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Marcos Goycoolea
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Effective computational methods are important for practitioners and researchers working in strategic

underground mine planning. We consider a class of problems that can be modeled as a resource-constrained

project scheduling problem with optional activities; the objective maximizes net present value. We provide

a computational review of math programming and constraint programming techniques for this problem,

describe and implement novel problem-size reductions, and introduce an aggregated linear program that

guides a list scheduling algorithm running over unaggregated instances. Practical, large-scale planning prob-

lems cannot be processed using standard optimization approaches. However, our strategies allow us to solve

them to within about 5% of optimality in several hours, even for the most difficult instances.

Key words : Underground mine planning, resource-constrained project scheduling, constraint programming,

mathematical programming

History :

1. Introduction and Literature Review

The resource-constrained project scheduling problem (Rcpsp) (Johnson 1967, Talbot

1982, Patterson 1984, Kolisch et al. 1995) seeks to optimally schedule jobs (or activities)

over time in such a way as to comply with precedence and resource-capacity constraints.

Traditionally, these models have sought to minimize makespan, though the objective

can be generalized. Each activity is associated with a set of predecessors and a duration.

The start time of each activity must be no earlier than the end time of any of its
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predecessors. The duration of each activity is assumed to be constant. That is, it is

independent of when the activity starts. Each time period during which an activity

is being executed, it consumes a certain amount of one or more resources, which are

limited and renewed each time period.

The Rcpsp is broadly used to model project scheduling problems. An important

application of the Rcpsp arises in the context of underground mine planning, in which

development and extraction over the life of the mining project must be scheduled.

Underground mine planning problems differ from traditional Rcpsps in that it is not

necessary to schedule all jobs, and the objective is to maximize discounted cash flows.

Realistic problem instances in underground mine planning tend to have a job count

ranging in the tens of thousands, making them significantly larger than those found in

academic papers.

1.1. Related Work

Johnson (1967) first introduces the Rcpsp in the context of mining, and, more generally,

Pritsker et al. (1969) do so in the context of project scheduling. It has received notable

attention in the literature since the late 1990’s, with applications in logistics, manufac-

turing, service operations, pharmaceuticals and transportation. An overview of existing

models can be found in Hartmann and Briskorn (2022), and methodological advances

are given in Artigues et al. (2008) and Schwindt and Zimmermann (2015). In the most

common variant of the Rcpsp, henceforth Rcpsp-Ms, the objective is to minimize

project makespan, i.e., the time required to perform all activities. In the Rcpsp-Dc,

first proposed by Russell (1970), the objective is to maximize discounted cashflows.

Both Rcpsp-Ms and Rcpsp-Dc assume that all activities must be completed.

Because the number of academic papers that study the Rcpsp is so vast, we discuss

only a few representative articles that highlight the four main approaches applicable to

Rcpsp-Dc.

• Branch and Bound: Reyck and Herroelen (1998) and Vanhoucke et al. (2001) use

exact branch-and-bound algorithms based on solving, at each node of the tree, a

relaxation obtained by omitting resource capacity constraints.

• Metaheuristics: Vanhoucke (2009), Vanhoucke (2010), and Leyman and Vanhoucke

(2015) solve Rcpsp-Dc with scatter-search and genetic algorithms.

• Mathematical Programming: The most common integer programming formulation

for Rcpsp is the so-called time-index formulation, originally proposed by Pritsker

et al. (1969) for Rcpsp-Ms. This formulation easily generalizes, and, because it
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defines a binary variable for each activity-time pair, solving even the LP relax-

ation can be difficult. Fisher (1973) embeds Lagrangian relaxation for Pritsker’s

formulation of Rcpsp-Ms in a branch-and-bound algorithm. Christofides et al.

(1987) strengthen Pritsker’s formulation for Rcpsp-Ms and propose a branch-and-

bound algorithm based on Lagrangian relaxation and disjunctive-arcs. Möhring

et al. (2003) use Lagrangian relaxation for Rcpsp-Ms, but instead of branching,

employ a list-scheduling heuristic based on Alpha Points. Kimms (2001) combine

Lagrangian relaxation and list-scheduling for Rcpsp-Dc. Gu et al. (2013) also

solve instances of Rcpsp-Dc, combining Lagrangian relaxation, Alpha Points and

constraint programming.

• Constraint Programming (CP) and SAT solvers: Laborie (2005) exploits mini-

mal critical sets for Rcpsp-Ms in a constraint-programming approach. Schutt

et al. (2009, 2013) improve this methodology by using a lazy clause generation

CP approach. Berthold et al. (2010) combine integer-programming methods with

CP. Schutt et al. (2012b) extend the lazy-clause generation scheme to Rcpsp-Dc,

and present favorable results relative to those generated by contemporary meta-

heuristics. A simple implementation with SAT solvers can outperform traditional

CP solvers for instances of Rcpsp-Ms (de Azevedo et al. 2021), though it is not

clear if these results would extend to Rcpsp-Dc.

This literature concerning Rcpsp-Ms and Rcpsp-Dc primarily compares different

algorithms on public, artificially generated, instances. The most common datasets used

for Rcpsp-Ms are found in PSPlib (Kolisch and Sprecher 1997). A few papers con-

sider data set RG300 (Debels and Vanhoucke 2007), comprised of larger problems.

For Rcpsp-Dc, the most commonly used data sets are DC1 (Vanhoucke et al. 2001)

and DC2 (Vanhoucke 2010), containing instances with 120 activities or fewer, with the

exception of RG300, which extends the set to 300 activities and uses network topologies

in the construction framework; this, and resource dependencies, make them notoriously

difficult to solve (Vanhoucke et al. 2016). For example, at the time of this writing,

many instances with just 90 activities in PSPlib cannot be solved at all. The results in

Leyman and Vanhoucke (2015) are, to our knowledge, the best reported results to date

for Rcpsp-Dc on benchmark problems, which are slightly better than those produced

by the method of Gu et al. (2013). It should be noted, however, that the latter provides

provable optimality gaps.
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We focus on variants of the Rcpsp used for strategic mine planning, for which the

interest is to compute long-term, e.g., multiple-decade, schedules to prescribe life-of-

mine extraction of ore. To this end, the orebody of interest containing economic con-

centrations of, for instance, copper and/or gold, is subdivided into smaller, notional,

three-dimensional rectangular units (constituting a block model), for which extraction

times are determined. The goal in these problems is to maximize discounted cash flows,

as in Rcpsp-Dc.

Open pit mine planning problems, henceforth Rcpsp-Op, possess activities that cor-

respond to the extraction of blocks, and require a single time period to complete; there

are precedence restrictions but no time lags between activities. This special case arises

because blocks are usually homogeneous in their extraction requirements and falls out-

side of the scope of this paper. Rivera Letelier et al. (2020) present recent advances

in the open-pit mine planning setting, and a corresponding literature review. Public

benchmarking instances for Rcpsp-Op can be found in Espinoza et al. (2013).

Instances of underground mine planning, henceforth Rcpsp-Ug, differ from Rcpsp-

Ms only in that there is not a strict requirement to extract all activities. In underground

mining, activities are related to development, extraction (e.g., mining or hauling), and

backfilling, which is used to create stability after an area has been mined. The sequenc-

ing of these activities, in addition to their size and duration, is based on geologic charac-

teristics, desired production rates, safety regulations, and economic factors. In practice,

instances tend to be very large, possessing thousands to tens of thousands of activities.

To date, few papers study Rcpsp-Ug. Gu et al. (2012) combine Lagrangian relaxation

with a list-scheduling algorithm to solve real-world instances of Rcpsp-Ug ranging in

size from 1,400 to 12,000 jobs, and from 2,000 to 8,000 time periods. Solutions with

gaps averaging 20% are reported, with many higher than 50%, and taking as much

as 18 hours to solve. Brickey (2015) follows a similar approach, using the Bienstock-

Zuckerberg algorithm (Bienstock and Zuckerberg 2010) to solve the LP relaxation of

Rcpsp-Ug with ventilation constraints in the form of knapsacks, for problems with

24,000 jobs and 730 time periods, resulting in gaps ranging from 14% to 18% after

approximately 12 hours. O’Sullivan and Newman (2015) develop a heuristic for a prob-

lem with a complex set of precedence constraints, inter alia, while King et al. (2017b)

reformulate and decompose the model to yield solutions to design a transition point

between open pit and underground operations and determine a corresponding schedule.

