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BOOTSTRAP TESTING OF HYPOTHESES ON
CO-INTEGRATION RELATIONS IN VAR MODELS

By Giuseppe Cavaliere, Heino Bohn Nielsen, and Anders Rahbek∗

Abstract

It is well known that the finite-sample properties of tests of hypotheses on the
co-integrating vectors in vector autoregressive models can be quite poor, and that
current solutions based on Bartlett-type corrections or bootstrap based on unre-
stricted parameter estimators are unsatisfactory, in particular in those cases where
also asymptotic χ2 tests fail most severely. In this paper we solve this inference
problem by showing the novel result that a bootstrap test where the null hypoth-
esis is imposed on the bootstrap sample is asymptotically valid. That is, not only
does it have asymptotically correct size but, in contrast to what is claimed in
existing literature, it is consistent under the alternative. Compared to the the-
ory for bootstrap tests on the co-integration rank (Cavaliere, Rahbek and Taylor,
2012, Econometrica, 80, 1721-1740), establishing the validity of the bootstrap in
the framework of hypotheses on the co-integrating vectors requires new theoret-
ical developments, including the introduction of multivariate Ornstein-Uhlenbeck
processes with random (reduced rank) drift parameters. Finally, as documented
by Monte Carlo simulations, the bootstrap test outperforms existing methods.

Keywords: Co-integration; Hypotheses on co-integrating vectors; Bootstrap.

1 Introduction

A key part of co-integration analysis in vector autoregressive (VAR) models is,
upon determination of the co-integration rank, to make inference on the co-integrating
relations. As originally proposed in Johansen (1991) this can be done using likelihood
ratio tests. However, as is well-known, the finite-sample properties of these tests can
be quite poor, much like in the case of rank determination. Currently there are two
dominating approaches to this in the literature: one is to apply Bartlett corrections as
in Johansen (2000, 2002a) and the other to base inference on a bootstrap scheme where
the VAR model is estimated unrestrictedly (i.e., without imposing the null hypothesis),
as in Omtzigt and Fachin (2006). Unfortunately, both approaches tend to be unreliable
in terms of size, in particular in those cases where also the asymptotic test fails most
severely. We propose to solve this problem by showing the novel result that a bootstrap
test where the null hypothesis is imposed on the bootstrap sample is asymptotically
valid. That is, not only does it have asymptotically correct size in the parameter region

∗ We thank the co-editor and three anonymous referees for their very helpful and constructive comments
on a previous version of this paper. This paper also benefited from comments received by conference
and seminar participants at the Chinese University of Hong Kong, the Hong Kong University of Science
and Technology, Monash University, Shanghai Jao Tong University, Singapore Management University,
the University of Oxford and the University of Zaragoza. Funding from the Danish National Research
Foundation is gratefully acknowledged (Sapere Aude, Advanced Grant no. 12-124980). Rahbek is also
affi liated with CREATES, funded by the Danish National Research Foundation.
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under the null but, in contrast to what is claimed in the literature, it is also consistent
under the alternative. The theoretical arguments used to establish this includes the
introduction of Ornstein-Uhlenbeck (OU) processes with random drift parameters as
originally discussed by Basawa et al. (1991), where univariate versions of such processes
were used to prove that the standard bootstrap fails in the unit root case.

To initially fix ideas, assume that the data generating process (DGP) of the p-
dimensional observations {Xt}t=1,2,..,T satisfies the kth order VAR model with r co-
integrating relations as given by

∆Xt = αβ′Xt−1 +
∑k−1

i=1
Γi∆Xt−i + εt, t = 1, ..., T , (1)

with {εt} independent and identically distributed (i.i.d.) with mean zero and full-rank
variance matrix Ω, and where the initial values X1−k, ..., X0 are fixed in the statistical
analysis. We assume the classic co-integration conditions hold, which we denote by the
‘I(1, r) conditions’; that is, (a) the characteristic polynomial associated with (1) has
p− r roots equal to 1 and all other roots outside the unit circle, and (b) α and β have
full column rank r. Under these conditions Xt is I(1) with co-integration rank r, such
that the co-integrating relations β′Xt are stationary.

We are interested in hypothesis testing on the co-integrating vectors β, where we
focus on testing ‘known co-integrating relations’, which corresponds to testing the null
hypothesis H0 : β = τ . That is, with τ a known p × r matrix of full column rank r,
the subspaces spanned by β and τ , respectively, are identical. For the co-integrated
VAR model, the most used test is the well-known likelihood ratio (LR) test of Johansen
(1996), which rejects for large values of the LR statistic, say QT (τ), formally defined
in Section 2 below. Johansen (1996) established that the QT (τ) is asymptotically χ2

when H0 is true. Moreover, when H0 does not hold, as shown here QT (τ) diverges, see
Remark 3.4 below. Hence, the LR test is consistent.

Bootstrap schemes based on restricted parameter estimates were originally proposed
without theory in Fachin (2000) and Gredenhoff and Jacobson (2001); see also Li and
Maddala (1996, 1997) for the case of co-integrating regressions. Based on simulations,
they suggest to estimate (1) under H0 and then use the corresponding (restricted)
estimates α̃, τ , Γ̃i, i = 1, ..., k−1, in the bootstrap generating process (BGP). Then, the
null distribution of QT (τ) is approximated by the (conditional) distribution of Q∗T (τ),
i.e. the LR statistic for testing β = τ , computed on the bootstrap sample. However,
Omtzigt and Fachin (2006) conjecture that this bootstrap based on restricted parameter
estimates is inadmissible under the alternative hypothesis.

