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Direct Geometrico-Static Problem of Underconstrained Carricato and Merlet [10, 11] proposed a methodology for the
Cable-Driven Parallel Robots with n Cables kinematic, static and stability analysis of underconstrained CDPRs.

By taking advantage of this approach, the direct (DGP) and the

Ghasem Abbasnejad and Marco Carricato inverse geometrico-static problem (IGP) of CDPRs suspended by 2

and 3 cables were solved [11, 12, 13, 14, 15]. In a DGP, the static load

Abstract—This paper studies the direct geometrico-static problem of 6;]nd thel Cable.lengths are Spelmflled’ whereas the Elatform Tose and
underconstrained cable-driven parallel robots (CDPRs) supported byn € Cgb e tensions must _be calculated. .In an IGP, the static Oad_a_nd
cables, withn < 6. The task consists in identifying the equilibrium poses N desired platform coordinates are assigned, whereas the remaining
of the end-effector when cable lengths are specified. The problem is ones, as well as the cable tensions and lengths, are to be computed.
challenging, because the end-effector preserves some freedoms after cable Tpig paper studies the DGP of underconstrained CDPRs suspended

lengths are assigned by motors. Hence, kinematics and statics are coupled, . L .
and they must be tackled simultaneously. A general method is presented by 4, 5 and 6 cables, with distinct anchor points on the base and the

to model the problem by a set of algebraic equations, and a least- Platform. The following simplifying assumptions are made: cables are
degree univariate polynomial in the corresponding ideal is numerically inextensible and massless, interference is not taken into consideration,
found for any value of n. For the efficient computation of the solution gnd the platform is acted upon by a constant force, e.g., gravity.

set, a software is developed which implements an algorithm based on . . . :
homotopy continuation. Distinctive features of the code are that it finds The problem is modeled by a set of algebraic equations, and a least

all problem solutions, including those with slack cables, and stability degree univariate polynomial in the corresponding ideal is found.

analysis is integrated in order to identify feasible configurations. Though this polynomial proves to be too large to be numerically
Index Terms—Cable-driven parallel robots, underconstrained robots, USeful (it hgs degree 156, 216 and 140 for CDPRs being suspended
kinematic analysis, static analysis. by, respectively, 3, 4 and 5 cables), it has a twofold relevance. On

the one hand, it sets an exact bound on the number of solutions of
the DGP in the complex field (an information that is relevant for
the algorithms that are implemented to compute the solution set).
In a cable-driven parallel robot (CDPR), a mobile platform i©n the other hand, it provides a challenging benchmark to test the
connected to the frame hy cables, whose lengths are governed byffectiveness of the elimination procedure presented in [12], thus
motors. Since cables are active only when exert tensile axial forceBowing its merits over other methods currently available to compute
the numberm of cables that effectively contribute to controllinga least-degree univariate polynomial in a given ideal.
the platform pose may be instantaneously smaller tharin a For the efficient computation of the solution set, a numerical
given configuration, a spatial CDPR fslly constrainedif m> 6, procedure based on homotopy continuation is implemented in a
since in this case the pose is completely determined by calleftware,DGP — Solver, which is freely distributed [16]. Distinctive
lengths and, thus, by motor inputs. On the contrary, a CDPR figatures of the code are that it finds all solutions of the DGP,
underconstrainedvhen m < 6. In this occurrence, onlyn degrees including those with slack cables, and stability analysis is integrated
of freedom (dofs) of the platform are governed and the configuratieg identify feasible configuration®GP — Solver usesBertini [17]
of the robot depends on both the motor inputs and the external wrergha computation engine.
acting on the platform. A CDPR is naturally underconstrained whenTo show the potentiality of the software, an application of
n <6, whereas, whem > 6, it operates as such when mechanicalgp — solver to the optimal design of CDPRs is presented. Since a
equilibrium would require a negative tension in one or more cableSDPR withn < 6 may admit multiple feasible equilibrium configura-
Though underconstrained CDPRs have received little attention in tigns, with some or all of them comprising slack cables, assessing the
literature [1, 2, 3, 4, 5, 6, 7], a careful study of them is motivatecbility of a CDPR geometry to take advantageathifmotorized cables
On the one hand, CDPRs with a limited number of cables may control then dofs of the platform is in order. An investigation
be used in several applications in which the task to be performggbviding preliminary ground in this respect is, thus, reported.
requires a limited number of controlled freedoms or a limitation of The structure of the contribution is as follows. Section Il describes
dexterity is acceptable in order to decrease complexity, cost, setti geometrico-static model of the robot. Sections Ill and IV delineate
time, likelihood of cable interference, etc. On the other hand, a CDRffe problem-solving elimination procedure and report the results
with n > 6 may operate in underconstrained mode outside the wrengbtained for generic CDPRs with < 6. Section V presents the
closure workspace [8, 9], thus increasing its operational capabilitigsftwareDGP — Solver and the continuation procedure at its basis.
if a suitable control is achieved. Section VI gives a preliminary assessment of the ability of a CDPR
Underconstrained CDPRs have distinguishing features. Due to taetake full advantage of its motors. The paper provides a unifying
coupling between kinematics and statics (or dynamicg)p-closure framework for and expands the results presented at the conferences
andmechanical-equilibrium equatiomaust be solved simultaneously[18, 19]. The softwardGP — Solver is presented for the first time
and displacement-analysis problems become particularly challengiggid Section VI is completely new.
Furthermore, since the platform is movable when cable lengths aran all reported numerical examples, measurements are expressed in
assigned, stability plays a crucial role. An equilibrium configuratiog| ynits, with computations being performed on a PC withG¥@Hz
is actually feasible only if therein cable tensions are positive andnte| Xeon processor and 4GB of RAM.
equilibrium is stable. When multiple feasible equilibria exist, the
platform may switch between them due to external disturbances, thus
causing unpredicted motion.

|. INTRODUCTION

Il. GEOMETRICO-STATIC MODEL
A. Geometric and static model of the robot

G. Abbasnejad and M. Carricato are with the Dept. of Industrial Engi- A mobile platform is connected to a fixed base bgables, with
neering, Ur_1iversity o_f Bqlogna, Italy (e-mails: ghasem.abbasnejad2@uniborit< 6 (Fig. 1). Theith cable,i = 1...n, exits from the base at point
marco.carricato@unibo.it). A, and it is connected to the mobile platform at pdiit The cable

This paper was presented in part at the 1st Int. Conf. on Cable-Driv P ] . .
Parallel Robots, Stuttgart, Germany, Sept. 2—4, 2012, and in part at the Ehgth ispi, with p; > 0. A is a Cartesian frame attached to the base

Int. Workshop on Computational Kinematics, Barcelona, Spain, May 12—1 O, with i, j andk being unit vectors along the coordinate axs.
2013. is a Cartesian frame attached to the platfornGinwith u, v andw
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of the problem. Each parametrization has its own merits, and may be
preferred to others depending on the problem-solving algorithm that
is implemented.