Muñoz et al. (2018) present a detailed adaptation of the Bienstock-Zuckerberg algo-

rithm to underground planning, though only Rcpsp-Ms and Rcpsp-Op instances are
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tested. Brickey et al. (2020) describe a case study of a mining project in Nevada that

encompasses 16,000 activities and 14,400 time periods; integrality gaps resulting from

the use of the academic software Omp, whose algorithmic details are given in Chicoisne

et al. (2012) and Muñoz et al. (2018), range from 1% to 5%, depending on the number

of time periods considered. Ogunmodede et al. (2021) present a modification of this

model with the inclusion of ventilation considerations and refrigeration decisions, i.e.,

when to activate refrigeration needed to create a hospitable working environment for

miners, and the algorithm used by Brickey et al. (2020) is adapted to solve the modified

problems. For surveys on mine planning, see Newman et al. (2010) and Chowdu et al.

(2021).

1.2. Contribution and Paper Organization

We evaluate state-of-the-art optimization approaches to Rcpsp-Dc and Rcpsp-Ug as

given in IBM (2018) (for constraint programming); Muñoz et al. (2018) and Brickey

et al. (2020) (for math programming); and, described in §4 and §5 (for the improve-

ments). These algorithms have been adapted for underground mine planning with real-

world datasets, and we show how these approaches can be used to obtain practical

schedules and tight bounds on the corresponding optimal objective function value. Our

main contributions are: (i) we adapt a preprocessing scheme traditionally used in open-

pit production scheduling to an underground mining setting in which we eliminate

variables for the case in which not every activity must be completed during the schedul-

ing horizon; (ii) similar to Newman and Kuchta (2007) but employed on a much larger

scale for the specialized Rcpsp problem structure, we present two different time aggre-

gation schemes that, when used in an intermediate step, allow us to solve the original

(unaggregated) problem instances to near-optimality very quickly; (iii) we introduce

extensions to traditional list-scheduling techniques, including LP-induced release dates

and diversification, to obtain high-quality solutions; (iv) we use these techniques to

solve large-scale, real-world underground mining production-scheduling instances with

tightly coupled activity precedence in an operationally feasible amount of time; and,

(v) we compare these techniques against constraint programming, which is often cited

as a competitive alternative to mathematical programming for scheduling problems.

The remainder of this paper is structured as follows: Section 2 provides relevant

definitions and notation. Section 3 presents the time-aggregated formulations. Section 4

discusses preprocessing strategies to reduce problem instance size. Section 5 explains

the algorithms we use to solve the optimization problems. Section 6 demonstrates our

strategies on a variety of industry datasets, and Section 7 concludes.
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2. Basic Problem Formulation

Let T be a discrete time horizon, T = {1, ..., T}. We are given a set of activities J and

a set of resources R available in each time period, i.e., so-called “renewable resources”

in the scheduling literature. Executing an activity j ∈J is associated with a monetary

value pj ∈R, a duration dj ∈Z+, and a per-period resource utilization ujr ∈R+ ∀ r ∈R.

Each resource r ∈R has a constant availability Ur ∈R+ per time period. Furthermore,

we are given an activity-on-node network represented by an acyclic digraph H with

node set J corresponding to the set of activities, and arc set A, representing generalized

precedence relationships (see Figure 1), which require that if arc (i, j)∈A, and if activity

j is scheduled, then activity i must be scheduled as well. Each arc (i, j)∈A is associated

with a lag lij ∈Z+
0 which is used to model the amount of time that must lapse between

the start of activity i and the start of activity j. In this way, if lij = di, then activity j

can only start once activity i is finished. If lij >di, then a time must lapse between the

completion of i and the start time of j. Finally, if lij < di, then both activities can run

simultaneously. In general, if lij < 0, then activity i can even be allowed to start after

j. This paper assumes that lij ≥ 0.

We write i≺ j if there exists a directed path from node i to node j in H. Furthermore,

if i ≺ j, let d̂(i, j) represent the length of a longest path from i to j (as measured

in cumulative lags). If i ≺ j, we say that i is a predecessor of j, and j is a successor

of i, respectively. A predecessor (successor) i is direct with respect to j if (i, j) ∈ A
((j, i)∈A).

A feasible schedule S for the considered Rcpsp is a set of scheduled activities J S ⊆J
and activity start times tSj ∈ T ∀j ∈ J S (or activity end times t̄Sj ∈ T ∀j ∈ J S) such

that:

(i) if activity j is scheduled, then each direct predecessor i is scheduled and starts at

least lij time units before the start time of j, and

(ii) the consumption of each resource in each time period does not exceed its availabil-

ity.

For a given discount factor δ ∈ (0,1], the net present value of schedule S is defined

as the sum of the discounted profits of the scheduled activities:
∑

j∈J S pj(1 + δ)−t
S
j .

Our variant of the Rcpsp accepts the empty schedule as feasible, and corresponds to

PS|prec|
∑
CF
j β

Cj according to the classification scheme in Brucker et al. (1999). This

problem is known to be NP-hard (Blazewicz et al. 1983).

The following time-indexed formulation for the Rcpsp, called a by-formulation

or step-formulation, is known to yield the tightest linear programming-based
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Figure 1 The activity-on-node network for an Rcpsp literature instance (j301-1 from Kolisch and Sprecher

(1997)) with 30 activities (top) and an optimal schedule in Gantt chart representation (bottom).

bounds (Artigues 2017). We define the following variables representing the time by

which each activity starts, i.e., the activity starts in time t or before:

yjt =

1, if activity j starts by time t,

0, otherwise.

Then, the Rcpsp can be written as follows:

(F) max
∑
j∈J

T∑
t=1

pj
(1 + δ)t

(yjt− yj,t−1) (1a)

yjt ≤yj,t+1 j ∈J ,1≤ t≤ T − 1 (1b)∑
j∈J :dj≥t

ujryjt +
∑

j∈J :dj<t

ujr(yjt− yj,t−dj)≤Ur r ∈R,1≤ t≤ T (1c)

yj,t+lij ≤yit (i, j)∈A,1≤ t≤ T − lij (1d)

yj0 = 0 j ∈J (1e)

yjt ∈{0,1} j ∈J ,1≤ t≤ T (1f)

The objective given in (1a) maximizes the net present value over the scheduled jobs

using discount rate δ. Variable linking inequalities (1b) ensure that if an activity starts

by time t, it consequently starts by all the subsequent time periods. Resource-feasibility

is enforced through knapsack inequalities (1c) in each period for each resource. Disag-

gregated generalized precedence inequalities (1d) ensure that the sequence and lag infor-
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mation given inA are appropriately considered; these collapse to precedence inequalities

without lags if lij = di.

The bounds obtained by formulation (F) can be replicated with a strengthened “at”

formulation (Lambert et al. 2014), also called a pulse-formulation (Christofides et al.

1987, Espinoza et al. 2013), where the translation between the “by” variables and the

“at” variables (which we denote xjt) is given as follows: xjt = yjt− yj,t−1. A tractability

issue with formulation (F) for underground mine planning arises owing to the nature

of the application: a ten-year instance modeled at daily fidelity yields approximately

3,600 variables for each activity, where there can be several thousand activities. We

therefore introduce two aggregate formulations that reduce problem size by considering

a coarser time fidelity.

The Rcpsp can be specified for underground mine planning, as given by the mappings

in Table 1; Terblanche (2017) presents background information, and we provide a more

detailed description in §6.

