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The Italian conference onComputational Logic1 (Convegno Italiano di Logica Computazionale,

CILC) is the annual conference organised by the Italian group of researchers and users of logic

programming2 (Gruppo ricercatori e Utenti Logic Programming, GULP). Since the first event

of the series, which was held in Genoa in 1986, the annual conference organised by GULP has

been representing a major opportunity for researchers and practitioners working in the field of

Computational Logic to meet and exchange ideas. The conference has broadened its horizons

over the years, and today embraces topics that extend its reach beyond Computational Logic,

such as declarative programming, knowledge representation, automated theorem proving, and

virtually all applications of Computational Logic in the broader field of Artificial Intelligence.

The series of conferences organised by GULP has always been relevant to the GULP commu-

nity, and Italian researchers and practitioners consider it as an indispensable tradition of the

community. The 37th edition of the conference marks the attempt to return to normality after

the COVID-19 pandemic and the consequent global health crisis. The conference was organised

as a regular pre-pandemic event from June 29th, 2022 to July 1st, 2022 in Bologna, and it was

attended in person by 45 participants. Other 15 participants joined the conference remotely by

using a dedicated virtual meeting space, which was used to stream and record the presentations

of accepted papers.

The community delivered a solid response to the urge for normality that characterised the

days of the event. The 37th edition of the conference featured 29 presentations of high-quality

papers, 22 of which were original works. Accepted contributions ranged from foundational and

theoretical results to practical experiences, case studies, and applications, and they covered a

wide range of relevant topics broadly related to Computational Logic. Accepted contributions

included papers on agents and multi-agent systems, (constraint) logic programming, argumen-

tation, and practical applications of logic programming. It is worth noting that accepted papers

went through a strict evaluation process. Each original submission was evaluated by at least

three anonymous reviewers from the Program Committee to ensure that the quality of papers
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met the high-quality standards of the conference. Each non-original submission was reviewed

by at least one anonymous reviewer from the Program Committee to check for coherence with

the aims and scope of the conference. Note that, following the tradition of the conference,

non-original submissions are not included in this proceedings.

The keynote speech was delivered by Manuel Hermenegildo, from the University Politecnica

de Madrid, an international expert on Computational Logic. The keynote speech, titled “Prolog

at 50”, was a way for celebrating Prolog’s 50th anniversary. After all these years, Prolog and

Logic Programming are still relevant to higher-level programming and symbolic, explainable

AI, with various implementations that keep on evolving, and new ones appearing. In this talk

he provided an overview of the evolution of Prolog over these years since the original Marseille

and Edinburgh versions, the current status of the language and its implementations, and some

reflections on challenges and opportunities for the future. He also addressed some related issues

such as the best ways of teaching Prolog and Logic Programming in general, applying Logic

Programming technology to other languages, or the relation to other (logic and non-logic)

programming languages.

The conference was enriched with a Technological Contest with the twofold purpose of

(i) increasing the visibility of novel logic-based technologies with the logic programming

community, and (ii) drawing a picture of the current state of the art of logic based technologies.

There, 10 software contributions were presented.

Finally, a Special Session in honour of the former GULP President Gianfranco Rossi was

successfully organised (mostly by Agostino Dovier), which brought back some good people and

sweet memories from GULP past.

In conclusion, we would like to warmly thank all the people who contributed to CILC 2022.

First, we would like to thank all the authors of the submitted papers, the invited speaker, the

members of the Program Committee, and the anonymous reviewers. We are also grateful to the

President of GULP, Stefania Costantini, and to all the members of the GULP Board, for their

support and their fruitful suggestions. Finally, special thanks are due to all the attendees that

joined the conference either in person or remotely for turning CILC 2022 into an occasion for

lively discussions on relevant research topics and research challenges.

Roberta Calegari

Giovanni Ciatto

Andrea Omicini
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Abstract
This paper analyses and compares some of the automated reasoners that have been used in recent research
for compliance checking. We are interested here in formalizations at the first-order level. Past literature
on normative reasoning mostly focuses on the propositional level. However, the propositional level is of
little usefulness for concrete LegalTech applications, in which compliance checking must be enforced
on (large) sets of individuals. This paper formalizes a selected use case in the considered reasoners and
compares the implementations. The comparison will highlight that lot of further research still need to
be done to integrate the benefits featured by the different reasoners into a single standardized first-order
framework. All source codes are available at https://github.com/liviorobaldo/compliancecheckers

Keywords
Compliance checking, Normative reasoning, LegalTech

1. Introduction

LegalTech is experiencing growth in activity. Current LegalTech technologies mostly use
Natural Language Processing (NLP) [1] or Machine Learning (ML) [2] to process documents
and replicate legal decision-making.