Our proof of the validity of the bootstrap initially requires investigating the as-
ymptotic behavior of the restricted parameter estimates. Although these estimates are
consistent only when H0 is true, in Lemma 1 below we establish that, nonetheless, even
when H0 does not hold these estimates converge to pseudo-true values which satisfy, for
some r∗ < r, the I(1, r∗) conditions. Importantly, we show that this lemma does not
imply that the resulting bootstrap sample is an I(1, r∗) process: instead, we establish
in Proposition 1 that the BGP has p− r unit roots, and (r − r∗) additional stochastic
roots local-to-unity; i.e., stochastic roots which asymptotically tend to one at the rate
of T . In this sense, the BGP has co-integrating rank r∗ (which can be lower than the
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true co-integrating rank r) and p − r∗ = (p − r) + (r − r∗) common stochastic trends,
which are of order T 1/2. This novel representation of the bootstrap sample allows us to
establish in Theorem 1 that the bootstrap LR statistic is bounded in probability even
when the incorrect null hypothesis is imposed on the bootstrap data, while being χ2

under the true null hypothesis. Hence, the bootstrap LR test is first-order valid and
consistent in the usual sense.

The paper is organized as follows. In Section 2 we outline the reference LR test as
well as the main bootstrap algorithm(s). The large sample properties of the bootstrap
are established in Section 3. In Section 4, we report some finite-sample comparisons
from a Monte Carlo study which suggests that the proposed bootstrap test allows for
substantial improvements not only over the finite sample properties of the asymptotic
LR test, but also relative to the corresponding bootstrap procedure of Omtzigt and
Fachin (2006) and the Bartlett-corrected LR test of Johansen (2000, 2002a). In Section
5 we discuss inclusion of deterministic components, with focus on the model with an
intercept. Section 6 concludes. Mathematical proofs, additional Monte Carlo results
and a full treatment of the model with an intercept are collected in the accompanying
Supplement (Cavaliere, Nielsen and Rahbek, 2014, CNR hereafter).

Notation. We use P ∗, E∗ and Var∗ respectively to denote probability, expectation and

variance, conditional on the original sample. With w→, p→ and w∗→p we denote weak con-
vergence, convergence in probability and weak convergence in probability, respectively.
The Euclidean norm of the vector x is ‖x‖ := (x′x)1/2, where x := y indicates that x is
defined by y. For a given sequenceX∗T computed on the bootstrap data, X

∗
T = o∗p(1) and

X∗T
p∗→p X mean that for any ε > 0, P ∗(||X∗T || > ε)

p→ 0 and P ∗(||X∗T −X|| > ε)
p→ 0,

respectively, as T → ∞. Similarly, X∗T = O∗p (1) means that, for every ε > 0, there
exists a constantM > 0 such that, for all large T , P (P ∗(||X∗T || > M) < ε) is arbitrarily
close to one. Also, I(·) denotes the indicator function; b·c denotes the integer part of
its argument; Ik denotes the k× k identity matrix and 0j×k the j × k matrix of zeroes.
The space spanned by the columns of any m × n matrix a is denoted as span(a); if
a is of full column rank n < m, then ā := a (a′a)−1 and a⊥ is an m × (m− n) full
column rank matrix satisfying a′⊥a = 0; for any square matrix a, det(a) denotes its
determinant. Finally, with q ∈ R, (q)+ := max{0, q}. The space of m × 1 vectors of
càdlàg functions on the unit interval [0, 1] is denoted by Dm.

2 The LR Test and Bootstrap Algorithms

The (quasi) LR test statistic for the null hypothesis H0 : β = τ is based on maxi-
mization of the Gaussian likelihood of (1) with and without the restriction imposed.
We use H1 to refer to the unrestricted model where β is a freely varying (p × r) ma-
trix. For estimation under H1, let Sij := T−1

∑T
t=1RitR

′
jt, i, j = 0, 1, with R0t and

R1t respectively denoting ∆Xt and Xt−1, corrected (by OLS) for the lagged differences,
∆X2t :=

(
∆X ′t−1, ...,∆X

′
t−k+1

)′. As in Johansen (1996), with λ̂1 > . . . > λ̂p the ordered
solutions of the eigenvalue problem

det(λS11 − S10S
−1
00 S01) = 0, (2)
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β̂ is found as the eigenvectors corresponding to the r largest eigenvalues. The (unre-
stricted) maximized likelihood function is found, up to a constant, from L

−2/T
max (β̂) =

det(S00)
∏r
i=1(1− λ̂i) = det(Ω̂), where Ω̂ = T−1

∑T
t=1 ε̂tε̂

′
t = S00−S01β̂(β̂

′
S11β̂)−1β̂

′
S10

is the sample covariance matrix of the residuals. Under the restriction H0: β = τ ,
likelihood estimation in (1) reduces to the regression of ∆Xt on (X ′t−1τ , ∆X′2t)′, and
the corresponding maximized likelihood function is L−2/T

max (τ) = det(Ω̃), with Ω̃ =

T−1
∑T

t=1 ε̃tε̃
′
t = S00 − S01τ(τ ′S11τ)−1τ ′S10. The LR statistic is then given by

QT (τ) = −2 logQ(H0|H1) = −T log det(Ω̃−1Ω̂) (3)

and, under H0, QT (τ) converges to a χ2 distribution with (p− r) r degrees of freedom.
The bootstrap implementation of the LR test for H0 : β = τ which we advocate is

based around a bootstrap recursion which mimics the DGP under the null hypothesis.
To that end, let Ψ := (Γ1, ...,Γk−1) collect the short run parameters and recall that
when β = τ , the ML estimators of α and Ψ are given by α̃ = S01τ (τ ′S11τ)−1 and
Ψ̃ := (Γ̃1, .., Γ̃k−1) = M02M

−1
22 −α̃τ ′M12M

−1
22 respectively, withMij := T−1

∑T
t=1 ZitZ

′
jt,

i, j = 0, 1, 2, and Z0t, Z1t and Z2t denoting ∆Xt, Xt−1 and ∆X2t, respectively.
Using these estimates, the bootstrap algorithm we consider is based on the recursion