3. Time-aggregated Formulations

We present both an approximate and an exact aggregation scheme; these are imple-

mented by solving the corresponding integer program, whose resulting solutions help

determine a near-optimal solution for the original model quickly relative to solution

techniques available at the time of this writing.

3.1. The k-aggregated Model

Consider an instance of Rcpsp with T time periods. We describe how to define an

instance with T/k, where k is an integer evenly dividing T . We begin with some defi-

nitions.

• Time periods: Define T k = {1, . . . , T/k}.

• Durations: For each job j ∈J , let d′j = ddj/ke.

• Right-hand-side constants: For each r ∈R, define U ′r = kUr.

• Resource consumption: For each r ∈R and each j ∈J , let

u′jr =
ujrdj
d′j

.

• Discount rate: Define

δ′ = (1 + δ)k− 1.

Note that this definition is such that:
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Table 1 Model characteristics of the Rcpsp and corresponding examples for an underground mining

application

Generic Rcpsp Characteristic UG Mine Planning Equivalent

Activities: j ∈J Development, extraction, transportation, backfilling

Durations: dj (j ∈J ) Hours to months required to execute each activity

Profits: pj (j ∈J ) Undiscounted value less cost associated with the

completion of each activity

Resources: r ∈R Finite resources consumed by activities, e.g.,

extraction capacity, volume of backfill paste

Capacities: Ur (r ∈R) Number of haulage tons or amount of paste

consumable per time period

Resource utilization: ujr Number of extraction or mucking hours, or

(j ∈J , r ∈R) amount of paste required for a given backfill activity

Precedences: (i, j)∈A Extraction of a stope must precede backfill of

said stope

Time lags: lij ∈<+ Duration of activities including any necessary lag

between the completion of one activity and the start of

another before extraction of a neighboring stope

Time horizon: T Number of hours to years considered

in a single solve

1

(1 + δ)k
=

1

(1 + δ′)
.

• Lags: For each (i, j)∈A, let l′ij = blij/kc.

We can now formulate an aggregated version of problem (F) using by variables wjt

as follows:

(Fk) max
∑
j∈J

T/k∑
t=1

pj
(1 + δ′)t

(wjt−wj,t−1) (2a)

wjt ≤wj,t+1 j ∈J ,1≤ t≤ T/k− 1 (2b)∑
j∈J :d′j≥t

u′jrwjt +
∑

j∈J :d′j<t

u′jr(wjt−wj,t−d′j)≤U
′
r r ∈R,1≤ t≤ T/k (2c)

wj,t+l′ij ≤wit (i, j)∈A,1≤ t≤ T/k− l′ij (2d)
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wj0 =0 j ∈J (2e)

wjt ∈{0,1} j ∈J ,1≤ t≤ T/k (2f)

Formulation (Fk) corresponds to an instance of Rcpsp; for each j ∈ J and t ∈ T k,

wjt represents starting job j no later than in aggregated time period t, or, with respect

to the original unaggregated time periods, no later than in time period kt.

Note that, to obtain the aggregated data, we round the durations up and the lags

down. In the former case, it would be highly unrepresentative to have an activity with a

duration of zero, no matter how small the duration might be relative to the length of the

aggregated time period. In the latter case, this direction of rounding offsets the rounded-

down durations. To mitigate the number of activities that may be feasibly executed

in a particular time period given the shortened values for the lags, thereby improving

the quality of the approximation, we add arcs to the precedence graph associated with

formulation (Fk). We call these arcs strengthened and define them as follows. For each

pair of activities i, j ∈J such that i≺ j, define a precedence (i, j) in (Fk), with lag:

l′ij =

⌊
d̂(i, j)

k

⌋
where d̂(i, j) is the weight of the longest directed path from i to j in the precedence

graph, and i is a predecessor of j. We define Â as the set of all strengthened arcs, and

add the following precedence constraints to (Fk):

wj,t+l′ij ≤wit (i, j)∈ Â, 1≤ t≤ T/k− l′ij.

In practice, this may induce a lot of arcs, but most of these include redundancies

that can be eliminated with a weighted transitive closure, described in Section 4. To

motivate the strengthening associated with arc addition, consider a simple example in

which a set of activities are contained in a path of the precedence graph, and in which

the lag of every associated arc is 2. Assume, for simplicity, that these activities do

not consume any resources. Because of the lags, the i-th activity in the path can be

scheduled, at the earliest, in time period 2i+ 1. So, if i = 7, the earliest the activity

would be scheduled would be in t= 15.

Suppose that we approximate this instance (F) with (F4). The lag of every arc in

this aggregated problem is l′ij = blij/kc = b2
4
c= 0, signifying that, in (F4), all activities

could be scheduled in the first time period, clearly not the case in (F) and therefore
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a gross relaxation. By contrast, in the strengthened version of (F4), the i-th activity

could be scheduled, at the earliest, in the aggregated time period t′ = b i
2
c. Re-examining

the particular case of i= 7, the earliest time period in which the strengthened version

of (F4) would schedule this activity would be in aggregated time period t′ = 3. This

would correspond to the interval 9, . . . ,12 in (F)’s horizon, which is the interval prior

to the one containing 15, a much better approximation of the true early start for i= 7.

3.2. The Safe k-aggregated Model

Formulation (Fk) is not a relaxation of (F); as a consequence, for k > 1, the optimal

objective function value of (Fk) does not necessarily provide an upper bound on the

optimal value of (F). We can modify (Fk), see, e.g., Carrasco et al. (2013), Carrasco

et al. (2018), and Fuentes et al. (2021), to obtain a relaxation as follows. Define (F sk)
by substituting constraints (2c) with:

∑
j∈J :d′j<t

djujrwj,t−d′j ≤ tkUr = tU ′r r ∈R, t∈ T k, (3)

and, by substituting, for each j ∈J , the objective function coefficient pj by:

p′j =

pj
(1+δ′)
(1+δ)

if pj > 0,

pj otherwise.

This definition can be interpreted as positive-valued activities are scheduled at the

beginning of each aggregated time period, and negative-valued activities at the end.

Proposition 1. Let y be a feasible solution of (F). Let T k = {1, . . . , T/k}. For

each j ∈ J and t′ ∈ T k, let wjt′ = yj,t′k. Solution w is feasible for (F sk). Moreover, the

objective function value provided by w evaluated in (F sk) is higher than that provided

by y evaluated in (F).

Proof. By definition, we have yi0 = 0 for i∈J ; hence, wi0 = 0 for i∈J .
• To determine feasibility, we evaluate the solution w in each of the constraints of

(F sk):
Consistency constraints

wjt′ −wj,t′+1 = yj,t′k− yj,(t′+1)k ≤ 0 ∀j ∈J , t′ ∈ {1, ..., T/k− 1}

Precedence constraints

Given (i, j)∈A∪ Â it is necessary to prove:

wjt′ −wi,t′−l′ij ≤ 0 ∀t′ such that l′ij + 1≤ t′ ≤ T/k.
11



— Case 1: (i, j)∈ Â. That is, l′ij =
⌊
d̂(i,j)
k

⌋
and l′ij + 1≤ t′ ≤ T/k.

In this case:

kl′ij ≤ d̂(i, j)⇒ t′k− kl′ij ≥ t′k− d̂(i, j)⇒ yi,t′k−l′ijk ≥ yi,t′k−d̂(i,j)

where yi,t′k−d̂(i,j) is well defined because

t′k− d̂(i, j)≥

⌊
d̂(i, j)

k

⌋
k− d̂(i, j) + k≥ 0.

— Case 2: (i, j)∈A. That is, l′ij =
⌊
lij
k

⌋
and l′ij + 1≤ t′ ≤ T/k,.

In this case:

wjt′ −wi,t′−l′ij = yj,t′k− yi,k(t′−l′ij) ≤ yj,t′k− yi,kt′−lij ≤ 0

where yi,kt′−lij is well defined because

kt′− lij ≥ k(l′ij + 1)− lij = k

⌊
lij
k

⌋
− lij + k≥ 0.

