ≤ 0. Thus, the resulting convex hull contains at least
two such opposing vertices of the underlying hyperractangles.

We now give an example of Corollary 2.

Example 1 Let l0 = l1 = 0 ∈ R2 and u0 = u1 = 1 ∈ R2, and consider the functions g0(x1, x2) =
exp

(
2x1 − 9

5

)
+ x2 − 1 and g1(x1, x2) = max

{
1
2 − x1,

1
2 − x2

}
. One can show that they are both isotone

and that J1(g0) = J2(g1) = {1, 2} and J2(g0) = J1(g1) = ∅. The two disjunctive sets

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0} × {0} and {x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0} × {1}

are shown in Figure 1(a). Figures 1(b) and 1(c), respectively show the non-redundant boundaries of the
convex hull of

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0} × {0} and {x ∈ R2 | l1 ≤ x ≤ u1} × {1}

on the one hand, and those of the convex hull of

{x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0} × {1} and {x ∈ R2 | l0 ≤ x ≤ u0} × {0}

on the other. The convex hulls in Figures 1(b) and 1(c) are obtained by Theorem 3 and Corollary 1,
respectively. Figure 1(d) then shows the intersection of the latter two, giving the convex hull of the sets

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0} × {0} and {x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0} × {1}.
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Fig. 1: Illustration of the construction of the convex hull of two disjunctive sets.

Now, we switch from R2 to R in order to see what happens when the condition J2(g1) = J1(g0) is
not fulfilled.

Example 2 Let l0 = l1 = 0 and u0 = u1 = 1, and consider the two functions H0(x) = x − 1
2 and

H1(x) = x− 3
4 , both of which are non-decreasing in their first and only coordinate. Figures 2(a) and 2(b)

show the convex hull when considering one on/off constraint at a time. In Figure 2(c) we see that their
intersection does not give the convex hull of the two complementary indicator constraints.

z

x

1
2

(a)

z

x

3
4

(b)

z

x

(c)

Fig. 2: Counterexample for the case in which J2(g1) 6= J1(g0).

Informally, the condition J2(g1) = J1(g0) can be described as the fact that one function is non-
increasing in those coordinates where the other one is non-decreasing and vice versa. This holds true

11



in a number of applications, starting from the well-known (and already mentioned) job shop scheduling
problem [13], where for each pair of jobs i, j and each machine k, either i is executed on k before j or
vice versa.

In Section 5.2 we will compare the quality of the bound provided by the disjunctive reformulation
obtained by applying Corollary 2 above and the straightforward bigM formulation for the job shop
scheduling problem.

4.2. “Almost” complementary disjunctions

In this section we will start again from the setting of Section 4.1 but weaken the requirement on the
relation between the two disjunctions. In particular, we relax the constraint z + z̄ = 1 by imposing
z + z̄ ≤ 1 instead. This means that in addition to the two possibilities of activating one constraint at a
time, we also allow that none of them is active. By slightly modifying the notation from Section 4.1, we
will consider the three sets

S0 = {x ∈ Rn | l0 ≤ x ≤ u0},
S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0}, and
S−1 = {x ∈ Rn | l−1 ≤ x ≤ u−1, g−1(x) ≤ 0}.

Again, we denote by z the indicator variable that activates the constraint g1(x) ≤ 0, and by z̄ the one
that activates the constraint g−1(x) ≤ 0. Moreover, we extend (4) as

S1 ⊂ S0 and S−1 ⊂ S0. (5)

From an application perspective, such a ternary case holds in several interesting contexts, for example,
for the well-known traveling salesman problem with time windows (TSPTW) [20]. There, for each pair
of cities i, j, either city j is visited immediately after city i (say, S1), or immediately before (say, S−1),
or the visit happens “far from” i (say, S0). If we define

H≤ := {(z, z̄) | z + z̄ ≤ 1} and L≤ := Rn ×H≤,

and for j ∈ J = {0, 1}

Γj := Sj × {j} × [0, 1] and Γ̄j := S−j × [0, 1]× {j},

then the situation can be modeled as the intersection of two disjunctions and L≤, namely

(x, z, z̄) ∈ (Γ0 ∪ Γ1) ∩
(
Γ̄0 ∪ Γ̄1

)
∩ L≤. (6)

Observation 6 It is easy to check that disjunction (6) is equivalent to the ternary disjunction

(x, z, z̄) ∈ (S0 × {0} × {0}) ∪ (S1 × {1} × {0}) ∪ (S−1 × {0} × {1}) .