B. 6-parameter representation of the platform pose

An algebraic representatiok of the pose with a minimal set
of parameters may be obtained by employing position vegtor
and the arrayd = [el,ez,eg}T grouping the Rodrigues parameters
of the platform orientation, i.eX = [x,y, z,el,eg,eg]T. Rodrigues
parameters emerge from Euler homogeneous varialje®;, e
and e3 by the normalizationeg = 1 [20]. When Euler/Rodrigues
parameters are used, the rotation maRixas the form

R=I3+2(e®+PD) /(3 + € + €5 +€) %)
Fig. 1. A CDPR withn cables: geometric and static model. where® is the skew-symmetric matrix expressing the opergier.
In this case, Egs. (1) and (2) form a system of 6 polynomial

being unit vectors along its axes= [x,y, 2T is the position vector of €duations in & n unknowns, i..x,y,z€i,€,€s, 11, ..., Tn. This
Gin A, whereasR is the rotation matrix representing the orientatioffomulation is particularly suitable when the DGP is solved by elim-
of Bin A. Furthermorea — A — O, ands, = B — A — x-+Rb; —a;, ination techniques (cf. Section III), since it introduces the smallest
with b; being the position vector d& in . number of unknowns.

The platform is acted upon by a constant force, which is assumed
to be oriented ak and applied atG, without loss of generality. )
This force is described by a O-pitch wren@Ce, whereQ is the C- Study representation of the platform pose

intensi_ty of the fgrce and_:e is the nprmalized I?llcker vector of the Study soma coordinates [20] provide a 8-parameter homogeneous
force line of action. TypicallyQZLe is the gravity wrench, app_lled representation of the pose, i.& = [eo, er, €2, 3,90, 01,02, 93],
to the center of mas&. The normalized Ricker vector of the line \,pere e, k=0...3, are the Euler parameters of the platform

associated with thigh cable isC.i/pi, where, ?n axis coordinatesi = grientation, normalized with
—[s;(Bi—P) xs] andB; — P is a vector directed from a reference
point P, called for brevitymoment poleto the cable lineP may be &ref+ei+e5=1 (5)

chosen arbitrarily, and need not coincide wihor G. The wrench

exerted by thath cable on the platform it /p;) £i, with 7; being  andgy, k=0...3, are the components of a quaternion such that
a positive scalar representing the intensity of the cable tensile force.

If all cables are in tension, the geometrical constraints on the epgp+€101+€ex02+e303=0 (6)
platform are||s ||?= p?, i = 1...n, and thus, by subtracting the first
relation from the others, R is given by Eq. (4), whereas the platform position is
. 22
G -—Ilslllz—pl 720 L B 1 —€001 + €100 — €203 + €302
i=|lsil|c=|ls||c—pf +pf =0, j=2...n X=—5—5——5| — + + — 7
aj = |[sjl|*=lls/|*—pj + p1 j PR €002 + €193+ €200 — €301 @)

where symbolsyy, ..., qn denote the polynomials at the left-hand side ~ €003 — €182+ €201 + €300

of the relations in Eq. (1). Study coordinates add 2 unknowns and 2 equations to Egs. (1)

Since only n geometrical restraints are enforced, the pIatforand (2), thus yielding a system of-8n polynomial equations
preserves 6-n dofs, with its final pose being determined by stati(;n 8+ n unknowns, i.e.ey,e1,€,€3,00,01,92,93, T1, ..., In. This

equilibrium. This may be written as [10, 11] formalization is used in Section V-A to solve the DGP by general

(t1/p1) homotopy continuation.
(T2/p2)
L1 Lo ... Ln L : =0, 2
[ & L n Lo ) @ D. Dietmaier representation of the platform pose
M(P,x,R) (Tn/pn)

Q Following [21], the platform pose may be described by 9 variables,
i.e. D= [x",u",vT|T = [x,y,2 Uz, Up, U, V1, Vo, V3] T, where [ug, Up,

uz] and|[v1, v, v3] are, respectively, the componentswéndyv in A,
satisfying the conditions

where i > 0, i =1...n, and M(P,x,R) is a 6x (n+ 1) matrix
depending on both the moment pdbeand the platform pose (here
described by vectox and matrixR), namely
—s e s k U+B+E =1, VHB+E=1 uvituva+uva=0 (8)
MPXR)=1 b B )xs - (P—Bnxs (G—P)xk _ _ o
@) By set_tlngw = u x v, the rotation matrix is given b = [u,v,w}.
Equations (1), (2) and (8) form a system of+® polynomial
Equations (1) and (2) form a system in the platform coordinates aaduations in -n unknowns, i.ex,y, z, uy, U, U3, V1, V2, V3, T1, ..., Tn.
the cable tensions. Three distinct pose parametrization are introdu@édis formalization is used in Section V-A to solve the DGP by
in the following, with all of them leading to an algebraic formulatiorparameter homotopy continuation.
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I1l. THE ELIMINATION ALGORITHM o Groebner bases are computed with respect to graded reverse
When an elimination technique is adopted, all variables but one !€xicographic monomial orders (grevlex, in brief), which provide
need to be eliminated from the equations governing the problem, until the most efficient calculations.
a univariate polynomial is obtained. If the latter has the least possibler The abundance of generators linis fully exploited, since it
degree, it provides the exact number of solutions in the complex field. SPeeds up calculation (a feature already pointed out in [26]).
For elimination to be successful, a formulation containing the leastBy the above expedients, a Groebner b&is of (I) with respect
number of unknowns is often the most suitable. Thus, the formulatiem greviexX), with variables ordered so that-y>x>e; >e; > ez,

introduced in Section II-B is used in this case. may be generally computed in a fairly expedited way. OG¢e is
Cable tensions may be eliminated as suggested in [10, 11]. In faaiown, the normal sel[I] of (1), i.e. the set of all monomials that
Eg. (2) admits nonzero solutions only if are not multiples of any leading monomial iG[I], may be easily
computed [27]. For the properties of Groebner bases, the number
rank[M (P, X)] < n © of monomials inN[l] coincides with the numbeNsy of solutions
i.e. if L1, ..., Ly and Le are linearly dependent. This is a purelyof the problem at hand and, thus, with the order of the least-degree
geometric condition, sincé (P, X) only depends on the momentunivariate polynomials ir{l).
pole P and the platform pose, now described by the aay [x, @]. 2) Computation of elimination idealdf X is a list of | variables

By setting all (n+ 1) x (n+1) minors of M (P, X) to zero and by in X andX\X is the (ordered) relative complement Xf in X, the
varying P (the latter may be chosen arbitrarily), a large set of scaléth elimination ideakl;) of (I) is defined agl) NQ[X\X,], namely as
relations that donot contain cable tensions may be obtained (cthe subset of all polynomials df) that comprise variables i\ X|
Sections IV-B and IV-C), namely only (and in which, thus, thevariables inX; have been eliminated).