∆X∗t = α̃τ ′X∗t−1 +
∑k−1

i=1
Γ̃i∆X

∗
t−i + ε∗t , (4)

where the bootstrap shocks ε∗t are obtained by re-sampling (after re-centering) from
the corresponding restricted residuals, say ε̃t := ∆Xt − α̃τ ′Xt−1 − Ψ̃∆X2t, obtained
from estimating (1) under the null hypothesis H0. The bootstrap LR statistic for
H0 : β = τ is simply the LR statistic computed on the bootstrap sample, Q∗T (τ) :=

−T log det(Ω̃∗−1Ω̂∗), where Ω̂∗ = T−1
∑T

t=1 ε̂
∗
t ε̂
∗′
t = S∗00 − S∗01β̂

∗
(β̂
∗′
S∗11β̂

∗
)−1β̂

∗′
S∗10 and

Ω̃∗ = T−1
∑T

t=1 ε̃
∗
t ε̃
∗′
t = S∗00 − S∗01τ(τ ′S∗11τ)−1τ ′S∗10; here the ‘

∗’superscript on product
moment matrices and parameter estimates refer to the bootstrap sample.

We now detail in Algorithm 1 our bootstrap LR test for H0 : β = τ .

Algorithm 1:

(i) Estimate model (1) under H0, producing estimates {α̃, Ψ̃ = (Γ̃1, ..., Γ̃k−1)} and
corresponding residuals, ε̃t.

(ii) Construct the bootstrap sample recursively from (4) initialized at X∗j = Xj ,
j = −k + 1, ..., 0, and with the T bootstrap errors ε∗t obtained by i.i.d. re-sampling of
the re-centered residuals, ε̃ct := ε̃t − T−1

∑T
i=1 ε̃i;

(iii) Using the bootstrap sample, {X∗t }, compute the bootstrap analogue of the LR
statistic, Q∗T (τ), and define the corresponding p-value as p∗T := 1 − G∗T (QT (τ)), with
G∗T (·) denoting the conditional (on the original data) cdf of Q∗T (τ).

(iv) The bootstrap test of H0 at level η rejects H0 if p∗T ≤ η.

Remark 2.1 It may happen that in finite samples the estimates obtained in step (i)
do not satisfy the I(1, r) conditions; if this is the case, the bootstrap sample may be
explosive. Hence, after step (i) one may check that the roots of the equation det(Ã (z)) =

0, where Ã (z) := (1− z) Ip − α̃τ ′z −
∑k−1

i=1 Γ̃iz
i (1− z), are either equal to 1 or outside
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the unit circle. This step has been advocated for bootstrap co-integration rank testing
by Swensen (2006, 2009) and Cavaliere, Rahbek and Taylor (2012). By Lemma 1
below it holds that Ã (z) always satisfies this condition as T diverges even when H0 is
false, so that checking this condition becomes irrelevant in large samples. Monte Carlo
simulations show that it is also irrelevant in samples of moderate size.

Remark 2.2 The cdf G∗T (·) required in Step (iv) can be approximated numerically
by generating B (conditionally) independent bootstrap statistics, Q∗T :b, b = 1, ..., B,
computed as in Algorithm 1. The bootstrap p-value is then approximated by p̃∗T,B :=

B−1
∑B

b=1 I(Q∗T :b(·) > QT (·)), and is such that p̃∗T,B
a.s.→ p∗T as B → ∞; cf. Hansen

(1996), Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000).

Remark 2.3 The key feature of this bootstrap scheme is that the estimated parameters
used in constructing the bootstrap sample, are obtained under the restriction of the null
hypothesis. As advocated by Omtzigt and Fachin (2006), it is also possible to base the
bootstrap on unrestricted parameter estimates, in line with much statistical literature
on bootstrap hypothesis testing. That is, with α̂, β̂, Γ̂i, i = 1, ..., k − 1 denoting the
unrestricted estimates, the bootstrap sample is generated according to the recursion

∆X∗t = α̂β̂
′
X∗t−1 +

∑k−1

i=1
Γ̂i∆X

∗
t−i + ε∗t . (5)

In this case, the bootstrap test statistic is the previous LR statistic but with τ := β̂;
that is, the LR statistic for the null hypothesis that β equals the unrestricted estimate
β̂. We label this approach ‘unrestricted bootstrap’in the following. When H0 holds,
the restricted estimates will be more effi cient than the unrestricted estimates, and one
would expect the bootstrap test from Algorithm 1 to display superior finite sample size
properties than the unrestricted bootstrap test based on (5). This prediction on the
size of the bootstrap tests is supported by the Monte Carlo comparisons in Section 4.

3 Asymptotic Analysis

The focus in this section is to establish that the bootstrap LR test from Algorithm 1
is asymptotically valid, i.e. that it is asymptotically correctly sized under the null and
consistent under the alternative. The proof of this requires three distinct steps.

First, we derive in Lemma 1 the limiting behavior of the restricted Gaussian quasi
maximum likelihood estimator (QMLE) under the alternative hypothesis. Specifically,
we show that, as the sample size increases, the QMLE converges to pseudo-true parame-
ters which satisfy the I (1, r∗) conditions, where r∗ < r is formally defined below. That
is, as p−r∗ > p−r, we find that under the alternative, the pseudo-true parameters allow
for more common stochastic trends than in the DGP. While this implies that the QT (τ)

test is consistent (as we formally prove in Remark 3.4 below), somewhat surprisingly it
does not imply that the bootstrap statistic Q∗T (τ) diverges. To see this, as a second step
we show in Proposition 1 that the bootstrap sample indeed has p− r∗ stochastic com-
mon trends which are of order T 1/2 (as I(1) common trends), and r∗ components which
are of the order of classic stationary relations. Thus, in this sense the bootstrap sample
mimics the behavior of the system generated by the pseudo-true parameters derived in
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Lemma 1. By applying this result in a detailed likelihood-based asymptotic analysis,
in the third step, we show that both Ω̃∗ and Ω̂∗ converge (in probability) to the same
pseudo true value Ω∗0, at a rate such that, crucially, Q

∗
T (τ) = −T log det(Ω̃∗−1Ω̂∗) is as-

ymptotically bounded, irrespectively of the null hypothesis to be true or not. Moreover,
since under the null hypothesis, Q∗T (τ) is asymptotically χ2 (in probability), these two
results guarantee that the bootstrap test is asymptotically correctly sized and consistent
under the alternative.