However, ML is based on statistical reasoning: new cases are classified by similarity with the
cases included in the training set. As a result, performance are intrinsically limited. Furthermore,
and most important of all, as it is well-known ML tends to behave like a “black box” unable to
explain its decisions and it can therefore lead to biases and other discriminatory outcomes: ML
trained on biased datasets tend to replicate the same biases on new inputs.
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In order to overcome the limits of ML, lot of recent research has been devoted to investigate
approaches in symbolic AI. The idea is to plug into the ML-based system human-understandable
symbols, i.e., concepts and other logical constructs, that enable forms of logical reasoning [3].

Logical formalization of norms requires deontic operators to represent the involved modalities
(obligatory, permitted, prohibited) and non-monotonic operators fit to handle the central role of
defeasibility in normative reasoning [4].
Formalizations found in past relevant literature are typically propositional, i.e. their basic

components are whole propositions. However, propositions are of little usefulness for legal
reasoning tasks needed within real-world LegalTech applications [5], due to their very limited
expressivity. It is necessary to enhance the expressivity of the underlying logical format to the
first-order level, fit to distinguish individuals from predicates and to allow the evaluation of
deontic formulae to iterate over (large) sets of individuals.

This paper focuses on compliance checking with conflicting and compensatory norms. Com-
pliance checking is the normative reasoning task of assessing whether a certain state of affairs
complies or not with a set of norms. We are interested here in sets of norms where some of them
conflict with others, for which it is necessary to establish preference criteria among them and to
introduce defeasible operators to implement the overriding. On the other hand, compensatory
norms are those that may be added “on the fly” to the set of norms in force whenever a violation
occurs. For instance, if a traffic warden finds my car parked on the pavement, he will oblige me
to pay a sanction. The payment of the sanction is then seen as a compensatory obligation for
my illegal parking.
In this paper, we follow [6], which distinguishes between monotonic knowledge, encoded

within an OWL ontology for the GDPR called PrOnto [7], and non-monotonic knowledge, i.e.,
the deontic and defeasible legal rules that implement the selected GDPR norms, encoded within
a separate knowledge base in LegalRuleML [8]. Following [7], in this paper we will formalize
the monotonic knowledge of our use case in OWL and we will define separate legal rules in the
formats that we will compare.

2. The use case

In this paper, we use the following use case:

(1) - Art. 1. The licensor grants the licensee a licence to evaluate the product.
- Art. 2. The licensee must not publish the results of the evaluation of the product
without the approval of the licensor. If the licensee publishes these results without
the approval, the material must be removed.

- Art. 3. The licensee must not publish comments about the evaluation, unless the
licensee is permitted to publish the results of the evaluation.

- Art. 4. If the licensee is commissioned to perform an independent evaluation of the
product, then the licensee is obliged to publish its results.

The use case in (1) is a simplification of use case 2 from [9]. We simplified the use case by
removing all temporal information [10]. For instance, in the original version of Article 2 the
licensee is obliged to remove the material within 24 hours after he had published it. We believe



that adding time management will not constitute a relevant additional element of comparison;
although we consider it as part of our future work, it is not in the scope of the present one.
Thus, we interpret norms with respect to the state of affairs holding at the time “now”. If “now”
the licensee has published the material without the approval and he has “now” removed it, then
he is “now” complying with Article 2.
According to standard legal theory [11], norms are formalized as if-then rules having a

deontic statement (i.e., obligation, permission, or prohibition) in the consequent and, in the
antecedent, the conditions for this statement to hold true.
Norms and corresponding if-then rules may be defeasible, in the sense that some of them

may override others. Therefore, in order to properly formalize the articles in (1), we must also
identify and formalize which norms override which other ones. In Art.1, the licensee is by
default prohibited to evaluate the product; however, if he has the licence he is permitted to do
so and this overrides the prohibition. Similarly, in Art.2, he is prohibited to publish the results
unless he has the approval. In Art.3, the licensee is by default prohibited to publish comments
unless he is permitted to publish the results. Finally, Art.4 states that in case the evaluation
has been commissioned, the licensee is obliged to publish the results and this overrides any
prohibition to do so.