In this case, we don’t know a description of the convex hull in the original space of variables but
using Theorem 3, we can compute a superset of the convex hull of the disjunction (6):

Corollary 3 Let S0, S1 and S−1 be specified as above and non-empty. Thus, we have that if g−1 and g1

are isotone functions, then conv
(
(Γ0 ∪ Γ1) ∩

(
Γ̄0 ∪ Γ̄1

)
∩ L≤

)
⊆ conv (Γ0 ∪ Γ1)∩ conv

(
Γ̄0 ∪ Γ̄1

)
∩L≤ =

cl(Γ̆ ), where

Γ̆ =



(x, z, z̄) ∈ Rn+2,

zq1,0
I (xz , z) ≤ 0

z̄q−1,0
I (xz̄ , z̄) ≤ 0

}
∀ I ⊂ N,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

z̄l−1 + (1− z̄)l0 ≤ x ≤ z̄u−1 + (1− z̄)u0,

0 < z, z̄ < 1,

z + z̄ ≤ 1


.

Proof. The set inclusion is a simple observation, while the set equality follows by Theorem 3. �

In Section 5.3 we will discuss some computational results comparing the straightforward bigM formulation
of the traveling salesman problem with time windows with the disjunctive one based on Corollary 3 above.
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4.2.1. Ternary disjunctions. Of course, a ternary case like the one described in the previous section can
be managed by means of a unique indicator variable, say z̃, which will lead to (P1) with J = {−1, 0, 1}.
It is natural to ask, on the one side, if it is possible to write the counterpart of Theorem 3 for this special
case, and, on the other hand, which is the relationship between these two ways of representing essentially
the same disjunction. The answer to the first question is positive under the technical condition of the
functions g−1 and g1 being affine (discussed later), while that to the second one is once again a bit
surprising: we will show in the following that working with two distinct indicators (as in Section 4.2) is
stronger than with one indicator variable only.

To deal with the ternary case with a unique indicator variable we need to extend the definition of
the set N̂ of Observation 3 to pairs of indices j, j′ ∈ J = {−1, 0, 1}:

N̂ j,j′ :=

I ⊂ Ñ
∣∣∣∣ aj,0 +

∑
i∈I,aj,i>0

aj,i (lj)i +
∑

i∈I,aj,i<0

aj,i (uj)i +
∑

i∈Ī,aj,i>0

aj,i (uj′)i +
∑

i∈Ī,aj,i<0

aj,i (lj′)i ≥ 0.


Then, we can prove the following result.

Theorem 5 Let J = {−1, 0, 1} and for j ∈ J define Γj := Sj × {j}, with Sj specified as above and
non-empty. Moreover, let us assume that (5) holds and that g−1 and g1 are affine functions. Then,
conv(Γ0 ∪ Γ1 ∪ Γ−1) = Γ ′′′, where

Γ ′′′ =



(x, z̃) ∈ Rn+1,

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0,

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0,

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0,

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0,

−1 ≤ z̃ ≤ 1


.

Proof. Define the two relaxed sets

Γ̃1 =


(x, z̃) ∈ Rn+1,

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0,

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0,

−1 ≤ z̃ ≤ 1


and

Γ̃−1 =


(x, z̃) ∈ Rn+1,

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0,

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0,

−1 ≤ z̃ ≤ 1

 ,

and note that Γ ′′′ = Γ̃1∩ Γ̃−1. By Corollary 1 and Observation 3, because (4) holds for (1, 0) and (−1, 0),
then Γ̃1∩ (Rn × [0, 1]) = conv(Γ0∪Γ1) and Γ̃−1∩ (Rn × [−1, 0]) = conv(Γ0∪Γ−1). Thus, (Γ0 ∪ Γ1) ⊂ Γ̃1

and (Γ0 ∪ Γ−1) ⊂ Γ̃−1.
By the first of these two set inclusions, for any I ∈ N̂1,0, H1,0

I (x, z̃) ≤ 0 is a valid inequality for Γ0. That

is, H1,0
I (v, 0) ≤ 0 for any v ∈ projxΓ0. Since projxΓ−1 ⊂ projxΓ0 and

∂H1,0
I

∂z̃ (x, z̃) ≥ 0, we deduce that

H1,0
I (w,−1) ≤ 0 for all w ∈ projxΓ−1, i.e., that H1,0

I (x, z̃) ≤ 0 is valid for Γ−1. In a similar way, because

(4) holds for (1, 0), one can show that the bound inequalities in Γ̃1 are valid for Γ−1. Hence, we deduce
that (Γ0 ∪ Γ1 ∪ Γ−1) ⊂ Γ̃1.

In an analogue fashion, noting that
∂H−1,0

I

∂(−z̃) (x,−z̃) ≥ 0 for all I ∈ N̂−1,0 and that (4) holds for (−1, 0),

one gets (Γ0 ∪ Γ1 ∪ Γ−1) ⊂ Γ̃−1.