The results established in this section hold for any I(1, r) DGP satisfying the as-
sumptions stated e.g. in Johansen (1996), coupled with a finite fourth order moment
condition as required for the bootstrap co-integration tests of Swensen (2006) and Cav-
aliere et al. (2012). Henceforth, with the subscript ‘0’denoting the true parameter
values, we make the following assumptions.

Assumption 1 The true parameters {α0, β0,Ψ0} in (1) satisfy the I(1,r0) conditions.

Assumption 2 The innovations {εt} in (1) form an i.i.d. sequence with E (εt) = 0,
E (εtε

′
t) = Ω0 with Ω0 positive definite, and E ‖εt‖4 ≤ K <∞.

3.1 Behavior of Restricted Parameter Estimators

When H0 holds, span (τ) = span (β0) and all r0 linear combinations τ ′Xt are stationary,
as is well-known from classic co-integration analysis. Conversely, when H0 does not
hold, span (τ) 6= span (β0). While the two subspaces are different, they may share (co-
integrating) vectors. Thus, with r∗ denoting the dimension (i.e., the ‘pseudo-rank’) of
span (β0)∩ span (τ), there exist φ and ξ, both of dimension r0× r∗ such that β0φ = τξ.
Furthermore, we can set β∗0 := β0φ ∈ span (τ), such that the r∗ linear combinations
β∗′0 Xt are stationary. In other words, if r∗ = 0, all r0 linear combinations τ ′Xt will be
integrated of order one, i.e. I(1), while if r∗ > 0, r∗ linear combinations of τ ′Xt are
stationary, while r0 − r∗ are not. Note that r∗ = r0 only when the null hypothesis is
true. In addition, r∗ = 0 requires that r0 ≤ p− r0, or 2r0 − p ≥ 0. In terms of possible
values, r∗ may thus take values in the closed interval defined as {(2r0 − p)+, ..., r0}.

The pseudo-rank r∗ is a fundamental quantity to determine the (large sample) be-
havior of estimates used to generate the bootstrap sample. In the next lemma, we
characterize the limiting system generated by the pseudo-true parameters (i.e., the
limit of the QML estimators under the alternative) as an I (1, r∗) system.

Lemma 1 With Π̃ = α̃τ ′, Ψ̃, and Ω̃ the restricted QML estimators it follows that under
Assumptions 1 and 2, as T →∞,

Π̃
p→ Π∗0 = α∗0β

∗′
0 , Ψ̃

p→ Ψ∗0 =
(
Γ∗0,1, ...,Γ

∗
0,k−1

)
and Ω̃

p→ Ω∗0 > Ω0,

where the pseudo-true parameters α∗0, β
∗
0 and Ψ∗0 and Ω∗0, defined in Section C.1 of

CNR, satisfy the I(1, r∗) conditions.

Remark 3.1 By Lemma 1, estimation under the wrong restrictions on β implies that
the estimated Π matrix has, in the limit, rank lower than the true co-integrating rank
r0. In terms of the characteristic polynomial associated to the pseudo-true parameters,
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A∗ (z) := (1− z) Ip − α∗0β∗′0 z −
∑k−1

i=1 Γ∗0,iz
i (1− z), we have that A∗ (z) has p− r∗ unit

roots and all other roots outside the unit circle. As p− r∗ ≥ p− r0, we have p− r0 unit
roots corresponding to those characterizing the true DGP, and r0 − r∗ additional unit
roots generated by the fact that, when imposing the incorrect null in the estimation,
there can at most be r∗ < r0 co-integrating relations. Stated differently, imposing
incorrect co-integrating vectors, (asymptotically) decreases the co-integration rank.

Remark 3.2 It is a simple consequence of Lemma 1 that if, and only if, H0 is true, we
have that r∗ = r0, α∗0β

∗′
0 = α0β

′
0 and the restricted estimators α̃, Ψ̃, Ω̃ are consistent.

Remark 3.3 As noted, Lemma 1 implies that, in the limit, the estimates {α̃, τ , Ψ̃}
satisfy the I(1, r∗) conditions, even if r∗ is lower than the true rank r0, and consequently
in the limit, the root check as in Remark 2.1 becomes redundant.

Remark 3.4 An important corollary of Lemma 1, which will be a key ingredient for
the proof of the consistency of the bootstrap LR test is that, when H0 does not hold,
QT (τ) diverges. To see this, it suffi ces to notice that QT (τ) = T log det(Ω̂−1Ω̃), with
Ω̂ the covariance matrix of the estimated residuals from the unrestricted model. As is
well known (Johansen, 1996), Ω̂

p→ Ω0 while from Lemma 1, Ω̃
p→ Ω∗0 > Ω0.

3.2 Behavior of the Bootstrap Sample

A direct implication of Lemma 1 for the bootstrap recursion in (4) would seem to be
that the bootstrap sample generated by (4) is I(1) with co-integration rank r∗ in large
samples. That is, in large samples X∗t will behave like X

†
t defined by the recursion

∆X†t = α∗0β
∗′
0 X
†
t−1 +

∑k−1

i=1
Γ∗0,i∆X

†
t−i + ε∗t (6)

which generates p−r∗ unit roots, all other roots being outside the unit circle. However,
as we will show next, this is only true for the stationary transformations β∗′0 X

∗
t ,∆X

∗
t .