_ _ As (I) comprises 6 unknowns, the polynomials @f) contain 5
P(X)=0. k=1..h (10) variables, the polynomials df,) only 4, and so on{ls) comprises
wherepy, ..., pn denote polynomials iX. a single variable and, thus, it contains the least-degree polynomial
Since Egs. (1) and (10) allow the platform pose to be completedf (1) in that variable. In theory, oncg][l] is known, one may use

determined, the DGP solution emerges as the affine variety of the Faugre-Gianni-Lazard-Mora (FGLM) algorithm [28] to compute
ideal (1) generated byt = {qy,...,qn, P1, ..., pn}.} For each pose the Groebner basi§[l|] of (I;) with respect to greviefX\X,) for
X, cable tensions may be successively calculated fromelations any |. In practice, however, computing,) is very demanding in
suitably chosen within Eq. (2). Clearly, only the configurations falerms of both computation time and memory usage. Performing the
which all tensions arenonnegativemust be retained. Stability may elimination of the ‘last’ variables is extremely onerous and is likely
be determined by the algorithm presented in [11], by assessing theprove unfeasible on normal workstationS|[lg] is the desired
definiteness of a reduced Hessian math, least-degree univariate polynomial). A far more efficient alternative
Since the numbéh of relations in Eq. (10) is ordinarily greater thanconsists in using the FGLM algorithm to eliminate only a subset of
6 —n, relationspy may not be independent, otherwise the problerthe original unknowns, thus computir@[l|] for somel, and then
would admit no solution. However, most of them are dependent @@mpleting the elimination process by applying a dialytic step to the
a nonlinear way. The abundance dinearly-independentquations polynomials ofG[l|], as discussed in the next step.
obtained by this strategy is particularly beneficial when the problem3) Final dialytic elimination: Dhingraet al. [26] proposed a dia-
is solved by elimination procedures based on Groebner bases [BZL method to comput&[ls] from G[l] without deriving elimination
and/or Sylvester dialytic approach [23]. ideals. In this case, Dhingra’s method, however, is not efficient,
The elimination algorithm presented in this section was first usgthce the eliminant matrix that is obtained fro@l] is too large
in [12] to solve the DGP of a CDPR suspended by 3 cables. for its expansion to be performed in a reasonable time. A feasible
Here, it is proved to be effectual for the cases 4 andn=>5, too. alternative emerges by observing that, for the problem at hand,
The procedure encompasses three steps. dialytic elimination may be applied to the Groebner basisany
1) Computation of an initial Groebner basigor a generic CDPR elimination ideal of (I). In fact, if e3 is the smallest variable in
with n cables,n < 6, the number of monomials iX comprised in  X\X,, G[l;] comprises a number of monomials ¥\ X, — {es} that
I is of the order of several hundreds. Hence, computing a Groebmgfordinarily equal to the numbe¥, of generators inGJl;], for all
basis is a nontrivial task. The following expedients are adopted. values ofl. It follows that the generators @[l;] may be set up, for
o To allow computation via theGroebnerPackage provided anyl, as a square system of homogeneous linear equations in the
within Maplei15, all geometric parameters of the robot arenonomials ofX — {es}. A Sylvester-type eliminant matrig(es),
assigned generi@tional values, i.e(l) c Q[X], whereQ[X] is Wwhose elements only depend ef may thus be constructed, and a
the set of all polynomials iiX with coefficients inQ.2 ‘Generic’  resultant ines, free from extraneous polynomial factors, computed,
values are numbers such that the stated propertig$)diold i.e. G[ls| = detE(e3).
‘with algebraic probability one’ in the sense specified in [25]. The above elimination procedure was applied to several robot
geometries, with 3, 4 and 5 cables. Throughout the numerical ex-
1Given the set of polynomials = {f1(X), ..., fs(X)}, the ideal(l) is perimer_ltation, the fastest derivatioq@fls} was al\_/va_ys c_)btained by
the set ofall polynomials obtained a§;_, shi(X)fi(X), wherehi(X) is an computingG[ls] by the FGLM algorithm, thus eliminatingx, y, z},
arbitrary polynomial in the same field &, ..., fs. Loosely speaking{l) and applying a final dialytic step 16[l3], thus eliminating{e;, e}.
is the span obtained by linearly combinirfg, ..., fs by using polynomial
coefficients.fy, ..., fs form a so-calledasisof (I). Recalling that the variety

V(l) of | is the set of allX such thatfi(X) =... = fs(X) =0, V depends IV. DGP OF CDPRS WITH n CABLES
only on the ideal generated Byi.e.V(l) =V((l)) [22]. Thus, changing the '

basis of(l) may allow an easier find of the zeros of the polynomials.in Hereafter, the application of the elimination procedure to the DGP
2The computation of a Groebner basis cannot be executed imfiepdint

arithmetic by the standard approaches currently implememtecomputer of generic CDPRs suspended by 4 and 5 Cqbles IS dlscussgd n dgtall.
algebra systems, due to the basis instability under smallgesain the The DGP of CDPRs with 2, 3 and 6 cables is presented briefly, since
coefficients of the system (see, for example, [24]). its detailed description is available elsewhere.
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A. DGP of CDPRs witt2 and 3 cables generators having a given degree is specified), and column 5 reports