All in all follows that (Γ0 ∪ Γ1 ∪ Γ−1) ⊂
(
Γ̃ 1 ∩ Γ̃−1

)
= Γ ′′′, and because Γ ′′′ is clearly a convex set,

conv
(
Γ0 ∪ Γ 1 ∪ Γ−1

)
⊂ Γ ′′′.
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In order to see the converse set inclusion, let (x, z̃) ∈ Γ̃1 ∩ Γ̃−1. If z̃ ∈ [0, 1], by Corollary 1 we get
(x, z̃) ∈ conv (Γ0 ∪ Γ1). Otherwise, (x, z̃) ∈ conv (Γ0 ∪ Γ−1). In either case, (x, z̃) ∈ conv (Γ0 ∪ Γ1 ∪ Γ−1)
and we conclude that conv (Γ0 ∪ Γ1 ∪ Γ−1) = Γ ′′′. �

Theorem 5 is formulated for affine functions because for general isotone functions this would require a
definition of the perspective functions for negative values of the multiplier λ (namely, the indicator z̃)
different from the definition given in (3). To the best of our knowledge, such a definition has not been
proposed yet. This is due to the fact that the perspective function with a negative multiplier looses the
convexity-preserving property.

In order to compare the two ways of modeling the ternary disjunction proposed in the present and in
the previous section, we maintain the more restrictive assumption of affine functions required in Theorem
5, under which Corollary 3 is, of course, still valid. Therefore, we define

H := {(z, z̄, z̃) | z̃ = z − z̄} and L := Rn ×H,
Γ0 := S0 × {0} × {0} × [−1, 1],
Γ1 := S1 × {1} × {0} × [−1, 1],
Γ−1 := S−1 × {0} × {1} × [−1, 1],
Γ̃0 := S0 × [0, 1]× [0, 1]× {0},
Γ̃1 := S1 × [0, 1]× [0, 1]× {1}, and
Γ̃−1 := S−1 × [0, 1]× [0, 1]× {−1}.

and consider the two disjunctions

(x, z, z̄, z̃) ∈ (Γ0 ∪ Γ1 ∪ Γ−1) ∩ L and (x, z, z̄, z̃) ∈
(
Γ̃0 ∪ Γ̃1 ∪ Γ̃−1

)
∩ L.

These two are equivalent in terms of indicator constraints, in the sense that either z, z̄ (together) or z̃
alone indicate the activity of the involved constraints, and with the trivial transformation z̃ = z − z̄ one
can switch from one case to the other without losing information. However, in terms of sets, the two
disjunctions are not the same. By Corollary 3 and Theorem 5 we can (after projecting out either z̃ or
z, z̄, respectively) compute a superset of the convex hull of the first disjunction above and the convex
hull itself of the second disjunction above, and then lift them back into Rn+3 and intersect with L. The
relation of the two resulting sets is characterized by the following corollary.

Corollary 4 conv (Γ0 ∪ Γ1 ∪ Γ−1) ∩ L ⊆ Γ̇ and conv
(
Γ̃0 ∪ Γ̃1 ∪ Γ̃−1

)
∩ L = Γ̌ , where

Γ̇ =



(x, z, z̄, z̃) ∈ Rn+3

H1,0
I (x, z) ≤ 0, ∀ I ∈ N̂1,0,

H−1,0
I (x, z̄) ≤ 0, ∀ I ∈ N̂−1,0,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

z̄l−1 + (1− z̄)l0 ≤ x ≤ z̄u−1 + (1− z̄)u0,

0 < z, z̄ < 1,

−1 < z̃ < 1,

z + z̄ ≤ 1,

z̃ = z − z̄


and

Γ̌ =



(x, z, z̄, z̃) ∈ Rn+3,

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0,

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0,

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0,

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0,

0 < z, z̄ < 1,

−1 < z̃ < 1,

z̃ = z − z̄


.

In addition, Γ̇ ⊆ Γ̌ . Thus, conv (Γ0 ∪ Γ1 ∪ Γ−1) ∩ L ⊆ conv
(
Γ̃0 ∪ Γ̃1 ∪ Γ̃−1

)
∩ L.
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Proof. The set Γ̇ follows immediately from Γ̆ in the statement of Corollary 3 and Observation 3. The
inclusion conv (Γ0 ∪ Γ1 ∪ Γ−1) ∩ L ⊆ Γ̇ follows from the Corollary.

Similarly, the set equality conv
(
Γ̃0 ∪ Γ̃1 ∪ Γ̃−1

)
∩ L = Γ̌ follows from Theorem 5.

The set inclusion Γ̇ ⊆ Γ̌ can be seen by the fact that the two sets are described by the same constraints
apart from z + z̄ ≤ 1 and the constraints indexed in I ∈ N̂1,0 and I ∈ N̂−1,0, respectively. Even if one
added the former constraint, z + z̄ ≤ 1, to the definition of Γ̌ , note that the latter set of constraints

is more restricting in Γ̇ , because, for example,
∂H1,0

I

∂z ≥ 0, but z ≥ z̃ for all (x, z, z̄, z̃) ∈ Γ̇ . Similarly,
∂H−1,0

I

∂−z ≥ 0, but z̄ ≥ −z̃ for any (x, z, z̄, z̃) ∈ Γ̇ . �

The computation in Section 5.3 shows that the set inclusion Γ̇ ⊆ Γ̌ can be strict, i.e., Γ̇ ⊂ Γ̌ .