On the other hand, as said above, some of the rules may compensate violation of others. These
rules specify obligations that, when fulfilled, repair the non-compliance of other rules. The use
case in (1) contains a single compensation in Article 2: if the licensee publishes the result of
the evaluation without the approval, a new obligation holds for him: the licensee is obliged to
remove them. In case this obligation is fulfilled, the violation has been repaired/compensated.

3. Formalizing norms at the first-order level

In this research work, we implemented the norms in (1) in six available formats for legal
reasoning: SHACL [12], ASP-Core-2 [13], PROLEG [14], DLV [15], Arg2P [16], and SPINdle
[17]. The if-then rules in (1) has been implemented at the first-order level, except in SPINdle in
which the rules must be grounded.

Space constraints forbid us to report all formalizations in the paper. Thus, we will focus only
on the two reasoners that have been identified as the “extremes” of the current state of the art:
ASP-Core-2 and Arg2P. The reader is however invited to examine and execute all formalizations
available on GitHub1.
In line with [7], we stored all the monotonic knowledge of the use case within an OWL

ontology, shown in Figure 1. The if-then rules representing the norms are separately formalized
in the considered formats. These rules will all involve predicates corresponding 1:1 to the OWL
resources in the ontology.

Nevertheless, the concepts in Figure 1 are not enough to formalize the norms. We also need
concepts to model the deontic modalities, the defeasible rules, and the compensations. These
concepts are inserted in a new separate ontology shown in Figure 2. To facilitate comprehension
of the formulae, in Figure 2 we introduce subclasses of Exception whose names directly refer
to the articles in the use case denoting the exceptions. The ontology includes a further object

1https://github.com/liviorobaldo/compliancecheckers

https://github.com/liviorobaldo/compliancecheckers


Figure 1: Classes and object properties of the reference ontology (implemented in Protégé); the class
Approve is shown in full detail.

property compensate, not shown in Figure 2, that relates individuals of the class Obligation
with individuals of the (union) class Obligatory ∪ Prohibited. Finally, we insert a further
class Violation whose individuals will refer to the violated (and not compensated) obligations
or prohibitions.

Figure 2: Extra classes to implement deontic modalities and defeasibility

3.1. Implementing the use case in ASP

In this subsection, we formalize the if-then rules as Answer Set Programming (ASP) rules.
ASP is a widely used formalism for knowledge representation and reasoning; see [18] for an
introduction. ASP is one of the most popular formalisms for AI, even at the industrial level [19].
Over the decades research has led to the definition of a variety of ASP “dialects”, supported by
corresponding ASP reasoners. The scientific community recently agreed on the definition of a
standard input language for ASP systems, namely ASP-Core-2 [13].



ASP is a purely declarative formalism based on (if-then) rules. A given computational problem
is solved in ASP by building a declarative logic program whose intended models, called answer
sets, correspond 1:1 to the solution of the problem at hand. Since ASP is purely declarative,
the order of the rules is irrelevant. Knowledge is just additive, and the ASP reasoner solves a
program by searching for answer sets that satisfy all rules at once.
The ASP rule encoding Art.1 in (1), which states that the licensee is prohibited to evaluate

the Product unless exceptionArt1b holds, is shown in (2)2.

(2) prohibited(Ev):- evaluate(Ev), hasAgent(Ev,X), licensee(X),
hasTheme(Ev,P), product(P), not exceptionArt1b(Ev).

“not” implements negation-as-failure. Thus, “not exceptionArt1b(Ev)” is true when the literal
exceptionArt1b(Ev) is either false or unknown. exceptionArt1b(Ev) holds if the agent of
Ev is granted a licence to evaluate the product. In such a case, the evaluation is permitted.
However, the basic ASP language does not support conjunction of literals in rule heads; hence,
in order to model such situations the typical approach consists of introducing a specific rule to
define the condition, and then using it as antecedent of more than one rule:

(3) condition1(Ev):- evaluate(Ev), hasAgent(Ev,X), licensee(X),
hasTheme(Ev,P), product(P), isLicenceOf(L,P),
licence(L), grant(Eg), rexist(Eg), hasTheme(Eg,L),
hasAgent(Eg,Y), licensor(Y), hasReceiver(Eg,X).

exceptionArt1b(Ev) :- condition1(Ev).

permitted(Ev) :- condition1(Ev).