Carricato and Merlet [11] showed that the DGP of the CDPR witfr ach variablev e X\X;, the number of monomials iB{l;] having
2 cables may be formulated by way of two planer models. In ea¥griables inX\X; — {w}. Table | shows that, ifv is the smallest
model, the DGP is solved by a 12-degree univariate polynomial, ¥8riable inX\X;, i.e.es, G[lj] comprises a number of monomials in
that, on the whole, the DGP admits 24 solutions in the complex fief§,\X1 — {€s} which is equal ta\; for all values ofl. For instance, the
all of which may be real. Groebner basi€]l3] of (I) NQley, &, €3] with respect to grevigie;,

The DGP of the CDPR with 3 cables is described in detail in [12f2: €3) comprises 61 polynomials (1 of degree 8 dnand 60 of
Equation (1) provides 3 polynomials, respectively of degree 4, 3 afggree 10 in®), including 61 monomials ire; ande;.
3 in X, whereas Eq. (10) yields 11 polynomials of degree &jrso  Table Il reports the CPU time required to comp@g,] for an
that | = {q1, 02,03, P1, ..., P11}. A Groebner basi|l] of (I) may exemplifying generic robot. In particular, the third column reports the
be computed efficiently with respect to grevew, x, e1, e, 63). A CPU timeTgy, | required to obtairG[l;] from (l,_1) by the FGLM
univariate polynomial of degree 156 & is computed by calculating algorithm. As expected, the highér(i.e. the more variables are
(I3) via the FGLM algorithm and by successively expanding a 45 eliminated), the longer the time necessary to perform the computation
eliminant matrix. Though the problem admits exactly 156 solutiord'd. mainly, the larger the amount of memory that is required. In
in the complex field, sets of robot parameters for which the pgparticular, the last elimination ideal cannot be computed, due to

provides no more than 5#al configurations were found so far [14]. EXcessive memory usage.
The advantage gained by applying a dialytic step to a Groebner

basisG|[l|] with | > 0 emerges from the data presented in the fourth

B. DGP of CDPRs withl cables . . )
) ) ) column, which reports the CPU tim&g, required to calculate
When all 4 cables are taut, Eq. (1) yields 4 polynomials, s¢. G[ls] by applying Sylvester elimination t&[l|], for | = 0...4.

G2, 43 andaa, respectively of degree 4, 3, 3 and 3 As far as the  gjnce the computation time of the dialytic step depends on the
static constraints are concerned, wiea Ay, all equations emerging gimension of E;, it decreases with the number of variables in
by setting the 5¢5 minors ofM (Ay, X) to zero, name greviex(X\X). For the example at han@[ls] cannot be computed
p1 = detMozasg A1, X) =0, poi=detMiaasd A1, X) =0 from G[l|], with | =0...2, due to excessive computation time.
Ps = detM 12456 A, X) =0, s = detM 12356/A1, X) = 0 (11) Instead, a univariate polynomidbls| in e3 may be successfully
computed from eithe6[l3] or G[l4]. The most efficient computation
Ps == detM12346(A1, X) =0, pg = detM12345A1, X) =0 is obtained by eliminating{x,y,z} by the FGLM algorithm and
are linearly independent. The relations obtained by lefirgA;, i = {e1,ex} by the dialytic step, with a global computation time of
2...4, are linearly dependent on those in Eq. (11), so that they may+ 227+ 6704567+ 340~ 1820min. Though this time seems very
be discarded. Nine additional linearly-independent equations may figh, it represents a substantial achievement if the size of the resulting
obtained by letting® =B;, i = 1...4, namely polynomial is taken into account. The authors are aware of no studies
. _ . . in which a resultant so large could be calculated on a normal PC.
pr = detMsasgBr, X) =0, pg = deM1ase(Br, X) =0 This proves the effectiveness of the proposed procedure.
Pg = detM1245¢B1, X) =0,  p1o = detMaz45¢(B2, X) =0 The 216 roots ofG[ls] may be complex or real. By varying
0, p12:=detMq245¢B2,X) =0 (12) the robot parameters, the count of real roots varies. Since there
P13 = detMoz456B3, X) =0, p14 = detM13456Ba, X) =0 may be roots in the solution set that always remain complex,
0 the maximal number of real solutions may be smaller than 216.
Determining a tight bound for this count is a challenging task. By
and two more by lettin® =G, i.e. a continuation procedure originally proposed by Dietmaier [21] and
. _ . _ recently adapted by the authors to the DGP of underconstrained
P16 = 0€M2345¢ G, X) =0, P17 = deM134s6G. X) =0 (13) CDPRs [14], sets of parameters for which the DGP of the
All polynomials pj, j =1...17, have degree 6 i, degree 3 in CDPR with 4 cables provides at the most 8l configurations
x and total degree 9 iX. No other linearly independent relationswere found so far, e.ga; = [0;0;0], a, = [—0.76054;0;090931,
in X may be obtained from the minors ® (P, X) by varying the az = [—0.71646;068047;007970, a4 = [0.02574;070420; 087389,
moment poleP. | = {q, 2, A3, 04, P1, - .-, P17} comprises up to 1576 p; = [16.54820;0;0, b, = [17.16360;077720;0, bz =
monomials inX. [16.22250;075153;076874, b, = [17.38600;009567;081726
By taking advantage of the abundance of generator$, ithe and (p1, P2, P3, p4) = (1;1.01493;112171;113823Q. As it may be
computation ofG[l] for the exemplifying robot whose dimensionsyerified by the software described in Section VEGP — Solver,
are reported in subsequent Table Il requires roughly 17min, whichiisthis case 20 configurations out of 98 have positive tension in all
a rather limited time for a problem of this size. Or@#] is known, cables, and among these 5 are stable.
the normal set ofl) may be computed, namely (in vector format)

(14) C. DGP of CDPRs witlb cables

When 5 cables are taut, Eq. (1) provides 5 polynomials,g.e.
) ) ~i=1...5.M(P,X) is a 6x 6 matrix, and only one equation may be
The structure ofG[I] with respect to greviefX) is reported in  gpained by imposing rafiki (P, X)] < 6. In this case, no additional
Table |, as well as the structure of the Groebner ba3gg With  jinearly-independent equations emerge by changing the moment pole
respect to grevlegX\X) of the elimination ideals;), | =1...5. P, so that Eq. (10) reduces to
These are derived fron®[l] by the FGLM algorithm. Column 3

reports the numbel, of generators irG[l;], column 4 provides the p1:=detM (A, X) =0 (15)

degree inX\X; of such generators (in parentheses, the number Imzzomprises 6 polynomials, i.6, G, ds, G, G and py, of degree 4,