5. Computational Experiments

In this section we computationally compare on several problems in the literature, exposing logical implica-
tions in their definition, the quality of the continuous relaxation of the straightforward bigM formulation
vs. the perspective one implemented in the original space of variables by making use of the results in
the previous sections. We express the quality of the lower bound, i.e., the solution of the continuous
relaxation, in terms of percentage gap with respect to the optimal solution value (or the best known
value in case the instance has never been solved to optimality). In addition, we compute and report the
percentage gap of the lift-and-project closure [15] of the two distinct formulations. Indeed, in all problems
we consider in the following the binary variables we apply the lift-and-project closure to are indicator
variables and it is interesting to analyze the impact on the strength of the closure of using the stronger
formulation obtained by disjunctive programming with respect to the straightforward bigM one.

In the next sections we do not compare the time spent to solve the continuous relaxation of the
disjunctive formulation with that of the bigM. The theoretical results in the previous sections allow
us to write the disjunctive formulations in the original space of variables with some limited increase
in the number of constraints. Thus, the two formulations are computationally comparable in terms of
computing times and we are concerned with assessing their strength in terms of bound.

Note that in the case of linear functions, as mentioned earlier, there are no differentiability issues,
i.e., taking the closures in any of the theorems in the previous sections just amounts to take 0 ≤ z ≤ 1,
which can be implemented in a straightforward fashion.

We also note that in the case of linear indicator constraints, exactly one of the inequalities given by
the disjunctive formulation (the one for I = ∅, see [30]) coincides with the bigM constraint with the
value of M chosen as tight as possible. In this way, the disjunctive formulation can be seen as the bigM
formulation augmented by a number of valid inequalities.

5.1. Linear On/Off Constraint: supervised classification

Consider a set Ω of m objects, where each object i ∈ Ω is characterized by the vector xi ∈ Rd and
associated with one of two classes, labeled by yi ∈ {−1, 1}. The task is to find a hyperplane ωTx ≤ b
in Rd that separates the two classes by maximizing a “confidence” margin. Because it is not always
possible to find such a hyperplane, for each object i that is misclassified, one models the violation of the
associated constraint yi(ω

Txi − b) ≤ 0 with a continuous slack variable ξi whose value is penalized in
the objective function. Recently, Brooks [17] suggested that the misclassification penalty must be upper
bounded and beyond that bound a fixed penalty must be paid. Of course, this model introduces a logical
implication that is modeled, for each point i, with a binary variable and a bigM constraint in [17]. This
is the linear On/Off constraint case discussed in Section 3.2.1 because, for each point i either a linear
constraint is active (say, S1) or the variables are restricted into a box (say, S0). We give the problem
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formulation as in [17], but we explicitly write indicator constraints, namely

min
ωTω

2
+
C

m

(
m∑
i=1

ξi + 2

m∑
i=1

(1− zi)

)
zi = 1 =⇒ yi(ω

Txi + b)− 1 + ξi ≥ 0 ∀ i = 1, . . . ,m

0 ≤ ξi ≤ 2 ∀ i = 1, . . . ,m

ω ∈ Rd

b ∈ R
z ∈ {0, 1}m,

where C is some non-negative constant. The continuous decision variables ω ∈ Rd and b ∈ R are
unbounded (and free), and, in order to restrict them into a box (for the S0 case) we apply some MILP
preprocessing in two versions, say “weak” and “strong”, see [10] for details.

We note that if each of the indicator constraints above is rewritten as a bigM constraint, this results
in a set of m constraints. This is opposed to a set of m · 2d+2 constraints resulting from Theorem 3.
However, we observed that the number of constraints can in practice be reduced significantly by means
of Observation 3.

In Table 1 and Table 2 we report the percentage gap of the continuous relaxation of the bigM formu-
lation in [17] (“bigM lp”), and of the continuous relaxation of the perspective reformulation (“CH lp”)
for 32 classification instances proposed in [17] strengthened by the “weak” and “strong” preprocessing,
respectively. Moreover, Table 1 and Table 2 report the percentage gap of the lift-and-project closure