Capacity constraints

First, observe that given r ∈R and 1< t≤ T/k,

∑
j∈J :d′j<t

djujrwj,t−d′j =
∑

j∈J :d′j<t

djujryj,(t−d′j)k ≤
∑

j∈J :dj<tk

djujryj,tk−dj

The last inequality follows from the fact that for j ∈J , d′j < t≤ T/k

d′j =

⌈
dj
k

⌉
⇒ kd′j ≥ dj⇒ tk− kd′j ≤ tk− dj⇒ yj,tk−d′jk ≤ yj,tk−dj

From the definition of y, for r ∈R and 1≤ t′ ≤ T,∑
j∈J :dj≥t′

ujryjt′ +
∑

j∈J :dj<t′

ujr(yjt′ − yj,t′−dj)≤Ur.

Then, assuming tk− dj > 0 and summing on t′ ∈ {1, . . . , tk}

tk∑
t′=1

 ∑
j∈J :dj≥t′

ujryjt′ +
∑

j∈J :dj<t′

ujr(yjt′ − yj,t′−dj)

≤ tkUr,
where the left-hand side of the previous inequality can be written as

∑
j∈J

ujr

 tk∑
t′=dj+1

(yjt′ − yj,t′−dj) +

dj∑
t′=1

yjt′

=
∑
j∈J

ujr

tk∑
t′=tk−dj+1

yjt′.
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By definition of y and the assumption tk− dj > 0 we obtain that

tk∑
t′=tk−dj+1

yjt′ ≥ djyj,tk−dj ,

and therefore ∑
j∈J

ujr

tk∑
t′=tk−dj+1

yjt′ ≥
∑

j∈J :tk−dj>0

ujrdjyj,tk−dj ,

and by the first observation, we finally conclude that:∑
j∈J :d′j<t

djujrwj,t−d′j ≤ tkUr ∀r ∈R, t∈ T
k

• We now prove the statement regarding the relative objective function values. Let j

be arbitrary and fixed, and assume that for variable yjτ the transition from 0 to 1

occurs at some period τ ∈ {k(t−1)+1, . . . , kt}, where t∈ {1, . . . , T/k}. The contri-

bution of yjt to the objective function of (F) is a value in
{

pj
(1+δ)k(t−1)+1 , . . . ,

pj
(1+δ)kt

}
.

On the other hand, the contribution of wjt to the objective function of (F ′) equals
p′j

(1+δ′)t
=

p′j
(1+δ)kt

. Therefore, it suffices to prove that:
p′j

(1+δ)kt
≥ max

{
pj

(1+δ)t
′ : t′ ∈ {k(t− 1) + 1, . . . , kt}

}
. If pj ≤ 0, then

max
{

pj
(1+δ)t′

: t′ ∈ {k(t− 1) + 1, . . . , kt}
}

=
pj

(1+δ)kt
, and, in this case, it suffices to con-

sider p′j = pj. If pj > 0, then max
{

pj
(1+δ)t

′ : t′ ∈ {k(t− 1) + 1, . . . , kt}
}

=
pj

(1+δ)k(t−1)+1 ,

and, in this case, we must consider p′j such that
p′j

(1+δ)kt
≥ pj

(1+δ)k(t−1)+1 . We conclude

that p′j ≥
pj

(1+δ)1−k = pj
(1+δ′)
(1+δ)

. The definition of p′j satisfies this inequality, which

concludes the proof. �

4. Preprocessing Techniques

Model instance size significantly affects solvability because it is inextricably intertwined

with the number of variables and constraints in formulation (F) or any of its variants.

To this end, we introduce a variety of techniques to reduce the number of activities

|J | and arcs |A|. Some of these techniques are simple, but they all significantly reduce

problem size and expedite solutions in practice.

4.1. Elimination of Trivial Activities

We can eliminate each zero-profit activity j ∈ J (i.e., pj = 0) if ujr = 0 for all r ∈ R.

These types of activities are commonly added by mine planning schedulers as markers

during the design phase. When eliminating an activity j ∈ J , it is important to add

an arc connecting each direct predecessor of j to each direct successor of j with the

corresponding lags. That is, for every pair of arcs (i, j) and (j, `) in A, add an arc (i, `)
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with lag lij + lj`. Then, after obtaining a solution without these activities, we post-

process them in such that precedence is satisfied. (Clearly, the resource constraints are

satisfied by default after these activities’ re-introduction.)

4.2. Earliest Activity Start Times, and Unreachable Arcs and Nodes

For each activity j ∈ J , we can compute a lower bound es(j) on the earliest time it

would be possible to start its execution, as follows:

es(j) = max{d̂(i, j) : i∈J : i≺ j}.

We say that an activity j is unreachable if es(j)>T . Likewise, we say that a prece-

dence arc is unreachable if any of its end-points is unreachable. Note that it is only

necessary to define variables yjt such that t≥ es(j) and such that an activity is reach-

able. Because H is acyclic, es(j) can be computed in linear time using a topological

sorting of the nodes. If j ∈J is such that es(j)+dj >T , then activity j can be removed,

because it is unreachable, i.e., impossible to complete it during the given time horizon.

4.3. Weighted Transitive Closure

Consider an arc (i, j)∈A. If d̂(i, j)> lij, then arc (i, j) can be removed from A without

affecting the set of feasible solutions to the problem. We identify (and correspondingly

remove) all such redundant arcs efficiently with complexity O(|J ||A|), as follows:

1. Compute a topological ordering of the nodes J , which can be accomplished in

O(|J |+ |A|), as first shown by Kahn (1962).

2. For each activity i ∈ J , let A+(i) be the set of all arcs with tail i. Test the

redundancy of all arcs (i, j)∈A+(i) as follows: By traversing the set of nodes in J

in topological order, starting from i, compute the distance d̂(i, j) for all j � i. This

can be done in O(|A|). Then, compare each distance d̂(i, j) to lij to determine

redundancy, which can be done in O(|J ||A|).

We refer to the resulting precedence graph as the weighted transitive closure of the

original precedence graph. The propagation of the (unweighted) transitive closure is

known to be effective in CP solvers (Baptiste et al. 2012).

4.4. Final Contour

We adapt the notion of the ultimate pit, or the envelope of blocks which, in combination,

are economical to remove in the context of open pit mine planning, to a more general

14



setting in which the removal of blocks corresponds to the execution of jobs whose prece-

dence is subject to lags. In this way, we eliminate variables associated with activities

whose combined execution does not contribute positively to the objective function in

any solution (Rivera Letelier et al. 2020). Note that this technique can be used only

because jobs in Rcpsp-Ug are optional.

Consider the following relaxation of formulation (F), which can be obtained by elimi-

nating inequalities (1c):

(F) max
∑
j∈J

T∑
t=1

pj
(1 + δ)t

(yjt− yj,t−1) (4a)

yjt ≤yj,t+1 j ∈J ,1≤ t≤ T − 1 (4b)

yj,t+lij ≤yit (i, j)∈A,1≤ t≤ T − lij (4c)

yj0 =0 j ∈J (4d)

yjt ∈{0,1} j ∈J ,1≤ t≤ T (4e)

Observe that formulation (F) takes the form of a maximum closure problem (which

has received much attention in the mine planning literature since the seminal paper of

Lerchs and Grossmann (1965)):

max{cw :wi ≤wj ∀(i, j)∈A, wi ∈ {0,1}}. (5)

This problem can be efficiently solved in polynomial time, and admits a unique,

inclusion-wise minimal and optimal solution w1, in the sense that all other optimal

solutions w∗ satisfying w1 ≥w∗ are such that w1 =w∗. For background on the maximum

closure problem and a description of an algorithm that effectively solves it in practice,

see Goldberg and Tarjan (1988), Cherkassky and Goldberg (1997), and Hochbaum

(2008).

Proposition 2. Let y1 be the optimal and inclusion-wise minimal solution of (F),

and y2 any optimal solution of (F). For m = 1,2, let Jm = {j ∈ J : ymjT = 1}. If T is

sufficiently large, then J 1 ⊆J 2.