Since condition1(Ev) is only used in these three if-then rules, indeed the first if-then rule in
(3) is logically equivalent to a bi-implication, i.e., a definition.

Article 2 of the use case specifies both a prohibition and a compensatory obligation. Licensees
are prohibited to publish the result of an evaluation unless this was approved by the licensor
(first exception) or unless they were commissioned to perform an independent evaluation
(second exception). Licensees who violate this prohibition are obliged to remove the published
material.
The following rules define the prohibition described in Article 2a. The two mentioned

exceptions are represented by the predicates exceptionArt2b and exceptionArt4a. We omit
the ASP rules that entail exceptionArt2b as they are similar to (3). The ones that entail
exceptionArt4a is shown below in (8).

(4) condition2(Ep, X, R):- publish(Ep), hasAgent(Ep, X), licensee(X),
hasTheme(Ep, R), result(R), hasResult(Ev, R), rexist(Ev),
evaluate(Ev), not exceptionArt2b(Ep), not exceptionArt4a(Ep).

prohibited(Ep):- condition2(Ep, X, R).

2To model our use case, we will only consider Action(s) that exhaustively specify all (and only) their thematic
roles. If these are unknown, the formula in (12) should not include thematic roles in the pre-conditions.



In order to model the compensatory obligation in Article 2c, we introduce a set of ASP rules that
allow us to derive the same knowledge expressed by the following first-order logic well-formed
formula:

(5) ∀Ep∀X∀R[(rexist(Ep) ∧ condition2(Ep,X,R))→∃Y[obligatory(Y) ∧
remove(Y) ∧ hasAgent(Y,X) ∧ hasTheme(Y,R) ∧ compensate(Y, Ep)]]

The ASP vocabulary does not include existential quantifiers. Thus, we make use of function
symbols to simulate existential quantification via Skolemization. In particular, in this case, we
use the function symbol “ca” (as for “compensatory action”) and replace Y by ca(Ep,X,R):

(6) obligatory(ca(Ep,X,R)) :- rexist(Ep), condition2(Ep,X,R).

remove(ca(Ep,X,R)) :- rexist(Ep), condition2(Ep,X,R).

hasAgent(ca(Ep,X,R),X) :- rexist(Ep), condition2(Ep,X,R).

hasTheme(ca(Ep,X,R),R) :- rexist(Ep), condition2(Ep,X,R).

compensate(ca(Ep,X,R),Ep) :- rexist(Ep), condition2(Ep,X,R).

Article 3 defines the prohibition to publish comments on the evaluation of the product unless
the licensee is allowed to publish the results of the evaluation of the product. The rules encoding
Article 3 are shown in (7).

(7) prohibited(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),
hasTheme(Ep, C), comment(C), isCommentOf(C, Ev),
evaluate(Ev), rexist(Ev), not exceptionArt3b(Ep).

condition4(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),
hasTheme(Ep, C), comment(C), isCommentOf(C, Ev), rexist(Ev),
evaluate(Ev), hasResult(Ev, R), hasTheme(Epr, R),
hasAgent(Epr, X), publish(Epr), permitted(Epr).

exceptionArt3b(Ep) :- condition4(Ep).

permitted(Ep) :- condition4(Ep).

Finally, Article 4 establishes the obligation to publish the results of the evaluation in case this
was commissioned, and thus an exception to Article 2.

(8) condition5(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),
hasTheme(Ep, R), result(R), hasResult(Ev, R),
evaluate(Ev), rexist(Ev), hasTheme(Ec, Ev),
commission(Ec), rexist(Ec).

exceptionArt4a(Ep) :- condition5(Ep).

obligatory(Ep) :- condition5(Ep).



3.1.1. Compliance checking via ASP rules.

The ASP rules shown in the previous subsection infer which actions are either prohibited or
obligatory. Further ASP rules are then needed to infer the violations occurring in the state of
affairs.