instance bigM lp CH lp Pe bigM Pe CH P ∗e bigM P ∗e CH
1nl 1 99.67 99.67 97.93 97.90 14.88 18.99
1nl 2 99.59 99.59 97.93 97.93 7.76 13.29
1nl 3 99.90 99.90 99.70 99.70 20.22 14.46
1nl 4 98.23 98.23 89.14 88.98 6.54 15.11
1nl 5 98.24 98.24 91.40 91.38 6.39 8.99
2nl 10 99.57 99.57 96.09 95.98 14.55 14.23
2nl 6 99.88 99.88 98.19 98.18 5.56 8.33
2nl 8 99.21 99.21 85.08 84.76 0.00 3.95
3nl 11 99.77 99.77 99.14 99.13 10.55 10.15
3nl 12 99.82 99.82 99.49 99.49 11.49 8.62
3nl 13 99.83 99.83 99.38 99.38 19.24 19.30
3nl 14 99.87 99.87 99.58 99.58 49.84 24.46
3nl 15 99.83 99.83 99.50 99.50 27.22 24.23
4nl 16 99.76 99.76 98.10 98.05 9.50 7.57
4nl 17 1.32 0.00 0.00 0.00 0.00 0.00
5nl 10 99.76 99.76 98.77 98.76 11.49 12.00
5nl 11 99.78 99.78 98.56 98.55 18.24 12.63
5nl 12 99.83 99.83 99.09 99.08 28.57 14.84
5nl 13 99.73 99.73 98.65 98.65 13.59 3.79
5nl 14 99.75 99.75 98.24 98.22 19.23 18.14
5nl 15 99.80 99.80 98.95 98.94 12.53 19.57
5nl 16 99.68 99.68 98.35 98.35 12.09 9.70
5nl 17 99.72 99.72 98.13 98.13 12.88 21.57
5nl 1 99.78 99.78 98.92 98.92 8.47 9.31
5nl 2 99.78 99.78 98.52 98.51 17.23 16.90
5nl 3 99.84 99.84 99.13 99.12 16.04 18.17
5nl 4 99.77 99.77 98.86 98.86 18.72 19.21
5nl 5 99.79 99.79 98.49 98.48 15.57 21.53
5nl 6 99.85 99.85 99.17 99.17 13.96 10.98
5nl 7 99.77 99.77 98.85 98.85 5.88 7.85
5nl 8 99.78 99.78 98.47 98.46 17.55 30.94
5nl 9 99.84 99.84 99.12 99.12 14.84 12.49
mean 96.58 96.54 94.65 94.62 14.39 14.10

Table 1: Percentage gaps of bigM and disjunctive formulations on supervised classification instances [17]
with “weak” preprocessing [10].

computed over the bigM (“Pe bigM”) and disjunctive (“Pe CH”) formulations. Finally, we also report
the percentage gap of the strengthened lift-and-project closures (“P ∗e bigM” and “P ∗e CH”, respectively),

16



i.e., the closure computed by strengthening each separated lift-and-project cut through the classical
procedure of Balas and Jeroslow [9].

instance bigM lp CH lp Pe bigM Pe CH P ∗e bigM P ∗e CH
2nl 10 9.12 1.33 0.00 0.00 0.00 0.00
2nl 6 0.01 0.00 0.00 0.00 0.00 0.00
3nl 13 93.28 82.92 63.03 30.66 1.59 0.09
3nl 14 0.01 0.00 0.00 0.00 0.00 0.00
3nl 15 93.95 93.93 67.18 64.10 0.85 1.93
4nl 16 0.24 0.00 0.00 0.00 0.00 0.00
4nl 17 1.06 0.00 0.00 0.00 0.00 0.00
5nl 14 0.01 0.00 0.00 0.00 0.00 0.00
mean 24.71 22.27 16.28 11.85 0.31 0.25

Table 2: Percentage gaps of bigM and disjunctive formulations on supervised classification instances [17]
with “strong” preprocessing [10].

The results in Table 1 computationally confirm the theoretical dominance of the disjunctive formu-
lation with respect to the bigM one. However, the improvement is very small, almost negligible, and
although it gets slightly higher if the lift-and-project closure is considered, still it does not look very
promising to work with the disjunctive formulation. It is worth noting that also in terms of lift-and-
project (unstrengthened) closures there is a theoretical domination of the disjunctive formulation with
respect to the bigM one, while the same does not hold for the strengthened versions of the closure that
can be seen as heuristic procedures for split cuts (see, e.g., [15]).

In Table 2 we show only the instances among those in Table 1 where the gap is not closed in at least
one of the six columns. By considering a much more strengthened version of the initial model (with tighter
bounds on ω and b) the quality of the bound provided by the disjunctive formulation looks better than
that of the bigM one. More precisely, on the instances 4nl 16 and 4nl 17, in which the bigM formulation
shows a small but still significant gap, the disjunctive formulation improves significantly, showing no gap.
On two out of three of the remaining “difficult” instances, namely 2nl 10 and 3nl 13, the bound provided
by the disjunctive reformulation is significantly better. On these last two instances the two formulations
did not show any difference in Table 1, thus suggesting that the disjunctive reformulation takes advantage
of the strengthening of the bounds of the ω and b variables.

If IBM-CPLEX 12.6.0 is used as a black-box solver for the two formulations we do not observe
much of a difference in terms of computing times and branch-and-bound nodes. Precisely, in the case
of the disjunctive formulation all constraints that are not present in the bigM one (see the remark
immediately before Section 5.1) are added as “user cuts” to IBM-CPLEX, instead of imposing them
as regular constraints. This allows the solver to decide a proper way of using the constraints, which
is a conservative strategy in case no clear assessment on their strength is possible. As anticipated, no
significant difference is observed.