Conversely, in the common trend directions α∗′0⊥Γ∗0X
∗
t (with Γ∗0 := Ip−

∑k−1
i=1 Γ∗0,i) this is

not true, as in the limit the bootstrap dataX∗t have r0−r∗ additional roots local-to-unity
rather than additional r0 − r∗ unit roots.

The next proposition states this formally and is a fundamental part of our asymp-
totic analysis as it provides the theory needed for controlling the asymptotic behavior
of the bootstrap sample and therefore of the bootstrap Q∗T (τ) statistic.

Proposition 1 Under Assumptions 1 and 2, with {X∗t } generated as in Algorithm 1:
(i) The bootstrap process X∗t has the common trend representation

X∗t = C∗zZ
∗
t + S∗t , (7)

with C∗z = β∗0⊥(α∗′0⊥Γ∗0β
∗
0⊥)−1 and maxt=1,..,T ||S∗t || = o∗p(T

1/2). The process Z∗t satisfies

T−1/2Z∗bT ·c
w∗→p Z (·) (8)

on Dp−r∗. Here Z is a (p− r∗)-dimensional Ornstein-Uhlenbeck process satisfying

dZ (u) = π∗Z (u) du+ α∗′0⊥dW
∗ (u) , (9)
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with π∗ a random drift parameter of dimension (p− r∗)×(p− r∗) of reduced rank r0−r∗,
a.s., and W ∗ the p-dimensional Brownian motion with covariance matrix Ω∗0, defined

by the functional limit of the bootstrap errors, T−1/2
∑bT ·c

t=1 ε
∗
t
w∗→p W

∗ (·) on Dp.
(ii)With X†t generated recursively as in (6) with initial values X

†
t = Xt, t = −k+1, ..., 0,

maxt=1,...,T ||Var∗(R∗t −R
†
t )|| = Op(T

−1) (10)

where R∗t := (X∗′t β
∗
0,∆X

∗′
t )′ and R†t := (X†′t β

∗
0,∆X

†′
t )′.

Remark 3.5 To illustrate the results in Proposition 1, consider a VAR(1) with r0 = 1.
Estimation under H0 : β = τ requires fitting the regression ∆Xt = ατ ′Xt−1 + εt,
yielding α̃ = M01τ (τ ′M11τ)−1 and Π̃ = α̃τ ′. If H0 does not hold, the regressor τ ′Xt

is I(1) and therefore, even though α0 6= 0, we have that α̃
p→ 0 and that T α̃ has a

unit-root type distribution. Consequently, the restricted estimator of Π satisfies (as in
Lemma 1) Π̃ := α̃τ ′

p→ 0p×p (of rank r∗ = 0) and (as in Proposition 1) T Π̃
p→ π∗, where

π∗ is a random p × p matrix of rank r − r∗ = 1. As a result, the bootstrap recursion
∆X∗t = α̃τ ′X∗t−1 + ε∗t generates a co-integrated VAR(1) with r = 1 for any finite T , but
since α̃τ ′ = Op

(
T−1

)
, it is also local to a VAR(1) with rank r∗ = 0. As a consequence,

T−1/2X∗bT ·c
w∗→p Z (·), where Z (u) solves dZ (u) = π∗Z (u) du+ dW ∗ (u).

Remark 3.6 The behavior of X∗t in the (p − r∗) non-stationary directions given by
β∗′0⊥X

∗
t , is determined by Z

∗
t which, normalized by T

1/2, converges weakly (in proba-
bility) to the multivariate OU process with random drift Z. In terms of Z, observe
that π∗ has rank r0 − r∗, such that the original (p− r0) unit roots are preserved and,
in addition, r0 − r∗ extra (stochastic) roots local-to-unity are entering, see (C.20) in
CNR for the definition of the random drift parameter π∗. That is, the convergence rate
of the asymptotic additional (r0 − r∗) local to unit roots is such that they enter the
distribution of the limit OU process Z. On the other hand, when r∗ = r0 such that the
null hypothesis applies, β∗0⊥ = β0⊥, α

∗
0⊥ = α0⊥ and π∗ = 0, which implies Z = α′0⊥W

∗.

Remark 3.7 Multivariate OU processes with reduced rank drift as Z in (9) appear,
in the special case of non-stochastic drift, in Kessler and Rahbek (2001, 2004) for the
analysis of co-integrated diffusion processes and in Johansen (1996) for the derivation
of the local power function of the trace test for co-integration. However, in our case
the drift parameter π∗ is stochastic and, in this sense, Z has a random distribution.
Interestingly, a special case of Z with p = 1 and r∗ = 0 has been found by Basawa et al.
(1991), who show that the usual bootstrap estimator of the autoregressive coeffi cient
in AR(1) processes with a unit root is not Dickey-Fuller distributed but instead has a
random distribution, described in terms of a univariate OU process with random drift.

Remark 3.8 In the proof of Proposition 1 we show that the bootstrap process can be
transformed into a recursion with unit roots and additional (stochastic) near unit roots.
More precisely, let Y ∗t denote an appropriate rotation of the bootstrap process X

∗
t (see

Section C.2 of CNR for details), with ε∗yt the correspondingly rotated bootstrap errors.
Then Y ∗t can be given by the recursion

∆Y ∗t = (ã∗0b̃
∗′
0 + T−1ã∗1b̃

∗′
1 )Y ∗t−1 +

∑k−1

i=1
g̃∗i ∆Y

∗
t−i + ε∗yt,
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where ã∗0b̃
∗′
0 and ã

∗
1b̃
∗′
1 are stochastic and of reduced rank r

∗ and (r0−r∗) a.s., respectively.
With ã∗1, b̃

∗′
1 and g̃∗i fixed (that is, conditional on the original sample), such recursion

appears in the study of local alternatives for the co-integration rank statistic of rank r∗

with r0− r∗ additional co-integrating vectors, as studied in Johansen (1996). Also, it is
known from the literature onWald tests on the co-integration parameters in the presence
of near integrated regressors, see Elliott (1998), where the rank r∗ here corresponds to
the dimension of the co-integrating parameter, whereas the additional r0− r∗ near unit
roots are due to the fact that some of the variables in the system are assumed near
integrated. A crucial difference is that, in our bootstrap setting, the local alternative
parameters are random, even in the limit, and therefore the limiting processes are stated
in terms of a OU process with random drift.