We remind that a violation occurs either in case an action is performed even if prohibited or
in case an action is not performed even if obligatory. However, in both cases if the action is
associated with a compensatory obligation and the latter was performed, the former does not
indeed trigger any violation. The ASP rules in (9) are able to carry out the desired inferences.

(9) compensated(X) :- compensate(Y, X), rexist(Y).

violation(viol(X)) :- obligatory(X), not rexist(X), not compensated(X).

violation(viol(X)):- prohibited(X), rexist(X), not compensated(X).

referTo(viol(X), X) :- violation(viol(X)).

Finally, we add the ASP rule in (10) in order to intercept the occurrence in the state of affairs of
a removal action that has the properties required by the removal action denoted by ca(Ep,X,R)
in (6). The rule in (10) is needed to “solve” the existential quantification, represented as a
Skolemized functional symbol.

(10) rexist(ca(Ep,X,R)) :- remove(ca(Ep,X,R)),
hasTheme(ca(Ep,X,R),R), hasAgent(ca(Ep,X,R),X),
rexist(Er), remove(Er), hasTheme(Er,R), hasAgent(Er,X).

In other words, the rule in (10) “solves” the existential quantification (represented here as a
functional term) by searching for an action with the same type and the same thematic roles and
that really exists in the model. If this action is found, also the functional term ca(Ep,X,R) is
asserted as really existing.

3.2. Implementing the use case in Arg2P

Several modern approaches to legal reasoning are based on structured argumentation [20].
These approaches provide an extra layer to the representation of the inferences by including
therein the graph of the arguments that either support or reject the conclusions. Although
argumentation offers more functionalities than what we need to model our use case, we still
decided to consider it in our analysis given the prominent role that it is increasingly assuming
in LegalTech.
In this paper we consider Arg2P [21], a lightweight Prolog-based implementation for struc-

tured argumentation in compliance with the micro-intelligence definition [16]. The research
in Arg2P aims to identifying different functionalities offered by available defeasible reasoners
and to allow the users to configure Arg2P on the ones they need in their domain and for the
purposes of their projects.

Arg2P format allows to encode labelled defeasible inference rules each from a conjunction of
premises to a conclusion. Overriding among rules is achieved via superiority relations. Arg2P



format also includes modal operators3, “o” and “p”, respectively stating whether an action is
obligatory or permitted.

Article 1 of the use case is formalized via the following Arg2P formulae, which corresponds
to the ASP formulae in (2) and (3).

(11) art1a: evaluate(Ev), hasAgent(Ev,X), licensee(X),
hasTheme(Ev,P), product(P) => o(-evaluate(Ev)).

art1b: evaluate(Ev), hasAgent(Ev,X), licensee(X), licence(L),
hasTheme(Ev,P), product(P), isLicenceOf(L,P),
hasTheme(Eg,L), hasAgent(Eg,Y), licensor(Y), grant(Eg),
rexist(Eg), hasReceiver(Eg,X) => p(evaluate(Ev)).

sup(art1b, art1a).

If the licensor grants a licence, the rules in (11) derive that the evaluation is both prohibited
(o(-evaluate(Ev))) and permitted (p(evaluate(Ev))); however, as the superiority relation
sup(art1b, art1a) states that the rule with label art1b is stronger than the rule with label
art1a, only p(evaluate(Ev)) is inferred.
The if-then rule that encodes the prohibition in Article 2 is shown in (12).

(12) art2aPart1: evaluate(Ev), rexist(Ev), hasResult(Ev,R),
result(R), publish(Ep), hasAgent(Ep,X),
licensee(X), hasTheme(Ep,R) => condition2(Ep,X,R).

art2aPart2: condition2(Ep,X,R) => o(-publish(Ep)).

The rule implementing the obligations from Article 4 is then:

(13) art4a: publish(Ep), hasAgent(Ep,X), licensee(X), result(R),
hasTheme(Ep,R), hasResult(Ev,R), evaluate(Ev), rexist(Ev),
hasTheme(Ec,Ev), commission(Ec), rexist(Ec) => o(publish(Ep)).

sup(art4a, art2aPart2).

The superiority relation in (13) blocks the first rule in (12) in case the evaluation of the product
has been commissioned. A similar rule, which we omit in this paper, blocks the first rule in (12)
in case the licensor approved the publishing.
In order to represent the rest of Article 2, we introduce a set of rules that parallel the ASP

ones in (6) above. These are shown in (14).