Proof. Suppose, by contradiction, that the statement is false, and denote the non-

empty set J 1 \ J 2 by J ∆. Note that J ∆ represents the set of activities scheduled in

J 1, but not in J 2. We will show that the optimality of y1 implies that the activities in

J ∆ must contribute positively to the objective function in problem (F). This, however,

leads to a contradiction, because if this were the case, then adding these activities to
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set J 2 (possibly delaying their scheduled time) would have resulted in a strictly better

solution than y2 to (F).

To see that the activities in J ∆ must contribute positively to the objective function

in problem (F), note first that if we restrict solution y1 to only activities in J1 ∩ J2,

we obtain a feasible solution to (F). In fact, by restricting y1 to J1 ∩J2, the solution

consumes no more of any resource types, and hence constraints (1c) must be satisfied.

Moreover, since J1 ∩J2 is also a closure, precedences must be satisfied.

Because J ∆ is non-empty, the optimality of y1 implies that:

∑
j∈J∆

∑
t≥1

pj
(1 + δ)t

(y1
jt− y1

j,t−1)≥ 0. (6)

Otherwise, removing this part of the solution would yield a better one. Moreover, the

inclusion-wise minimality of y1 tells us that the inequality above is strict.

Now, for each j ∈J , t∈ T such that t≥ 1, for a given k, define:

wk
j,t+k =

 y1
jt if j ∈J ∆ and t+ k ∈ T

0 otherwise.

Note that wk is a partial solution that corresponds to scheduling activities in J ∆

exactly k periods after they are scheduled in solution y1.

From (6) we have, for all k≥ 0, that:

∑
j∈J

∑
t≥1

pj
(1 + δ)t

(wk
jt−wk

j,t−1) =
∑
j∈J∆

∑
t≥1

pj
(1 + δ)t+k

(y1
jt− y1

j,t−1)> 0. (7)

Given that T is assumed to be large, there exists k > 0 such that y3 = y2 + wk is

feasible for (F). In fact, it suffices to choose k so that all the predecessors of activities

in J ∆ have been completed in y2. Note that in y3: (i) all activities in J 1 are scheduled

exactly as in y2; and (ii) all activities in J ∆ are scheduled exactly as in y1, but delayed by

k periods. This, however, given (6), contradicts the optimality of y2. Thus, we conclude

that J ∆ must be empty. �

This proposition implies that we can compute y2 and use it to eliminate each activity

j ∈J \J 2 from the problem.

5. Optimization Algorithms

In this section, we describe various list scheduling algorithms that take as parameters

two integers k1 and k2 that divide T , and proceed as follows: (i) execute the preprocess-

ing steps described in Section 4 to reduce the size of (F); (ii) solve the LP relaxations of
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(Fk) and (F sk), generating a batch of feasible LP relaxation solutions to these problems;

(iii) run a set of scheduling algorithms on the original, unaggregated problem (F), using

as input the LP relaxation solutions generated for problems (Fk) and (F sk). Finally, we

describe the constraint programming procedure we use to contrast our implementations

against a competitive methodology.

5.1. Solving the LP Relaxation

Solving the LP relaxation of models (F), (Fk) and (F sk) can be difficult owing to the

size of practical instances. In fact, time-indexed formulations of the Rcpsp grow linearly

with the number of time periods, of which real-world problems tend to possess copious

amounts, easily in the thousands. Decomposition algorithms address this difficulty; see,

for example, Christofides et al. (1987), who use Lagrangian relaxation for Rcpsp-Ms.

In order to solve the LP relaxation, we use the decomposition algorithm proposed

by Muñoz et al. (2018), which is an extended version of the Bienstock-Zuckerberg

(BZ) algorithm (Bienstock and Zuckerberg 2010) that incorporates activity durations,

auxiliary variables and algorithmic speed-ups.

We run the Muñoz et al. (2018) implementation of the BZ algorithm twice: once to

solve the LP relaxation of (Fk) and once to solve the LP relaxation of (F sk), and retain

the best primal solution and best dual bound from each, respectively. In the case of

(Fk), we additionally keep the primal solution found after every ten iterations. We use

the best dual bound computed for (F sk) as a safe upper bound in order to compute an

integrality gap, and hence, the quality of the solution generated. The primal solutions

computed from (Fk) are used by the list scheduling algorithms, explained in the next

section, in order to generate integer-feasible solutions.

5.2. Generation of an Integer-feasible Solution via List Scheduling

To obtain an integer-feasible solution to model (F), we use a list-scheduling algorithm

(Hall et al. 1997, Phillips et al. 1998), also employed in the context of underground

mining (Gu et al. 2012, Brickey 2015, Muñoz et al. 2018). We propose a variant of this

approach, in which we use a solution to the LP relaxation of aggregated problems (Fk)

and (F sk) to obtain feasible solutions to the unaggregated problem (F). This makes

computing integer feasible solutions to (F) significantly faster.

There are many different algorithmic variants of the list scheduling algorithm, the

performance of which varies from problem to problem, and can depend on the LP relax-

ation solution used as input. We exploit these two types of performance variability as

follows: (i) by using multiple LP solution iterates generated by the BZ algorithm which,
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by definition, are primal feasible – rather than just the final LP iterate; and, (ii) by

running many variants of the list-scheduling algorithm on each of the aforementioned

solutions. Exploiting performance variability has been successful in cutting plane gen-

eration, e.g., Fischetti et al. (2016), primal heuristics, e.g., Danna et al. (2005), and

branching, e.g., Carvajal et al. (2014). See Lodi and Tramontani (2013) for a discussion.

To our knowledge, this type of approach has not been applied to list scheduling. We

next describe the mix of list scheduling variants that we use in our algorithm, first, by

providing some definitions.

Definition 1. We define a partial schedule or partial solution of formulation (F), as

a pair (S, s), where S ⊆J indicates a set of selected jobs, and where sj for each j ∈ S

is an element of the vector s denoting the start time of job j. We say that a partial

schedule (S, s) is feasible with respect to (F) if the corresponding schedule satisfies

precedence and resource consumption constraints.

Definition 2. Consider an instance (F) of Rcpsp, a partial schedule (S, s), and a

pair (t, j), with t ∈ T , and j ∈ J \ S. We say that (S̄, s̄) extends (S, s) with (t, j) if S̄

= S ∪ {j}, s̄i = si for all i ∈ S, and s̄j = t. We say that (t, j) feasibly extends (S, s) if

(S̄, s̄) is a feasible partial schedule.

Definition 3. Given an instance (F) of the Rcpsp, and a feasible partial solution

(S, s) of (F), let E((F),S, s) be the set of pairs (t, j) ∈ T × J that feasibly extends

(S, s).

List scheduling algorithms start with an empty partial solution, and feasibly extend

it, one iteration at a time. Algorithm 1 describes the general class of list scheduling

algorithms that we consider.

Algorithm 1: List-Scheduling for Rcpsp with positive lags (F)

1: S ←∅, s←∅

2: while E((F),S, s) 6= ∅ do

3: Choose (t, j)∈ E((F),S, s)

4: S ←S ∪{j}, sj← t

5: return (S, s)

In executing Algorithm 1, it is critical to correctly choose, in each iteration, the

pair (t, j) with which to extend the incumbent partial solution. In most list scheduling

algorithms, this is controlled by two parameters:
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• A priority rule vector π, of length |J |. Given i, j ∈ J , if πi > πj, then j is said to

have higher priority than i.

• A sequencing rule: serial or parallel. When sequencing in parallel, only jobs that

can be scheduled as early as possible are considered. When sequencing in serial,

only jobs with the highest priority are considered.

A recent paper by Rivera Letelier et al. (2020) also proposes using a release date

criterion in the context of Rcpsp-Op. That is, a vector ρ, of length |J |, such that a

pair (t, j) ∈ E((F),S, s) is selected only if t≥ ρj. To our knowledge, this has not been

attempted for other classes of Rcpsp problems.