Remark 3.9 It follows from Proposition 1 that the behavior of X∗t in the r
∗ stationary

directions given by β∗′0 X
∗
t as well as of the differenced process ∆X∗t can be approxi-

mated by β∗′0 X
†
t and ∆X†t , see (10). Thus, indeed as claimed before Proposition 1, the

limiting I(1, r∗) process X†t (approximately) describes the stationary transformations
of the bootstrap process X∗t . This will be used repeatedly when deriving the limiting
properties of the bootstrap statistic Q∗T (τ) in the next section.

3.3 Behavior of the Bootstrap LR Statistic

We can now establish the asymptotic behavior of the bootstrap statistic Q∗T (τ) of
Algorithm 1, see Theorem 1 below. The proof of Theorem 1 is based on the asymptotic
properties of the restricted (α̃∗τ ′ and Γ̃∗i , i = 1, ..., k−1) and unrestricted (α̂∗β̂

∗′
and Γ̂∗i ,

i = 1, ..., k− 1) parameter estimators computed on the bootstrap sample, as implied by
Lemma 1 and Proposition 1. In particular, these asymptotic properties imply that the
restricted and unrestricted bootstrap residual covariance matrices Ω̃∗ and Ω̂∗ are not
only consistent for the pseudo-true covariance Ω∗0 but also, importantly, that Ω̃∗− Ω̂∗ is
of order O∗p

(
T−1

)
. This is used in a Taylor expansion to show that Q∗T (τ) is bounded

in probability under H1, while when H0 holds, we strengthen this result by showing that
the limiting distribution is χ2, as required.

Theorem 1 Let the bootstrap statistic Q∗T (τ) be generated as in Algorithm 1. Then,
under the conditions of Proposition 1, Q∗T (τ) = O∗p (1). In addition, if H0 holds,

Q∗T (τ)
w→p χ

2 (r (p− r)).

An immediate corollary of Theorem 1 is that the bootstrap test based on Q∗T (τ)

will be asymptotically correctly sized under the null hypothesis and consistent under
H1. These two results follow since, under Assumptions 1 and 2, QT (τ)

w→ χ2 (r (p− r))
when H0 holds coupled with the fact that QT (τ) diverges under H1, see Remark 3.4.

Corollary 1 Under the conditions of Theorem 1, if H0 holds the bootstrap p-value
satisfies p∗T

w→ U [0, 1]. If H1 holds, p∗T
p→ 0.

Remark 3.10 A crucial part of the proof of Theorem 1 is to establish the behavior
of bootstrap unrestricted estimators α̂∗ and β̂

∗
, obtained by reduced rank regression

under H1. We show that only r∗ of the corresponding limiting eigenvalues are non-zero,
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and hence only r∗ eigenvectors in β̂
∗
are identified in the limit. In fact, the normalized

r∗ eigenvectors, see (C.39) in CNR, have a weak limit (in probability) essentially of the
form

α∗′0 Ω∗−1
0

∫ 1

0
dW ∗ (u)Z (u)′

(∫ 1

0
Z (u)Z (u)′ du

)−1

,

which is mixed Gaussian as α∗′0 Ω∗−1
0 W ∗ and Z are independent and W ∗ Gaussian.

Hence, inference based on these eigenvectors would be expected to be χ2, in line with
results in Elliott (1998), where an identified triangular system is considered under local
to unity. However, under H1, it holds that r > r∗ and therefore β̂

∗
is not mixed Gaussian

and Q∗T (τ) not χ2-distributed under H1. For this reason, in Theorem 1 we state the
main result under H1 in terms of the order of Q∗T (τ).

Remark 3.11 The key fact that Q∗T (τ) = O∗p (1) under the alternative, while QT (τ)

diverges is an implication of the fact that by Proposition 1 the bootstrap sample has
p − r∗ linear combinations which are of order T 1/2, and r∗ which are of order one
(stationary linear combinations). This is unlike the original sample which, as the I (1, r0)

conditions hold, has p − r0 ≤ p − r∗ stochastic trends which are of order T 1/2. Thus,
the bootstrap sample mimics the limiting I(1, r∗) system in Lemma 1 in the sense that
it shares the number of T 1/2 stochastic trends and hence, as shown in the proof of
Theorem 1, Q∗T (τ) is bounded in probability. In contrast, the original data, under the
I(1, r0) conditions, r0 > r∗, has too few T 1/2 trends and the limiting LR statistic QT (τ)

therefore diverges, as expected.

Remark 3.12 As demonstrated, Q∗T (τ) is (asymptotically) χ2 under H0 and of order
O∗p (1) —but not χ2 —under H1. Therefore, it may be conjectured that the bootstrap
Q∗T (τ) test has less power than the unrestricted bootstrap test of Remark 2.3, which is
(asymptotically) χ2 both under H0 and under H1. Indeed, as illustrated by Monte Carlo
simulations in Section 4, the distribution of Q∗T (τ) is shifted to the right with respect
to the χ2 distribution, but the corresponding power loss is diffi cult to deem relevant,
given the massive size improvement of the bootstrap test based on Q∗T (τ) with respect
to the other methods. That is, even when the unrestricted bootstrap is size corrected
—which is unfeasible in practice —the power loss is negligible.