(14) art2cPart1: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)
=> o(remove(ca(Ep,X,R))).

art2cPart2: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)
=> remove(ca(Ep,X,R)).

3See https://pika-lab.gitlab.io/argumentation/arg2p-kt/wiki/syntax

https://pika-lab.gitlab.io/argumentation/arg2p-kt/wiki/syntax


art2cPart3: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)
=> hasTheme(ca(Ep,X,R),R).

art2cPart4: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)
=> hasAgent(ca(Ep,X,R),X).

art2e: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)
=> compensate(ca(Ep,X,R),Ep).

Finally, Article 3 of the use case is formalized as in (15): the publishing of the comments is
prohibited unless the publishing of the results is permitted.

(15) art3a: publish(Ep), hasAgent(Ep,X), licensee(X),
hasTheme(Ep,C), comment(C), isCommentOf(C,Ev),
evaluate(Ev), rexist(Ev) => o(-publish(Ep)).

art3b: publish(Ep), hasAgent(Ep,X), licensee(X), comment(C),
hasTheme(Ep,C), isCommentOf(C,Ev), hasResult(Ev,R),
evaluate(Ev), rexist(Ev), hasTheme(Epr,R), hasAgent(Epr,X),
publish(Epr), p(publish(Epr)) => p(publish(Ep)).

sup(art3b, art3a).

3.2.1. Compliance checking via Arg2P rules.

Arg2P represents obligatory, prohibited, and permitted actions via two modal operators “o” and
“p”. Since Arg2P’s input format does not allow to quantify over the predicates outscoped by
“o”, we must assert a different rule for each action that may be prohibited. In our use case, two
actions may be prohibited: the evaluation of the product and the publishing of either its results
or comments about it. Each of these two actions is associated with a different Arg2P rule that
detects the violation of its prohibition. “∼” is the Arg2P operator for negation-as-failure.

(16) ccRuleEv: o(-evaluate(Ev)), rexist(Ev), ∼(compensated(Ev))
=> violation(viol(Ev)).

ccRuleEp1: o(-publish(Ep)), rexist(Ep), ∼(compensated(Ep))
=> violation(viol(Ep)).

On the other hand, in our use case there are two actions that may be obligatory: the publishing
of the results, which is obligatory in case the evaluation has been commissioned, and the
removal of the results, which is obligatory in case the licensee publishes the results even if he
was not allowed to do so.

(17) ccRuleEp2: o(publish(Ep)), ∼(rexist(Ep)), ∼(compensated(Ep))
=> violation(viol(Ep)).

ccRuleEr: o(remove(Er)), ∼(rexist(Er)), ∼(compensated(Er))
=> violation(viol(Er)).



Finally, we need Arg2P rules to infer when the remove action ca(Ep,X,R) really exists and,
consequently, when the prohibited publishing have been compensated:

(18) ccRuleComp1: remove(ca(Ep,X,R)), hasTheme(ca(Ep,X,R),R),
hasAgent(ca(Ep,X,R),X), rexist(Er), remove(Er),
hasTheme(Er,R), hasAgent(Er,X) => rexist(ca(Ep,X,R)).

ccRuleComp2: compensate(Y,X), rexist(Y) => compensated(X).

4. Comparison, discussion, and future works

We developed a dataset generator that creates synthetic ABox(es) in the input format of each
reasoner. The reasoners are then executed on these ABox(es) to compare their performance.
The GitHub repository contains instructions to recreate the datasets locally and to execute the
reasoners on them.
Table 1 shows the time performance on three datasets respectively including 10, 30, and 50

states of affairs. All experiments reported in this paper were run on a PC with Intel(R) Core(TM)
at 1.8 GHz, 16 GB RAM, and Windows 10.

Table 1
Time performance of the compliance checkers

Size SHACL ASP
(clingo)

ASP
(DLV2)

DLV PROLEG Arg2P SPINdle

10 0.091s 0.019s 0.0552s 0.0347s 0.398s 398.338s 0.063s

30 0.122s 0.025s 0.0337s 0.0505s 0.631s 1039.668s 0.099s

50 0.148s 0.051s 0.0553s 0.097s 1.374s 1927.389s 0.187s

From the results reported in Table 1, it is evident that PROLEG and, in particular, Arg2P are
much slower than the other reasoners. We were indeed surprised ourselves that Arg2P’s time
performance were so much lower.