Algorithm 2 and Algorithm 3 formally describe the serial and parallel variants

of Algorithm 1, respectively, in such a way as to incorporate the criteria established

above.

Algorithm 2: Serial List Scheduling ((F), π,ρ)

1: S ←∅, s←∅

2: while E((F),S, s) 6= ∅ do

3: j← argmin{πi : (t′, i)∈ E((F),S, s), t′ ∈ T , i∈J }

4: t←min{t′ : (t′, j)∈ E((F),S, s) and t′ ≥ ρj}

5: S ←S ∪{j}, sj← t

6: return (S, s)

Algorithm 3: Parallel List Scheduling ((F), π,ρ)

1: S ←∅, s←∅

2: while E((F),S, s) 6= ∅ do

3: t←min{t′ : (t′, i)∈ E((F),S, s) and t′ ≥ ρi}

4: j← argmin{πi : (t, i)∈ E((F),S, s) and i∈J }

5: S ←S ∪{j}, sj← t

6: return (S, s)

Given a solution y∗ ∈ [0,1]J×T
k

from the LP relaxation of (Fk), we generate priority

rules π and release dates ρ by first computing the following values for each job.
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• Expected Time. For each j ∈J , let:

XPj =

T/k∑
t=1

ty∗jt +
T

k

1−
T/k∑
t=1

y∗jt

 .

• Alpha Points. Given a fixed value α∈ (0,1), for each j ∈J , let:

APj(α) = k×

(
min

{
t :
∑
t′≤t

y∗jt′ ≥ α

}
− 1

)
.

Once computed, either XP or AP can be used as priority rules, for the latter of which

different values of α result in different priority rules and release dates; the values of AP

are elements of T and can be used directly as release dates.

Expected time was first used to define priority rules (π) by Chicoisne et al. (2012),

and later by Rivera Letelier et al. (2020), in the context of open pit mine planning.

It has also been used by Brickey (2015), King et al. (2017a,b), King and Newman

(2018), Muñoz et al. (2018) and Brickey et al. (2020) in the context of underground

mine planning. Alpha Points have been invoked in approximation algorithms for general

classes of scheduling problems (Hall et al. 1997, Phillips et al. 1998). They have also

been employed by Gu et al. (2012) in the context of underground mining. To our

knowledge, the only appearance of release dates in list scheduling is by Rivera Letelier

et al. (2020), who use alpha points for this purpose; all previous academic work on the

Rcpsp has used LP relaxation solutions of (F) to compute alpha points and expected

values, rather than LP relaxation solutions of (Fk), or other aggregations, which are

much faster to compute.

5.3. Running the List Scheduling Algorithm in Batches

Rather than run the list scheduling algorithm once, for a given input solution y∗, and

a given priority rule and release date vector, we run the algorithm many times, using

different input solutions, and different priority and release date vectors. The rules we

use for a single y∗ are as follows:

• We always use Alpha Points to define the release date of each activity. Specifically,

we use a fixed alpha value of 0.01 and define:

ρj = APj(0.01) ∀j ∈J .

This allows the postponement of activities in the final schedule that are also

postponed in the LP solution.
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• We consider two different strategies for defining priority rules:

— Expected Strategy: We run the list scheduling algorithm using the expected

times as a priority rule. That is: π=XP .

— Alpha Strategy: We run the list scheduling algorithm using Alpha Points with

fifty alpha values evenly spaced between zero and one. That is:

πij = APj(0.02i) ∀i∈ 1, . . . ,49, j ∈J

• For each priority rule used in both the Expected and Alpha Strategies, we run the

list scheduling algorithm twice: once with parallel and once with serial sequencing,

where we find empirically that there is not a dominating strategy.

• Upon completing each strategy, we run the post-optimization described in the

previous section on the best solution found by the Parallel Algorithm 2 and

on the best solution found by the Serial Algorithm 3.

Given a list of solutions y1, . . . , ym corresponding to different iterates of the BZ algo-

rithm, we use the following rules on a single y∗ as follows:

1. Final LP Iterate: We always run both the Alpha and Expected Strategies on the

final LP iterate.

2. Best LP Iterate: For all iterates other than the final one, we first run the Expected

Strategy and identify the iterate producing the solution with highest objective func-

tion value. The Alpha Strategy runs only on the iteration found by the Expected

Strategy.

The reason for the execution of these rules in the manner prescribed by 1. and 2.

is that we empirically find a strong correlation between the values resulting from the

Alpha and Expected Strategies. Running the Alpha Strategy on all iterates produces

only marginal improvements and is accompanied by significant run time.

5.4. Post Optimization

Consider an integer-feasible solution y of (F). Let Ĵ = {j ∈J : yjT = 1}. For each j ∈ Ĵ

let t(j) = min{t : yjt = 1}. Observe that Ĵ corresponds to the set of jobs in J that are

scheduled in solution y, and for each j ∈ Ĵ , t(j) corresponds to the time in which j is

scheduled.

It may be possible to improve solution y by simply removing some jobs from the

schedule, and leaving all remaining jobs scheduled as they were. In order for such a new

schedule to be feasible, it is necessary and sufficient that if a job is removed from the

schedule, so must all of its successors be. The problem of deciding a best way to improve
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a solution in such a manner is simple to state, requiring a single, binary variable wjt(j)

for each j ∈ Ĵ , indicating whether or not a job should remain as part of a solution.

Both negative- and positive-valued jobs may be removed here if the overall contribution

to the net present value is not worth their extraction. The integer program is run once,

and can be stated as follows:

(PF) max
∑
j∈Ĵ

pj
(1 + δ)t

wjt(j) (8a)

wjt(j) ≤wit(j) ∀i, j ∈ Ĵ , (i, j)∈A (8b)

wjt(j) ∈{0,1} ∀j ∈ Ĵ (8c)

The objective function of this problem is the same as that of (F). Constraints (8b)

impose precedence, and constraints (8c) integrality. This is a maximum closure problem

(Hochbaum 2008), and, as such, is easy to solve. Moreover, since the resulting solution

satisfies all precedence constraints, and further, preserves feasibility with respect to the

resource constraints, it is guaranteed to be feasible for (F), and at least as good.

5.5. Constraint Programming

CP has been shown in a number of studies to be the most effective technique for solving

small and difficult instances of the Rcpsp for both makespan minimization and net

present value maximization; see, for example, Schutt et al. (2011, 2012a). Little has

been published, however, on the effectiveness of CP for larger instances of the Rcpsp.

We adapt a CP formulation with makespan minimization (Laborie (2009), Laborie

et al. (2018)) for our problem, (F), that maximizes net present value. An interval

variable yj is used to represent each job j ∈ J . Its start time, end time, and duration

are accessed by start(yj), end(yj), and length(yj), respectively.

(FCP ) max sum
j∈J

(
e−δ·end(yj)pj

)
(9)

subject to cumulative function
(
(y1, u1r), . . . , (yn, unr)

)
≤ Ur ∀r ∈R, (10)

end before start(yi, yj, lij) ∀(i, j)∈A, (11)
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yj interval variable of length dj ∀j ∈J . (12)

Formulation (FCP ) maximizes the NPV of the schedule (9). Inequalities (10) ensure

that the per-period capacity is not exceeded for any resource using a function which

represents the cumulative resource usage by all jobs in each period. Both precedences

and time lags are enforced by the generalized precedence constraints (11).

In the context of this study, we note that CP can be used both as an alternative

means of generating an initial feasible solution to an instance of Rcpsp and as a means

to improve a solution produced by some other method. We use the IBM ILOG CP

Optimizer Version 12.8 (ILOG CP) on an appropriate CP model (Laborie et al. 2018)

for both of these purposes, which iterates between using constraint programming and

other techniques to compute a sequence of improving upper and lower bounds to the

Rcpsp until optimality can be proven, or until a solution with a desired gap is found.