3The notationMij (P, X) denotes the block matrix obtained from rows3. 3, 3, 3 and 9 irX, respectively. The total number of monomials in
h, i, j, kandl of M(P,X). | is (as for the 4-cable CDPR) 1576. Though the computatid@[gf

.
N[I] = Les,ez,el‘x,y,z,e%,ezes,...,eleze%y} :

SinceN[l] comprises 216 monomialdlgo = 216.
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TABLE |

STRUCTURE OF THEGROEBNER BASES OF THE ELIMINATION IDEALS<||> OF <|> FOR ACDPRWITH 4 CABLES AND A GENERIC GEOMETRY

Degrees of the generators

No. of monomials with variables in

G[l|] X\X| N :

in X\X| XAX| —{w}, we X\X|
Gll] [zy.x e e, 6] 195 33), 4(5), 5(158), 6(29) 230,232,232,271, 224,195
Gll] [V, X, €1, &, €3] 147 536), 6(111) 185,180, 181, 160, 147
Glly) X €1, €, ] 111 51), 7(99), 8(11) 127,127,117,111
Gll3] e1, &2, €3] 61 81), 10(60) 66,61,61
Gllg) (e, &) 21 20(15), 21(6) 22,21
Glls] (&3] 1 2161) -

TABLE Il

STRUCTURE OF THEGROEBNER BASES OF THE ELIMINATION IDEALS(l}) OF (I) FOR ACDPRWITH 5 CABLES AND A GENERIC GEOMETRY

Degrees of the generators

No. of monomials with variables in

G[i] X\X N _
in X\X| XA\X| —{w}, we X\X|

Gl [zy,x €1, e, e 110 34), 4(46), 5(60) 159,156, 147,168, 141,118
G[l4] v, X, e1, &, e3] 110 46), 5(84), 6(20) 130,128,139, 124, 110
Gll2] [x,er, e, 63 68 4(1), 5(4), 6(40), 7(23) 87,96,83,69
Gll3] le1, e, €3] 31 41), 8(11), 9(6), 10(6), 11(6), 12(1) 62,43,31
G[l4] [e2, &3] 17 1613), 17(4) 18,17
Glls] [e3)] 1 1401) -

TABLE Il again by eliminating{x,y, z} via the FGLM algorithm ande;, e}

COMPUTATION TIMES TO OBTAIN GROEBNER BASES OF THE ELIMINATION  via a dialytic step (B+ 43.0+59.5+ 56.7+ 7.5 ~ 170min). G|l3]

IDEALS <I|) FOR A ROBOT WITH4 CABLES AND
a; =[0;0;0,a, =[9;0;1,a3 = [11;9;0,a4 = [-2;8;—1],by = [-2;-1;-1],

comprises 31 polynomials (1 of degree 4, 11 of degree 8, 6 of degree

by = [1;-2;0],bs = [2;1;—1], bs = [0;2;—1], (p1, 02, P, pa) = (6,7,8,9. 9 6 of degree 10, 6 of .degree 11 and 1 of degree XB)irand thesg
include 31 monomials ie; ande,. Hence, a 140-degree polynomial

in e3 may be computed by expanding a:3B1 eliminant matrix.

! W Topy [min] Tojg) [min] By the continuation procedure presented in [14], several sets of

0 " 17 geometric parameters for which the DGP provides at the most 74

1 (1N NQy, x, &1, e, &)] 227 real configurations have been found so far. An example is as fol-

2 (1Y NQ[x &1, 6, 670 lows: @, = [1.44417,0, 120333, ag = [0.302415, 126206, 055533,

3 1) " Qley. &, 5 567 240 a, = [~0.711127, 0808726, 0810451, a5 = [0.749568, 0761578,—
0.469085, by = [2.16169,0, 0, b, = [~0.125711,0, 132615, bs =

4 {HNQlex & 1063 67 [-0.412791, 00211425, 0449869, by — [—0.16265, — 0.468249,

5 (N NQles] - 0.399945, bs = [1.59653,131446,096224, (p1, P2, P3, P4, P5) =

(2.46449, 199586, 120622, 142395, 24302). As it may be verified

by DGP — Solver, 3 configurations out of 74 have positive tension in
may not take advantage of redundant generatots inis relatively all cables, and among these 2 are stable.

fast, mainly because a single high-degree polynomial appeals in
For the exemplifying robot reported in subsequent TableG{] ma

The normal set, namely

N[I] = [1,e3 €,€1,% Y, 7 6, €3, ...,e1xy%, erxyzx}]T  (16)

contains 140 monomials, so thidgy = 140.

TABLE IV
be computed in roughly 3min. COMPUTATION TIMES TO OBTAIN GROEBNER BASES OF THE ELIMINATION
IDEALS (l;) FOR A ROBOT WITH5 CABLES AND
a; = [0;0;0,a, = [1;2,-0.75,a3 = [3.5;1;1],a4 = [3.25;—1; 1], a5 =
[1;-2;-0.5],by = [-1;0;—1],b, = [-0.5;1;-1.25], b3 =
[0.75;075;—1.25), by = [0.5;—0.75;—1.25), bs =
[-0.25;-0.8;—1.5], (p1, P2, P3, Pa, P5) = (4.5;5;3;375;475).

The structure of5[l}] with respect to grevle®<\X,) is reported in
Table Il for | =0...5. The table is constructed as Table |. Notably,|

in this caseG[l|] comprises a number of monomialsX\ X| — {es}
equal toN, only for | =1, 3, 4. Hence, Sylvester dialytic elimination
may be applied to neitheB[l] nor G[l,]. Indeed, these contain more
monomials inX\X; — {e3} than available generators.