Remark 3.13 Following the previous remark, in order to design a bootstrap test with
χ2 asymptotic distribution both under H0 and H1, one may think of a ‘hybrid’bootstrap
based on Q∗T (τ) computed on a bootstrap sample satisfying

∆X∗t = α̂τ ′X∗t−1 +
∑k−1

i=1
Γ̂i∆X

∗
t−i + ε∗t ,

where H0 : β = τ is imposed on the BGP but unrestricted estimates of the remaining
parameters are employed. Since the unrestricted estimators are consistent irrespectively
of H0 being true or not, Q∗T (τ) will indeed be asymptotically χ2, when the limiting
parameters {α, τ ,Γ1, ...,Γk−1} satisfy the I(1, r) conditions. While under H0 this is
obviously implied by Assumptions 1 and 2, under H1 this is however not true in general.
Consequently, the BGP may not be I(1), hence invalidating the bootstrap.
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4 Numerical Results

Using Monte Carlo simulations we compare the finite sample properties of the proposed
bootstrap LR test (denoted ‘Bootstrap’in the following) with: (i) the asymptotic LR
test (‘Asymptotic’), where the obtained LR statistic is compared with the χ2 limiting
null distribution; (ii) the Bartlett corrected LR test (‘Bartlett’) as proposed in Johansen
(2000, 2002a), where the Bartlett correction is implemented using the unrestricted pa-
rameter estimates, as in Omtzigt and Fachin (2006); (iii) the bootstrap algorithm based
on unrestricted parameter estimates (‘Unrestricted bootstrap’), see Remark 2.3. Unlike
existing simulations, the reported Monte Carlo results allow a detailed comparison be-
tween all four approaches. The simulations cover co-integrated systems of different
dimensions (p = 2, 4), ranks (r = 1, 2) and lags (k = 1, 2) as well as the inclusion
of an intercept (see Section 5). This section presents findings for a specific class of
co-integrated processes (that is, p = 4, r = 1, k = 1; see below), while general and
exhaustive simulations are reported in Section B of CNR. Importantly, the specific case
presented here is representative for the conclusions based on all simulations.

The DGPs are as in (1) with Gaussian i.i.d. innovations, dimension p = 4, number of
lags k = 1, co-integration rank r = 1, initialized at X0 = 0. Sample sizes T ∈ [40, 1000]

are considered and different parameter configurations for α, β and Ω are chosen by
setting α = (a1, a2, 0, 0)′, β = (1, b1, 0, 0)′ and Ω = I4, with a1, a2 and b1 varying such
that the process is I(1) and co-integrated. Tests of the hypothesis H0 : β = τ , are
considered with τ = (1, 0, 0, 0)′. To study empirical size, b1 = 0 in the DGPs such
that by varying (a1, a2) we fully characterize the relevant part of the parameter space
under the null, see Johansen (2000, 2002b). The parameter grid applied is (−a1, a2) ∈
A×(A∪{0}), with A := {0.05, 0.10, ..., 0.9}. Behavior under the alternative is examined
by letting b1 > 0 vary and considering different combinations of (a1, a2) such that the
I(1, r) conditions hold with r = 1. We report here results for a 10% nominal significance
level; qualitatively similar results are obtained for the 5% level. All experiments are run
over 10,000 Monte Carlo replications. For the bootstrap tests, the bootstrap distribution
of Q∗T (τ) is simulated as in Remark 2.2 with B = 999 bootstrap replications. Ox code
for the bootstrap test is available from the authors upon request.

Properties Under the Null. Taking the case T = 100 to illustrate, Panel I of
Figure 1 reports empirical rejection frequencies (ERFs) for the four tests considered.
The simulations show excellent size control of our proposed bootstrap, with ERFs close
to the nominal 10% over the entire parameter space. The asymptotic test, on the other
hand, displays severe size distortions, with ERFs above 50% for parameter values with
slow error-correction, i.e. (a1, a2) close to the origin. Notice that the ERFs for the
flat areas of the graph are above 13%. The Bartlett corrected test is an improvement
over the asymptotic test, but the ERFs are again severely inflated for cases with slow
error correction. The unrestricted bootstrap is quite similar to the Bartlett correction,
and delivers inferior size control, as compared with the proposed bootstrap. Overall,
in terms of ERFs under the null, the proposed bootstrap appears to be the only valid
approach, as it allows for a proper size control over the entire parameter space, with
the other approaches showing severe size distortions. The same result carries through
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when different sample sizes are considered, see Section B of CNR.

[Figure 1 around here]

Properties Under the Alternative. The large differences in empirical size make it
diffi cult to meaningfully compare the tests under parameter configurations not satisfying
the null (see e.g. Davidson and MacKinnon, 2006). In order to shed some light on the
power properties of the considered tests we present ERFs obtained after size-adjusting
the tests pointwise. To do so, for each given point in the parameter space (a1, a2, b1, T ),
we first perform the simulation under the null (i.e., for (a1, a2, b1, T ) = (a1, a2, 0, T )) and
record the nominal level that would have given an ERF equal to the desired 10%. Next,
we use this adjusted nominal level in the simulations under the alternative hypothesis,
where b1 6= 0. Panel II of Figure 1 shows the rejection frequencies for tests of H0 against
a sequence of DGPs with b1 > 0, for (a1, a2) = (−0.4, 0).

Results for T = 60 and 100 are summarized in Graphs (A)-(B), respectively. The
results illustrate that the suggested bootstrap is very close, in terms of ERFs under the
alternative, to the unfeasible, size-adjusted asymptotic test. In particular, the ERFs of
the two tests differ only marginally, and become virtually identical as T increases. The
reason seems to be that the distribution of Q∗T (τ) under the alternative is shifted to the
right with respect to the asymptotic (χ2) null distribution, cf. Theorem 1 and Remark
3.12. Note, however, that the marginally higher rejection rates of the asymptotic tests
are not attainable in practice– due to the severe size distortion under a true null.