Although the solver is effective at generating and improving the quality of feasible

solutions, it is usually very slow in producing upper bounds that are stronger than those

provided by the LP relaxation. Because ILOG CP does not allow the user to import

externally computed upper bounds, we configure it to stop each time it generates a new

and improving feasible solution. We then compare the quality of this solution against

the upper bound provided by the LP solution. If the gap is below a pre-established

value, we stop. Otherwise, ILOG CP continues attempting to improve the solution, or

attains the desired gap with its own computed upper bounds. Laborie et al. (2013) show

that providing initial solutions to a CP solver can be effective for smaller instances.

6. Computational Study

We conduct our computational experiments using Linux 2.6.32 as the operating system

and an x86 64 architecture, with four eight-core Intel Xeon E5-2670 processors and 128

GB of RAM. All mining instances follow an underground method similar to the one

displayed in Figure 2, in which ore is extracted one to three vertical levels at a time in an

assigned direction, e.g., from top to bottom. Extraction of activities containing ore result

in profit (as the recovered ore is processed and sold), while development and backfilling

activities incur a cost but are necessary to access the ore. Equipment capacities, as

well as labor availability, limit the mining rate and constitute the resource constraints.

Our implementation of the BZ algorithm mimics the one presented in Muñoz et al.

(2018), except that we update the version in the latter reference to IBM ILOG CPLEX,

Version 12.8 (IBM 2018) for our master problems, and modify the code so as to save
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primal solutions every ten iterations. All list scheduling and arc aggregation algorithms

are implemented and executed in Python 3.9 using the NumPy library; solution-time

speed-ups could be realized by using an implementation in C or C++.

Figure 2 A sublevel stoping mining operation, consisting of activities such as development and down-the-hole

(DTH) drilling, in which ore is extracted from vertical levels (Hustrulid and Bullock 2001)

We consider twelve strategic planning instances in our computational tests, nine of

which (A1-A6 and B1-B3) correspond to instances with very few time periods and

activities, henceforth referred to as strategic-limited. The final three data sets, (Catan,

Dominion, and Agricola) referenced as strategic-detailed, correspond to instances with

many time periods and activities. Strategic instances are used to evaluate the effect

of different scenarios (e.g., cost structures, infrastructure, and major design decisions).

Some underground mines are more uniform in layout, size, and production rates, thereby

creating data sets with homogeneous activity durations that can be easily aggregated.

Other underground mines have significant variations in these factors, leading to hetero-

geneous data with a wide range of fidelity. Because of this, many underground mining

operations schedule on a daily basis, even for multi-year evaluations. Because a large

number of scenarios must sometimes be evaluated, there is great value in producing

schedules quickly.

For strategic instances in which the duration of an activity can range from a few

hours to a few months because of the nature of the mine design, the number of activities
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Table 2 Problem size, in terms of number of variables, activities and precedence, before and after

preprocessing

Number Before All Preprocessing After All Preprocessing

Instance of Periods Variables Activities Precedences Variables Activities Precedences

A1 60 87,377 1,598 38,016 71,192 1,296 4,295

A2 60 101,684 1,881 65,621 79,093 1,451 5,381

A3 60 104,580 1,944 67,898 80,003 1,473 5,575

A4 60 107,840 1,961 94,508 85,504 1,539 6,321

A5 60 116,302 2,140 71,583 89,541 1,625 7,450

A6 60 132,283 2,453 111,065 99,581 1,817 8,945

B1 30 24,479 1,157 104,754 24,287 1,157 3,629

B2 30 24,774 1,160 103,624 24,622 1,160 3,694

B3 30 25,339 1,176 110,801 25,293 1,176 3,834

Agricola 7,200 65,193,806 14,160 16,507 56,790,620 13,343 13,606

Catan 1,800 6,486,956 8,497 14,632 5,356,876 7,553 10,052

Dominion 3,600 65,405,074 28,883 49,313 55,382,828 28,393 29,788

can dramatically increase. All of the instances used in our study correspond to real

planning problems with time fidelity of days. The names of the actual mines have been

changed to protect confidentiality, and data has been scaled to prevent identification.

6.1. Preprocessing

Table 2 provides the sizes of our test instances, before and after preprocessing (see

Section 4), as a function of the number of variables, the number of activities, and the

number of precedences. The various preprocessing schemes have different effects on

problem size reduction for the strategic-limited versus strategic-detailed instances. We

observe that, on average, the number of variables in formulation (F) can be reduced by

15.0%. The average reduction of problem activities and precedences is 13.0% and 77.1%,

respectively. After preprocessing, the precedence graphs corresponding to the strategic-

detailed instances are sparse, possessing fewer than two precedences per activity. By

contrast, the strategic-limited instances contain four to five precedences.

6.2. Prior Methodologies

Table 3 provides results for the preprocessed instances with the best known solution

methodologies in the academic literature prior to the publication of this paper. In order
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to compute solutions to the LP relaxation of (F), we run the BZ algorithm (Muñoz

et al. 2018) until the primal-dual gap falls below 10−4, or stop after 15 days; the second

column reports the corresponding amount of time. The best upper bound computed

by the BZ algorithm after 24 hours of run time is reported in the third column. We

report scaled objective function values by dividing the objective by the value of the best

upper bound known for the corresponding problem, and multiplying by one hundred.

The bounds of all problems, with the exception of Agricola, comes from solving the LP

relaxation for up to 15 days (or until reaching the BZ stopping condition). The bound for

Agricola comes from solving the safe LP bound to optimality (see Table 4). The fourth

column reports the value of the solution obtained by using the TopoSort heuristic, as

described in Brickey et al. (2020), taking as input the best primal solution found after

24 hours of running the BZ algorithm. This method corresponds to using a serial list

scheduling algorithm, with expected times as a priority rule, and with no release dates.

The penultimate column reports the value of the best primal feasible solution computed

by the CP algorithm (IBM 2018) after 24 hours, starting from scratch. The final column

provides the best upper bound computed by the CP algorithm at this same point in

time.

The time taken to solve the LP relaxation of the strategic-limited instances is negli-

gible, and the LP upper bounds appear to be tight; in any case, we are able to obtain a

feasible solution using the TopoSort heuristic within about a few percentage points of

optimality (the worst case being B2 at slightly more than 4%). Solutions of the linear

programming relaxations for the strategic-detailed instances are more elusive in that

two of the three instances require more than 15 days. Correspondingly, the integer-

feasible solutions obtained via TopoSort using the best relaxed solutions after 24 hours

demonstrate larger optimality gaps; it is unclear whether the bound is weaker or if the

feasible solutions produced by the TopoSort algorithms are not as good. Overall, the

mathematical programming results shown in this table are reasonable for the strategic-

limited instances, where a solution within 5% of optimality can be obtained in seconds

with the TopoSort heuristic. However, for the strategic-detailed instances, the best solu-

tions require significant computational time to obtain, and the integer programming

gaps are poorer (i.e., greater than 5%).

Attempting to ameliorate the poorer results for the strategic-detailed instances using

constraint programming (CP) is not successful. The penultimate column of Table 3

shows that the quality of the primal solutions produced by the CP algorithm are erratic;
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Table 3 Time taken to solve the LP relaxation, and quality of the solutions obtained by using the TopoSort

heuristic. LP Solve Time indicates the time taken by the BZ algorithm to reach the termination conditions

of a gap of 10−4 or a time limit of 15 days†. LP24 Ubound indicates the best dual bound reported by the BZ

algorithm after 24 hours of run time. Topo24 Objval indicates the objective function value of the TopoSort

heuristic, when run on the best primal solution found by BZ after 24 hours. The final two columns, CP24

Objval and CP24 Ubound, provide the best objective function value and best upper bound computed by

the CPLEX Constraint Programming solver in 24 hours. All objective function values are scaled dividing by

the value of the best dual LP upper bound computed for the problem, and multiplying by one hundred.