Table IV reports, for an exemplifying generic robot, the CPU3
time Tg, required to computeG[li] from (Ij_1), and the CPU 4
time Tg,) to calculate G[Is] by applying Sylvester’s elimination

() Toyy) [min] Tgjig) [Min]
) 33
(HNQly, %, €1, e, e 430 4042
(1HNQ[x e, e, €3] 59.5
(HNQley, ez, €3] 56.7 75
(1) NQey, &3] 730 107
(1N NQles] -

to G[l;], for I = 1,3,4. The most efficient computation is obtained




REGULAR PAPER, JOURNAL OFAIEX CLASS FILES 6

D. DGP of CDPRs witl6 cables When the isolated roots of the DGP are known for a generic robot

When 6 cables are taut, Eq. (1) provides 6 equations and geometry, parameter homotopy continuation may be used to find

geometric constraints are sufficient to completely determine tfjglutions for any other target robot of the same family. In this case,

platform pose. Kinematics and statics are decoupled and the DE Purden of tracking paths diverging to infinity is avoided. When
implementing parameter continuation, Dietmaier parametrization is

is equivalent to the forward displacement analysis of the generaliZ8P

Gough-Stewart manipulator, with the latter being governed by Fgeferred over Study one. I.n the latter case, in fact, .the ngmber of
relations identical to those in Eq. (1). This problem admits 4t§olated roots of the equations governing the DGP Ngo (since

solutions in the complex field, all of which may be real [21], angtudy coordinatess and —S represent the same platform pose, see

algorithms for their computation are well known [25]. Egs. (5)—(6)) and so this is also the numb_er of paths to be tracked for
parameter homotopy to work robustly. This problem does not appear

if Dietmaier parametrization is used, as in this case the number of
isolated roots of the modeling equations is exactly equalgg.

For the numeric calculation of the solution set, working with
polynomials of degree as high as 156, 216 or 140 is unpracticgl.
On the other hand, once a Groebner ba3jl§ of (I) is known, the
solutions of the DGP may be efficiently computed from the eigenpairsWhen cable lengths are assigned as inputs, nothing ensures, a
of a Ngg| X Ngo) NUMeric matrixA[|’e3L calledmultiplication matrix priori, that when the platform reaches its stable equilibrium pose
[27], which may be obtained from the the normal 8#t]. Details all cables are in tension, since configurations may exist in which the
are in [12]. A drawback of this approach is that it relies on a prigdlatform is supported by onlyn cables, withm<n and withn—m
computation ofG[l]. The efficiency of the computation of a Groebnefables being slack. Accordingly, the overall solution set emerges by
basis highly depends on the ‘size’ of the rational coefficients &Plving the DGP for all possible constraint s¢fss; ||= pj, j € W},
the polynomials generating the basis. Indeed, when the coefficientith W C {1...n} and cardV) <n. As an example, for a robot
are obtained by converting real values, the higher the number With 5 cables, 31 DGPs need to be solved, namely 1 DGP with 5
digits in the original floating-point data, the bigger the numeratogstive cables, 5 DGPs with 4 active cables, 10 DGPs with 3 active
and denominators of the resulting rationals. As a result, computatiedbles, 10 DGPs with 2 active cables, and 5 DGPs with 1 active
becomes slower and memory-demanding. This is a limitation share@ple. Clearly, when thkth cable is slack, the distandies || cannot
by all computational methods based on Groebner bases. Thisbggreater than the assignpd Hence, for any subseét, only the
the reason why homotopy continuation [25] is chosen in this papg@lutions for whichl| s [|< p, for all k ¢ W, are admissibleand
to actually numerically compute the solution set. Continuation h&aust be retained.
the significant advantage that it requires no prior Groebner-basis
computation by a computer algebra system and real-value geome&i
parameters may be directly handled in floating-point arithmetic. As
a consequence, the dependence of computation time on the specifRGP —Solver is a software based on the procedures outlined in
values of the robot parameters is rather modest. Sections V-A and V-B. It is available for both Linux and Windows

While formulating equilibrium constraints via Eq. (10) is particu®latforms, and it is freely distributed [16PGP —Solver solves
larly favorable when elimination strategies are pursued, for continufe DGP for a generici-cable CDPR, withn < 6. It receives the
tion algorithms the complexity and the high degree of the polynomi@bot geometry, the cable lengths and a constant external load as
emerging from the elimination of cable tensions are a disadvantaf#uts, and it computes all possible equilibrium configurations that are
since they slow down computation and cause stability problenfmpatible with the given constraint§ § ||< pi, 7 > 0,i =1...n),

For this reason, the formulation of the DGP via Eq. (1) and (2) i§cluding those with slack cables. Upper limits on cable tensions are
preferable. For the same reason, the pose parametrization by Stigh/taken into consideration in the current version of the software.
or Dietmaier coordinates (see Sections II-C and I1-D) is preferabh§P — Solver also determines whether an equilibrium configuration
over the 6-parameter representation described in Section I1-B. Thoug Stable or not, by assessing the definiteness of the corresponding
the resulting system involves more variables and more equatidg§uced Hessiahl; [11].

than the one used in Section IlI, it comprises much simpler lower- In recent years, several softwares have been developed to ease th
order polynomials, which are stabler when homotopy continuationifgplementation of homotopy-continuation algorithrd§P — Solver

in’]p|en’]e|’]ted7 thus |eading to a faster Computation. uses Bertini [17] as a Computation engine. The adVantage of
Bertini over other packages relies on its capability of implementing

user-defined parameter homotopiB6P — Solver uses both param-
eter and general continuation routines. The former provides for the
Polynomial homotopy continuation is a path-tracking techniquastest computation, but some (normally complex) solutions may
that transforms a start system of polynomial equations with knov@ometimes be missed. When this hap@&Pp, — Solver uses general
solutions to the target system whose solutions has to be found [2&jntinuation to correct the outcome.
Depending on how the start system is constructed, the procedur&ables V and Table VI show the results providedd®p — Solver
may be classified ageneral homotopy continuatioar parameter for two exemplifying CDPRs with, respectively, 4 and 5 cables
homotopy continuatianThe former is employed when no information(extracted from the samples discussed in subsequent Section VI).
is a priori known about the roots of the target system. In this cadaeye to space limitations, only the real solutions with nonnegative
Study coordinates are chosen to parametrize the platform pose, sieesion in all cables are reported (the platform orientation is specified
they lead to the lowest multi-homogeneous Bezout nuniMigy, by Rodrigues parameters, whereas symbplsand <> denote,
which coincides with the number of paths to be tracked. Howevegspectively, a positive-definite and an indefinite Hessian matrix).
sinceNgez is still much larger thaNgg (for the robots with 2, 3, 4, The 4-cable robot in Table V has 4 poses with only two cables in
5 and 6 cablesNge; is equal to, respectively, 96, 5120, 3840, 153@ension, all of them unstable, and 2 stable configurations, i.e. 1 with
and 256), many paths diverge to infinity. three active cables and 1 with all cables taut. The 5-cable robot in

V. NUMERICAL COMPUTATION OF THE SOLUTION SET

Equilibrium configurations with slack cables

bGP — solver

A. Homotopy-continuation algorithms
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The results of the simulation are summarized in Table VII. ftte
column, withn=2...6, reports the results obtained for the samples
suspended by cables, and in particular: the number of samples
considered (row 1), the number of feasible configurations globally
obtained (row 2), and the number of feasible configurations with
cables in tensionsn < n (row 2+ m).