5.2. Complementary disjunctions: (linear) job shop

In the classical job shop scheduling problem we are given n jobs, J1, . . . , Jn, that have to be scheduled
without preemption on m machines, M1, . . . ,Mm. Each job is characterized by its proper routing on the
machines, as defined by matrix O ∈ Nm×n, i.e., O specifies the order in which a single job has to be
executed on the different machines. More precisely, Okj is the sequence number of machine Mk in the
order of operations of job Jj . Furthermore, pkj is the corresponding processing time. The objective is to
minimize the makespan, i.e., the time in which the latest machine finishes processing on all machines.
Because two jobs, say i, j, cannot overlap on a machine, say k, then a classical and quite weak bigM way
of modeling job shop in MILP involves adding indicator variables xkij and xkji. If xkij = 1, then i precedes
j on machine k, thus skj ≥ ski+pki, where ski is the starting time of (the operation of) job i on machine
m. Otherwise, the temporal constraint on the starting time variables is deactivated. Of course, the same
holds for xkji, and xkij + xkji = 1, which is precisely the case of the complementary disjunctions discussed
in Section 4.1. A formulation with one complementary binary variable for each triple (i, j, k) projected
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out and with indicator constraints is

min C

sk′i ≥ ski + pki ∀ (i, k, k′) : Oki + 1 = Ok′i

xkij = 1 =⇒ skj ≥ ski + pki

xkij = 0 =⇒ ski ≥ skj + pkj

}
∀ (i, j, k) : i < j

C ≥ ski + pki ∀ (i, k)

ski ≥ 0 ∀ (i, k)

xkij ∈ {0, 1} ∀ (i, j, k) : i < j.

Note that each indicator constraint could be rewritten by either a single bigM constraint or four con-
straints resulting from Theorem 4, one of which can be shown to be always redundant.

In Table 3 we consider 34 job shop instances from the literature [23,2,38] and we report the percentage
gap of the continuous relaxation of the classical bigM formulation of the job shop (“bigM lp”), of the
continuous relaxation of the perspective reformulation (“CH lp”), and of the four lift-and-project closures
(precisely like in the tables of the previous section).

instance bigM lp CH lp Pe bigM Pe CH P ∗e bigM P ∗e CH
abz5-10x10 30.38 28.46 25.27 24.48 23.23 23.40
abz6-10x10 21.31 20.65 17.28 16.06 14.08 15.47
abz7-20x15 37.50 35.30 33.34 *32.42 *32.19 *32.44
abz8-20x15 33.78 31.75 30.53 *29.68 *30.35 *29.68
abz9-20x15 31.22 29.28 27.45 *27.03 *27.32 *26.96
ft06-6x6 14.54 14.54 14.25 13.47 11.86 12.59
ft10-10x10 29.56 28.12 25.68 24.12 22.04 23.93
ft20-20x5 66.78 64.52 63.24 61.56 60.86 60.75
la01-10x5 37.98 34.17 29.34 26.75 29.02 26.75
la02-10x5 39.84 39.70 37.40 34.95 35.45 33.01
la03-10x5 41.54 38.49 32.58 31.67 31.92 31.64
la04-10x5 37.45 34.05 27.95 26.17 27.16 26.16
la05-10x5 35.91 35.91 35.59 34.20 34.66 34.16
la06-15x5 55.39 52.65 49.78 49.01 49.31 47.91
la07-15x5 57.75 56.88 54.97 53.42 53.78 52.86
la08-15x5 57.24 53.56 49.06 47.70 47.03 47.47
la09-15x5 59.83 57.18 53.98 52.75 53.66 52.66
la10-15x5 53.75 52.98 51.30 49.94 50.30 49.32
la11-20x5 66.20 64.12 61.11 *60.47 60.92 60.42
la12-20x5 60.73 60.56 59.07 58.29 56.51 57.23
la13-20x5 66.78 63.97 60.69 58.99 60.08 *57.66
la14-20x5 65.71 64.97 62.04 61.17 60.62 60.80
la15-20x5 68.68 64.90 61.39 60.57 60.59 60.57
la16-10x10 24.12 22.49 20.09 19.80 20.03 19.51
la17-10x10 17.60 16.65 15.30 15.27 15.28 15.12
la18-10x10 21.81 20.89 18.39 17.95 17.81 17.65
la19-10x10 26.72 24.57 21.87 20.59 20.28 19.67
la20-10x10 16.18 16.18 15.58 15.04 13.83 14.72
la21-15x10 31.45 31.43 29.92 28.69 29.01 28.63
la22-15x10 33.22 30.72 27.26 25.63 27.26 25.59
la23-15x10 37.98 35.34 32.14 31.87 32.12 31.38
la24-15x10 24.70 24.65 23.49 22.11 21.78 21.87
la25-15x10 25.99 25.09 23.94 22.80 22.91 22.58
la26-20x10 41.13 39.18 36.59 *35.84 *36.27 *36.11
mean 40.31 38.64 36.11 35.01 34.98 34.60

Table 3: Percentage gaps of bigM and disjunctive formulations on 34 job shop instances [23,2,38]. The %
gaps are computed with respect to the best known solution for instances la23 and la26; a “*” indicates
that the computation of the lift-and-project closure [15] hit the time limit of 2 CPU hours.