Instance LP Solve Time† LP24 Ubound Topo24 Objval CP24 Objval CP24 Ubound

A1 7 s 100 98.7 99.2 121.1

A2 7 s 100 98.6 99.2 116.6

A3 8 s 100 97.8 99.1 133.7

A4 21 s 100 96.0 98.7 140.0

A5 23 s 100 97.2 98.0 163.4

A6 32 s 100 96.5 98.5 167.2

B1 2 s 100 96.6 86.4 304.6

B2 1 s 100 95.7 89.0 295.3

B3 2 s 100 96.6 92.7 284.4

Agricola 15 d† 107.3 94.5 91.0 186.1

Catan 5.1 d 100.0 92.6 93.4 121.6

Dominion 15 d† 102.2 92.7 71.9 281.8

while there is improvement for some of the already-well-performing strategic-limited

instances (i.e., those in the A-series), the strategic-detailed instances remain difficult.

In fact, the list scheduling heuristic (based off the LP solution obtained within 24 hours

of run time) produces significantly better results than CP (also run for 24 hours) for

Agricola and Dominion. Moreover, the CP algorithm does not compute strong upper

bounds; rather, the upper bounds afforded by the LP relaxation after the same amount

of time are significantly better. We note that CP could potentially improve upon its

current results using the TopoSort solution as input (Laborie et al. 2013). In fact, in

revisiting the strategic-detailed instances, we can demonstrate significant improvement

in tractability. In addition to pre-processing (where the size reductions are given in

Table 2) and list scheduling which we implement in this section on the original instances,

in the following section, we solve (Fk) and (F sk) on the time-aggregated instances,
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which affords excellent performance when compared with that for the strategic-detailed

instances in Table 3.

6.3. Improving the Solutions of the Strategic-detailed Problems

Table 4 reports, for each of the strategic-detailed instances, and for different values of

k, the results obtained from using the methodology described in Section 5. Specifically,

for each of the strategic-detailed instances, and for different values of k, we report: (i)

the best LP upper bound computed by the BZ algorithm for (Fk) and (F sk) (third and

fourth columns, respectively), (ii) the time required by the BZ algorithm, for (Fk) and

(F sk), to reach the terminating condition (fifth and sixth columns, respectively), (iii)

the value of the best feasible solution computed for (F) by employing the methodologies

described in Section 5.3, using as input the best primal solutions computed from (Fk)

(seventh column), (iv) the total time taken to compute the list scheduling solutions

(eighth column), and (v) the value of the best feasible solution computed by the CP

algorithm after 24 hours, when providing as input the best solution computed by the

list scheduling algorithm. The time reported in the penultimate column is the serial

time; the actual time was much less because the multiple list scheduling runs can be

completed independently in parallel on an eight-core machine, taking almost exactly

one-eighth the time reported, which does not include (Fk)’s LP relaxation solve. Thus,

the total time required to compute a feasible solution is obtained by summing the values

in the fifth and eighth columns. Finally, note that (F1) is equivalent to (F). In the case

of Agricola, it can be seen that the LP upper bound computed from (F s1) is better than

that of (F1). This is likely because, after 15 days, (F1) is still far from being solved by

the BZ algorithm, and the best Lagrangian bound found with the stopping condition

is still poor.

For all instances, solving the LP relaxation of (F sk) is significantly faster than solving

that of (Fk), see Table 4. Furthermore, the amount of time required to solve either

model decreases rapidly when increasing k. The LP upper bounds for (F) are similar

to those of (Fk), regardless of k. This suggests that the optimal LP relaxation value

of (Fk) is a reasonable approximation to that of (F). However, the safe LP bounds

computed from (F sk) tend to be conservative. Finally, while the upper bounds provided

by (F s1), in general, are good and valid, those provided by (F s60) are computed in

negligible time and are only a few percentage points weaker.

In terms of the feasible solutions obtained for (F) from the list-scheduling methodol-

ogy, it can be seen that: (i) the quality of solutions is very good. In fact, for all but two
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instances (Agricola 30 and Agricola 60) the value is within 5%. Moreover, for Catan

and Dominion, the value is within 4%. This is significantly better than the values seen

in Table 3; (ii) the quality of the solutions obtained is very similar in all instances when

k is less than or equal to 10. However, the time required to obtain these diminishes

dramatically as k increases, because the time required to solve the LP relaxation of

(Fk) seems to decrease exponentially with k, suggesting that k = 10 is a quick way

to produce high-quality solutions; (iii) even when given the best list-scheduling solu-

tion as a warm start, the constraint programming algorithm yields little improvement.

Nonetheless, in summary, the overall results are significantly better than those shown

in Table 3, which were computed with the approach described in Brickey et al. (2020),

both in terms of time and quality of solutions obtained.
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Table 4 Objective function value of approximate (Fk) and safe (Fsk) LP relaxations for different levels of

time aggregation k, and a comparison with constraint programming, where we provide the value of the best

feasible solution computed by the CP algorithm after 24 hours (+CP24), when providing as input the best

solution computed by the list scheduling algorithm. All values are divided by the best known upper bound of

the problem, and multiplied by one hundred. The List Scheduling time column shows the total time

required to run all the list scheduling algorithms using different levels of aggregation for the strategic-detailed

data sets. List Scheduling solve time does not include the time taken to solve the LP relaxation

.

LP Upper Bound LP Solve Time [h] List Scheduling +CP24

Instance k Approximate Safe Approximate Safe Best val. Time [h] Best val.

Agricola 1 101.7 100.0 360.00 23.64 95.1 2.32 95.5

2 99.6 101.9 153.14 6.75 95.0 6.65 95.2

3 99.7 102.1 35.78 3.42 95.0 6.88 95.1

5 99.7 102.4 8.32 1.28 95.2 4.12 95.5

10 99.7 103.0 1.88 0.32 95.0 3.20 95.0

30 99.9 103.6 0.31 0.06 94.5 2.74 94.6

60 100.3 104.4 0.09 0.02 94.1 2.39 94.2

Catan 1 100.0 101.4 123.51 1.25 97.4 4.72 97.5

2 100.0 101.4 4.75 0.18 97.5 3.11 97.6

3 100.0 101.5 2.09 0.09 97.4 3.52 97.6

5 100.0 101.6 0.70 0.04 97.3 3.21 97.4

10 100.1 102.0 0.15 0.01 97.2 1.98 97.3

30 100.3 102.5 0.01 0.00 96.6 1.28 96.7

60 100.6 103.1 0.00 0.00 96.2 1.15 96.4

Dominion 1 100.0 100.1 360.00 61.67 98.0 26.85 98.0

2 100.0 101.4 56.22 6.21 97.4 15.68 97.5

3 100.0 101.5 23.16 2.95 97.6 14.54 97.7

5 100.0 101.6 7.04 0.00 97.5 12.62 97.6

10 100.1 101.8 1.93 0.20 97.6 13.15 97.6

30 100.5 102.7 0.21 0.03 97.4 8.19 97.4

60 101.0 103.9 0.00 0.01 96.8 7.25 97.0
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7. Conclusion

Many strategic underground mine planning models possess a similar structure, that

of a resource-constrained precedence problem, which we exploit in our mathematical

programming approach. Constraint-programming techniques have also historically been

used to find good, feasible solutions.

With preprocessing and new implementations of list-scheduling heuristics, we can

significantly improve solution quality and reduce solution times for real-life mining

instances when compared against both state-of-the-art mathematical programming and

constraint programming techniques available at the time of this writing. Specifically,

the instances we test can be solved to about 3% of optimality in a few minutes for the

strategic-limited instances and to about 5% of optimality within several hours for the

strategic-detailed instances. Conventional, untailored mathematical programming algo-

rithms would require days, and even constraint programming solvers deliver solutions

that may not be within 20% of optimality after the same amount of time.

Our results have implications for the ability of mine planners to examine many

scenarios; future research would incorporate extended problem structures, e.g., those

considering ventilation with the option of refrigeration, or minimizing makespan rather

than maximizing net present value.
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