The data emerging from the table seem to show that, when
the number of cables increases, the probability of finding feasible
configurations with all cables in tension decreases. For the robots with
2 cables, in almost 90% of equilibrium configurations both cables are
active, whereas for the robots with 3 cables all cables are active in
roughly 80% of cases. This trend continuesndacreases, until, for
the samples with 6 cables, in almost no configuration all 6 cables are
active. Columns 4 through 6 show that, in most cases, the robots with
4 cables have only 3 taut cables, whereas the robots with 5 and 6
cables have only 3 or 4 cables in tension. It is worth observing that,
Fig. 2. Schematic of the robot samples used for the stochastistigation. while for the robots with 2 or 3 cables equilibrium configurations

with slack cables may only occur at the frontier of the geometrical
] workspacé, it is not so whem > 4, where equilibrium poses with
Table VI has 9 unstable poses with two, three or four taut cables, afidck cables may occur in the middle of it.
4 stable configurations,_ 2 with _four and_2 with fiv_e cables in tension. ppother interesting question concerns the probability for a CDPR

When the DGP admits multiple feasible solutions, the robot may 4qmit multiple feasible configurations. When this occurs, the stable
swﬂgh (because ofllnertlla forces or externall dlsturbqnces) aCreRilibrium pose of the platform may change under the influence
portions of the configuration space characterized by different NURF eytemal perturbations, which is not favorable in practice. In this
bers of taut cables, thus bringing the end-effector onto unpredicigdrspective, Table ViIl investigates how many multiple solutions are
trajectories. Accordingly, the computation of the complete set @f,countered when solving the DGP of the samples in Table VII. Row
equilibrium configurations is essential for robust trajectory planning.' 3 and 4 report, respectively, the percentages of samples admitting

1, 2 or more feasible solutions. It emerges that when the number of
VI. APPLICATION: DESIGN OFCDPRs cables increases, the probability of having a single solution of the

A robot with n cables is designed to contrai dofs of the DGP decreases. It is roughly 83% for the 3-cable robots, 53% for
platform. However, depending on the configuration and the loatte 4-cable samples, and a little less than 25% for the 5- and the
only m cables may be active, witm < n. Slack cables contribute 6-cable robots.
to neither controlling the platform pose nor sustaining the load, thusFrom the data reported in Tables VIl and VIII, one could argue that,
being instantaneously ineffectual. This amounts to a loss of roles long as only 3 cables are employed, all of them may be reasonably
capacity. Investigating the most suitable architectures and geometegpected to support the platform, with a single stable equilibrium pose
that guarantee the optimal exploitation of the available actuatorshising unambiguously determined in most circumstances. When 4, 5
in order. A stochastic investigation is reported hereafter providirg 6 cables are used, a full control of the robot becomes challenging,
preliminary ground in this respect. because it is difficult to take advantage of all available cables and to

Two scenarios are envisaged. In one case, the robot geometrgastrol the platform pose in a deterministic way.
established, and the platform configuration and the load orientation
are changed. Alternatively, the load is assigned, and the robot VIl. CONCLUSIONS

geometry and configuration are varied. Since the two SCenarios args paper studied the direct geometrico-static problem (DGP) of
equivalent, the latter is described in the following. For the sake gf,yerconstrained cable-driven parallel robots (CDPRs) suppbyted
simplicity, the anchor points on the base and the platform are cho§eRapjes, withn < 6. The task consisted in finding the equilibrium

inside cubes having center-points located on the vertexes of regyighfigurations of the end-effector when cable lengths and a static
hexagons (Fig. 2). The circumradii of the base and platform he>sagq8ad are assigned.

are 10 and %, respectively, whereas the side lengths of the base and]—he problem was modeled by a set of algebraic equations, and

platfprm cubes. are 4 and 1, respectiveB.is located on the line 5 least-degree univariate polynomial in the corresponding ideal was
that is perpendicular to the platform hexagon and that passes throggly, g tor any value of, thus setting an exact bound on the number
its center, at a distance of.dlfrom the latter. Cable lengths areqt ooy tions admitted in the complex field. The most challenging
varied in the interva[10, 16. 500 robot configurations are randomly;,<s had to be solved for— 3. 4 and 5. when the aforementioned
chosen within the above limits, thus generating 500 samples of Slynomial has degree 156, 216 and 140, respectively. The dpos
cable robots. For each samplP — Solver computes the overall |, jape glimination procedure succeeded when other methods proved
solution setS. The latter comprises all solutions of the DGP such th be computationally too onerous, thus providing an efficient alter-

{[[s [[<pi,i=1...6}, where the equality holds for taut cables andi,tive g the state of the art in calculating a least-degree univariate
the inequality for slack ones. By ignoring the constrd|rg || < pj polynomial in a given ideal.

for 6—k cables, 50@_) additional samples ok-cable rObOtS'_V‘;‘ith For the numerical computation of the solution set, a numerical
k=2...5, may be easily extracted frob&P — Solver computatiofi. procedure based on homotopy continuation was developed and imple-
mented in the softwareGP — Solver. Distinctive features of the code

4As explained in Section V-BDGP — Solver provides the DGP solutions
for all possible constraint setsy = {|| sj ||= pj, Tj > 0,j € W}, with W C
{1,2,3,4,5,6, m=cardW) < 6, and{|| s« || < p«, Vk ¢ W}. By ignoring SWhen a single cable is taut, the external wrei@h. must be aligned
the latter requirement, the DGP solutions @y, provide the equilibrium with it. Whenn= 3 and only two cables are taut, the latter &@d. must be
configurations of a robot including oniy cables. coplanar [11, 12].
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TABLE V

DGPoOF ACDPRWITH 4 CABLES: REAL SOLUTIONS WITH NONNEGATIVE TENSION IN ALL CABLES

Geometric dimensions and load; = [5.521454, 7836054,— 1.009788, a, = [—5.366081, 8252356, 1959491, az = [~10.315057, 1612391, 0946641,
a4 = [5.392802,— 7.491653, 0679554, by = [2.182515, 3334434, 1997996, b, = [—2.214432, 3330068, 1013029, bz = [-3.659557, (265737, 1111276,
bs = [1.404915,— 3.195786, 1219710, (p1, P2, p3, Pa) = (14549082, 145649329, 15763856, 10898894, Q = 10.