The results in Table 3 show that there is some advantage in using the disjunctive formulation with
respect to the bigM one, although the improvement in the quality of the bound is not sufficient to make
any of the 34 instances above easier enough for a general-purpose MILP solver if used as a black-box
solver. More precisely, within 1 hour time limit IBM-CPLEX 12.6.0 solves to optimality the same 17
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instances for both formulations and no dominance in performance is shown: the bigM formulation is
slightly better in terms of arithmetic mean, while the reverse is true in geometric mean. However,
we believe combining the disjunctive reformulation, lift-and-project cuts and effective special-purpose
propagation (i.e., tailored for the job shop) could lead to an effective algorithm for optimally solving
significant job shop instances.

5.3. “Almost” complementary disjunctions: (linear) TSPTW

In the traveling salesman problem with time windows one needs to find a minimum-cost tour visiting a
set of cities exactly once, where each city i must be visited within a given time window [ai, bi]. To each
pair of cities, say i, j, is associated a cost cij and a travel time tij , and the classical bigM formulation
uses the binary variable xij that takes value one to indicate that city i is visited in a tour immediately
before city j. The variable is used to express the cost of a tour and also as indicator to activate the
temporal constraint sj ≥ si + tij , where si is the time in which city i is visited in the tour. We consider
the asymmetric version of the problem, thus another binary variable xji is introduced for stating that j
is visited in a tour immediately before i. Of course, only one of the two variables xij and xji can take
value one in a feasible solution but, differently from the complementary case, the third option that both
of them take value 0 is feasible, namely when none of the two cities immediately precedes the other. This
is the “almost” complementary case discussed in Section 4.2. The variant of the TSPTW on a directed
graph G = (V,A) studied in [20] (i.e., a tour is a hamiltonian path from node p to node q) can be
formulated with indicator constraints as

min
∑

(i,j)∈A

cijxij

∑
j∈V : (i,j)∈A

xij = 1 ∀ i ∈ V \ {q}

∑
k∈V : (k,i)∈A

xki = 1 ∀ i ∈ V \ {p}

xij = 1 =⇒ sj ≥ si + tij ∀ (i, j) ∈ A
ai ≤ si ≤ bi ∀ i ∈ V
xij ∈ {0, 1} ∀ (i, j) ∈ A.

The number of constraints needed for reformulating each indicator constraint is exactly the same as in
the case of the job shop problem in the previous section.

In Table 4 we consider 50 TSPTW instances from the literature [4], and we report the percentage
gap of the continuous relaxation of the classical bigM formulation of the TSPTW (“bigMx lp”), of the
continuous relaxation of the perspective reformulation based on Corollary 3 (“CHx lp”), and of the four
lift-and-project closures. In addition to what reported in the tables of the previous sections, we also
report the percentage gaps of the continuous relaxation of the bigM formulation where a ternary variable
is used to model the disjunction as described in Section 4.2.1 (“bigMz lp”) and the continuous relaxation
of the associated perspective formulation according to Theorem 5 (“CHz lp”). For the latter two (weaker)
cases, however, we do not compute the closures.