To further illustrate the behavior of the tests as a function of the number of ob-
servations, in Graphs (C)-(D) we fix b1 to 0.04 and 0.2, respectively, while letting T
ranging from 40 to 1000. For small deviations from the null, the rejection frequencies of
the proposed bootstrap test are indistinguishable from the asymptotic test, while they
are only marginally lower for larger deviations from the null.

5 The Model with an Intercept

In this section we discuss how the results generalize to VAR models with deterministic
trends. To illustrate, we focus on the case of an intercept; other cases of interest, such
as linear trends, can be handled similarly. The model with an intercept is given by

∆Xt = αβ′Xt−1 +

k−1∑
i=1

Γi∆Xt−i + µ+ εt, t = 1, ..., T . (11)

Under the I(1, r) conditions, the co-integrating relations β′0Xt are stationary while Xt

is I(1), with a deterministic linear trend provided Cµ0 = Cgα
′
0⊥µ0 6= 0, with Cg :=

β0⊥ (α′0⊥Γ0β0⊥)−1, Γ0 := Ip −
∑k−1

i=1 Γ0i. The LR test statistic for the null hypothesis
H0 : β = τ is computed as in Section 2, but with Xt and ∆Xt−i (i = 0, ..., k − 1)
corrected by OLS for a constant. Under H0, the LR statistic QT (τ) converges to a χ2

distribution with (p− r) r degrees of freedom; this result is proved in Johansen (1996)
for the case where Cµ0 6= 0, and extended in Lemma D.2 in CNR to the case Cµ0 = 0.

Our suggested bootstrap LR test for H0 : β = τ is again implemented by estimating
all parameters under H0. In particular, µ̃ is added to the right hand side of the bootstrap
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recursion in (4), and the bootstrap shocks ε∗t are obtained by i.i.d. re-sampling of the
restricted residuals, ε̃t := ∆Xt − α̃τ ′Xt−1 − Ψ̃∆X2t − µ̃. The bootstrap LR statistic
Q∗T (τ) is the LR statistic for H0 : β = τ , computed on the bootstrap sample.

In Section D of CNR the validity of the bootstrap is established by extending the
results of Lemma 1 and Proposition 1 to the intercept case. Specifically, Lemma D.1
shows that α̃τ ′, Ψ̃, Ω̃ and µ̃ converge to pseudo-true values α∗0β

∗′
0 ,Ψ

∗
0,Ω

∗
0 and µ

∗
0 which

correspond to an I (1, r∗) system without, or with, a linear trend, depending on whether
Cµ0 = 0 or not. In addition, Proposition D.1 states that X∗t , if Cµ0 6= 0, has a
representation in terms of a linear trend and a (p− r∗ − 1)-dimensional limiting OU
process with random drift parameters, while if Cµ0 = 0, the linear trend vanishes, and
instead the limiting OU process is of dimension (p− r∗). This result shows that, for
any possible choice of τ , the bootstrap sample mimics the original sample in terms of
deterministic terms. Lemma D.1 and Proposition D.1 allow —as done for the proof of
Theorem 1 —to show that Q∗T (τ) = O∗p (1) in probability when H0 does not hold, and
χ2 distributed otherwise. Monte Carlo simulations (see Section B in CNR) show that
the finite sample results of Section 4 remain unchanged when an intercept is included.

6 Conclusions

We have discussed bootstrap implementations of the likelihood ratio test for hypotheses
on the co-integrating vectors β based on restricted estimates of the underlying VAR
model. Bootstrap testing of hypotheses on β turns out to be a highly non-standard
inference problem, in particular in comparison to bootstrap tests on the co-integration
rank r, see Cavaliere et al. (2012), Swensen (2006, 2009) and Trenkler (2009). We have
argued that in the case of tests on β, the imposition of the incorrect null hypothesis
affects the co-integration rank of the bootstrap DGP, which displays, in addition to the
(p − r) unit roots characterizing the true DGP, additional stochastic roots which are
local-to-unity. As a consequence, in large samples the bootstrap DGP asymptotically
behaves as an Ornstein-Uhlenbeck process with random drift matrix. This contrasts
with the case of tests on the co-integration rank, where the multiplicity of unit roots
in the bootstrap sample is always as implied by the null hypothesis being tested (i.e.,
p− r), regardless of the null hypothesis being true or not in the original sample.

Despite these findings, which may suggest the failure of the bootstrap in the frame-
work of tests on β, we have shown that the bootstrap test statistic has the correct (χ2)
limiting distribution under the null, while remains bounded (in probability) when the
null is not true. Hence, the bootstrap test based on restricted parameter estimates is
asymptotically correctly sized and, strikingly, consistent under the alternative.

Monte Carlo comparisons suggest that this bootstrap procedure works extremely
well in finite samples and outperforms the asymptotic test, procedures based on Bartlett
adjustment, and the bootstrap test based on unrestricted estimates as proposed in
Omtzigt and Fachin (2006).

Two obvious extensions of this work may be considered. First, although being based
on the assumption of i.i.d. errors, our analysis can be generalized to the case of martin-
gale difference sequences with possible conditional and unconditional heteroskedasticity
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(as done in Cavaliere, Rahbek and Taylor, 2010a,b, for tests on the co-integration rank).
Second, since we have focused our analysis on the hypothesis of known co-integrating
vectors, the case of more general hypotheses (see e.g. Johansen, 1996; Boswijk and
Doornik, 2004) represents an obvious and important development of the results ob-
tained in this paper. Both extensions are currently under investigation by the authors.
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