Conf. (X,Y,2) (eo, €1, €2, €3) (T1, T2, T3, Ta) Hr
1 (5.4865, 36679, 86012) (1,11961,— 0.4459, — 0.5447) (9.16,0,0, 532) <>
2 (5.4514,— 0.5145,92931) (1,00413,— 0.4465,— 0.0290) (5.09,0,0,557) <>
3 (5.4947, 46478, 85797) (1,0.7274,— 0.4462,— 0.3354) (8.77,0,0, 349) <>
4 (—3.0150,— 2.6186, 105744 (1, —0.2066, 07251, 03046) (0,0,619,571) <>
5 (—0.4245,—1.7527, 110969 (1, —1.4031, 18469, 02283) (3.34,0,463,520) >
6 (—0.1964,—0.1268, 110728 (1,02101, 03801, 00573 (2.89,030,392, 448) >

TABLE VI

DGPOF ACDPRWITH 5 CABLES: REAL SOLUTIONS WITH NONNEGATIVE TENSION IN ALL CABLES

Geometric dimensions and loaak = [8.762837,— 1.064001,— 0.715711, a, = [6.732934, 823691, 0187221, ag = [5.094292, 7798299, 1258330, as =
[~11.189309,— 0.138832,— 1.614663, as = [4.870417,— 8.101810, 0176616, by = [3.889210, 0116354, 1549903, b, = [1.262183, 2258968, 1975178,
bs = [~1.533217, 2692867, 1915029, b, = [—3.991803, 0020197, 1186929, bs = [1.257342,— 3.138215, 1992397, (01, P2, 03, Pa, P5) = (14.772834,

12755196, 13153812, 1369011, 15712028, Q = 10.

Conf. (%,Y,2) (€0, €1, €2, €3) (11, T2, 13, T4, T5) Hr
1 (—1.8836,—0.5703, 36644 (1,19122,1034291,—-2.6272) (20.26,0, 0,26, 0 <>
2 (—0.9683,46303, 81748 (1,04483,01963, 00244 (0,6.19,0,544,0 <>
3 (—0.5205, 05002, 96903 (1, —22.1474,—12.1484,— 1.3686 (0,0,1024,0,1034) <>
4 (—2.2633, 38189, 48682 (1,149241,— 329020, 166404 (0.47,2160,0,2288,0 <>
5 (—2.1884, 22735, 49241 (1,41318466,— 125139896, 34080760 (4.72,1377,0,1894,0 <>
6 (1.5688, — 3.0697, 105834) (1, - 05711,— 0.3564,— 0.1105 (1.10,185,0, 366, 540) <>
7 (1.3853, 2.5305, 105848 (1, - 0.4701, - 0.2959, - 0.0865 (1.22,202,0, 372, 487) >
8 (—1.7403, 04235, 100329 (1,246125, 215424, 39457) (1.44,0,664, 285, 707) <>
9 (—2.5658, 20842, 101100 (1,28702, 22467, 05195 (0,162, 536,323, 615) <>
10 (1.5754,—2.4698, 106232 (1, —1.6897,—0.3362,— 0.1492 (0,375,050,317,671) >
11 (1.5476,— 3.5523, 105849 (1, - 1.0357,— 0.4345,— 0.1603 (0,202,114,290, 712) <>
12 (—2.6029,19238,101101) (1,30172,24254,05732 (0.02,154,532,334,624) >
13 (1.5460, — 3.4460, 106187) (1, - 0.9363, 0.6196, 0.1883 (060,170,077, 352, 653) >

TABLE VI

STOCHASTIC ANALYSIS OF RANDOM SAMPLES OF ROBOT GEOMETRIES WH 2, 3, 4, 5AND 6 CABLES.

n-cable CDPRs 2-cable CDPRs 3-cable CDPRs 4-cable CDPRs  bl&-C®DPRs 6-cable CDPRs
No. of samples 7500 10000 7500 3000 500
No. of feasible solutions 7500 12048 12006 5912 1114
No. of feasible solutions with 1 active cable 786.46%) 70(0.58%) 0 0 0
No. of feasible solutions with 2 active cables 67a%53%) 242420.11%) 1090.90%) 3(0.05%) 0
No. of feasible solutions with 3 active cables - 955479.29%) 698758.19%) 236239.95%) 380(34.11%)
No. of feasible solutions with 4 active cables — - 491040.89%) 262644.41%) 420(37.70%)
No. of feasible solutions with 5 active cables - - - 921(15.57%) 312(28.00%)
No. of feasible solutions with 6 active cables - — - — 2(0.17%)
TABLE VI

DISTRIBUTION OF MULTIPLE FEASIBLE CONFIGURATIONS AS EMERQYG FROM THE STOCHASTIC ANALYSIS

n-cable CDPRs

2-cable CDPRs

3-cable CDPRs

4-cable CDPRs bl&-C®PRs

6-cable CDPRs

No. of samples
No. of samples with 1 feasible solution
No. of samples with 2 feasible solutions

No. of samples with more than 2 feasible solutions 0

7500 10000

75000% 8320(83.20%)

0 129299%)
(3E1%)

7500 4000
3941(52.54%) 988(24.70%)
27543672%  12763190%)
805(10.73%) 736(18.40%)

500
113(22.60%)
213(42.60%)
174(34.80%)
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are that all solutions of the problem are found, including those wifi2] M. Carricato, “Direct geometrico-static problem of under-
slack cables, and stability analysis is integrated to identify feasible
equilibria.

It

was shown that the DGP may admit multiple equilibrium

constrained cable-driven parallel robots with three cables,”
ASME Journal of Mechanisms and Robatiesl. 5, no. 3, pp.
031008/1-10, 2013.

configurations, characterized by a different number of taut cabl¢$3] ——, “Inverse geometrico-static problem of under-constrained
Since slack cables are inactive, they represent a loss of capacity of cable-driven parallel robots with three cableASME Journal
the robot, which is instantaneously unable to control some of the
end-effector freedoms. A preliminary investigation was performed to
assess the most suitable architectures that may guarantee an opfitddl G. Abbasnejad and M. Carricato, “Real solutions of the direct
exploitation of the available actuators. The probability for a CDPR to
admit multiple stable equilibrium configurations (which is a critical
situation for the reliable control of the robot) was also considered.
The latter issues deserve a deeper investigation, and they will be fh&] J.-P. Merlet, “Further analysis of the 2-2 wire-driven parallel
topic of future research.
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