On the one side, the numbers in Table 4 confirm the dominance relationships discussed in Section
4.2.1, and, on the other side, show a neat advantage obtained by using the disjunctive formulation
(“CHx lp”) with respect to the bigM one (“bigMx lp”). Remarkably, this is also true for closures and the
improvement becomes even more significant. As in the job shop case, however, there is no instance that
is not solved with the bigM formulation, which is instead solved with the disjunctive formulation within
the time limit of one hour using IBM-CPLEX 12.6.0. Nevertheless, over the 36 (out of 50) instances
solved by IBM-CPLEX in both cases, there is a neat improvement of both the running times and the
number of branch-and-bound nodes. Precisely, by considering only the 21 nontrivial instances for which
each of the two formulations is solved in at least 0.5 secs, the running time goes from 107.4 seconds to
72.3 in arithmetic mean, and from 33.1 to 27.4 in geometric mean. In turn, the number of nodes changes
from 524,557.7 to 382,049.7 in arithmetic mean, and from 140,002.1 to 96,037.7 in geometric mean. This
corresponds to a rough 30% reduction in the number of nodes, which looks like a promising result.
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instance bigMz lp CHz lp bigMx lp CHx lp Pe bigMx Pe CHx P ∗e bigMx P ∗e CHx
rbg010a 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
rbg016a 3.29 3.01 3.06 2.78 1.52 1.40 0.59 0.26
rbg016b 1.69 1.65 1.68 1.61 1.33 1.15 0.97 0.92
rbg017.2 0.81 0.79 0.81 0.79 0.64 0.19 0.00 0.00
rbg017 79.86 79.82 79.86 79.82 79.75 79.73 79.74 79.66
rbg017a 0.25 0.25 0.25 0.25 0.22 0.20 0.16 0.13
rbg019a 0.75 0.73 0.74 0.73 0.00 0.00 0.00 0.00
rbg019b 0.65 0.65 0.64 0.64 0.46 0.38 0.37 0.37
rbg019c 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
rbg019d 1.35 1.31 1.35 1.31 1.15 1.10 0.88 0.88
rbg020a 0.67 0.66 0.67 0.66 0.64 0.61 0.62 0.59
rbg021.2 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
rbg021.3 0.97 0.94 0.97 0.94 0.91 0.76 0.75 0.72
rbg021.4 0.90 0.90 0.90 0.90 0.86 0.75 0.68 0.68
rbg021.5 0.81 0.81 0.81 0.81 0.78 0.67 0.55 0.55
rbg021.6 0.13 0.13 0.13 0.13 0.12 0.11 0.09 0.09
rbg021.7 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10
rbg021.8 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
rbg021.9 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
rbg021 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
rbg027a 0.74 0.74 0.74 0.74 0.74 0.74 0.69 0.70
rbg031a 1.54 1.53 1.54 1.53 1.29 1.01 1.08 0.93
rbg033a 1.43 1.36 1.42 1.33 1.11 0.87 0.90 0.49
rbg034a 1.31 1.25 1.29 1.22 1.03 0.82 0.72 0.64
rbg035a.2 0.54 0.51 0.53 0.50 0.45 0.39 0.33 0.34
rbg035a 2.33 2.27 2.32 2.25 1.87 1.15 1.21 0.83
rbg038a 0.52 0.52 0.52 0.52 0.37 0.25 0.34 0.23
rbg040a 4.50 4.40 4.48 4.37 3.92 2.97 2.92 2.55
rbg041a 3.87 3.85 3.87 3.85 3.50 3.06 2.76 2.62
rbg042a 2.33 2.24 2.32 2.23 1.86 1.45 1.41 1.22
rbg048a 1.35 1.35 1.35 1.35 1.34 1.31 1.33 1.29
rbg049a 1.22 1.22 1.22 1.22 1.19 1.18 1.16 1.15
rbg050a 0.84 0.82 0.84 0.82 0.76 0.57 0.72 0.49
rbg050b 1.06 1.06 1.06 1.06 1.05 0.98 1.03 0.95
rbg050c 0.69 0.68 0.69 0.68 0.67 0.63 0.62 0.61
rbg055a 0.98 0.98 0.98 0.98 0.95 0.87 0.87 0.74
rbg067a 0.80 0.80 0.80 0.80 0.77 0.70 0.69 0.55
rbg086a 0.94 0.93 0.94 0.92 0.81 0.66 0.72 0.64
rbg092a 0.88 0.86 0.88 0.86 0.81 0.70 0.72 0.66
rbg125a 1.37 1.32 1.37 1.31 1.13 0.96 0.94 0.76
rbg132.2 1.54 1.52 1.54 1.51 1.42 1.21 1.24 1.12
rbg132 2.22 2.13 2.21 2.13 1.87 1.34 1.46 1.09
rbg152.3 0.63 0.62 0.63 0.61 *0.58 *0.52 *0.53 *0.50
rbg152 1.30 1.24 1.28 1.22 *1.05 *0.70 *0.76 *0.50
rbg172a 1.65 1.57 1.64 1.56 1.36 *1.14 1.15 *0.91
rbg193.2 1.68 1.61 1.68 1.60 *1.50 *1.22 *1.23 *1.05
rbg193 1.67 1.55 1.67 1.54 *1.56 *1.20 *1.18 *1.01
rbg201a 2.03 1.93 2.02 1.92 1.88 *1.45 1.48 *1.27
rbg233.2 1.80 1.74 1.80 1.73 *1.63 *1.42 *1.39 *1.37
rbg233 2.04 1.91 2.03 1.88 *1.77 *1.55 *1.51 *1.38
mean 2.81 2.77 2.80 2.76 2.62 2.45 2.42 2.32

Table 4: Percentage gaps of bigM and disjunctive formulations on 50 TSPTW instances [4]; a “*” indicates
that the computation of the lift-and-project closure [15] hit the time limit of 2 CPU hours.

6. Conclusions

In this paper we have reviewed the relevant literature on mathematical optimization with logical impli-
cations, and we concentrated on the attempt of avoiding the issue of dealing with large NLPs once a
disjunctive formulation is used. In particular, we reviewed some existing results that allow to work in
the original space of variables for two relevant special cases of single disjunctions with |J | = 2. Then, we
significantly extended these special cases by considering pairs of related disjunctions that lead to either
single disjunctions with more general sets or to disjunctions with three terms.

Computational experiments comparing disjunctive programming formulations in the original space
of variables with bigM ones show that the former are computationally viable and promising. This calls
for further investigations in which disjunctive programming formulations should be used, with very hard
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MILP problems like scheduling, routing with temporal constraints, etc., in conjunction with sophisticated
algorithms involving aggressive cut generation within the branch-and-bound tree and bound reductions.
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