Since Arg2P is one of the most modern implemented reasoners for structured argumentation,
the assessed slow performance definitely demands for much further research. Structured
argumentation has been mainly studied so far from a theoretical point of view but it is time now
to research ways of making the theoretical findings usable in practice. This could be perhaps
achieved by modeling problems in argumentation precisely as problems in ASP, in order to
make the most of the format’s efficiency, a solution already advocated in [18].
Similar considerations hold for PROLEG. However, contrary to Arg2P, PROLEG is not a

stand-alone legal reasoner. It is a library that must be loaded within other Prolog reasoners, e.g.,
SWI Prolog4. Thus, carrying out further research to improve PROLEG efficiency most likely
amounts to carrying out further research to improve the efficiency of reasoners for standard
Prolog.

4https://www.swi-prolog.org



On the other hand, although computational performance is of primary importance in the big
data era, it cannot be the sole criterion for comparison.
Before using the formulae, these must be built and checked/debugged. The use case in (1)

is just a constructed example inspired by existing norms. Still, it required us considerable
time to be formalized. Therefore, other parameters such as human-readability, easy of editing,
explainability, etc. must be considered.

Unfortunately, although ASP is so efficient, achieving explainability in ASP could be difficult
because, as explained in subsection 3.1 above, ASP is a declarative language in which the
reasoner tries to satisfy all rules at once. The returned answer set does not specify which
rules have been applied to obtain the facts within the answer set. This knowledge must be
inferred through an additional “reverse engineering” process, from the returned answer set to
the asserted rules.
Achieving explainability in ASP is a matter of ongoing research [22]. Several techniques

and methodologies to debug answer-set programs have been proposed, among which [23] and
[24]. The common insight of these solutions is to add an extra-layer that relates the facts in
the returned answer set with the rules that derive them, thus allowing to trace the inferential
process.
Furthermore, ASP uses negation-as-failure in place of the superiority relations used in

Arg2P and PROLEG. The latter have been proved to be more readable and intuitive than the
former: while superiority relations straightforwardly allow to encode the directed acyclic graph
representing which rules override which other ones, negation-as-failure requires to introduce
additional special predicates that explicitly refer to the exceptions. As these additional predicates
increase in number along with the number of exceptions, it might be harder for a human to
keep track and organize them when translating large sets of norms.

On the other hand, while we were formalizing the use case in the different formats we realized
that modal operators, such as the operators “o” and “p” of Arg2P, are rather difficult to use in
conjunction with first-order formulae. On the contrary, unary first-order predicates applied to
terms that directly refer to the actions appear to be easier for editing, reading, and debugging
the formulae.
Arg2P’s modal operators can outscope a single predicate. On the other hand, for represent-

ing the actions together with their thematic roles we need a conjunction of predicates, e.g.,
publish(Ep), hasAgent(Ep,X), licensee(X), etc.
In our view, the only way to achieve the desired truth conditions in the current version of

Arg2P is then to assert the conjunction of predicates in the antecedent of the rule and the modal
operator applied to the “main” predicate in the consequent. This was done, for instance, for
rule “art4a” in (13).
Moreover, we observe that allowing the Arg2P operator “o” to also accept a conjunction of

predicates does not appear to solve the problem so simply. In Standard Deontic Logic (SDL)5,
which inspired the definition of these operators, the axiom o(𝑃1, 𝑃2)→ (o(𝑃1), o(𝑃2)) holds. Thus,
we may derive, for instance:

(19) o(publish(x,r), licensee(x), result(r))
=> o(publish(x,r)), o(licensee(x)), o(result(r))

5https://plato.stanford.edu/entries/logic-deontic/#StanDeonLogi

https://plato.stanford.edu/entries/logic-deontic/#StanDeonLogi


(19) means that it is obligatory for the individual x to be a licensee and for the individual r to
be a result, which sounds weird and counter-intuitive.
Also the modal operators of the LegalRuleML standard6 suffer from the same problem.

Possible solutions within future versions of the standard are still under discussion within the
LegalRuleML technical committee (TC)7.

These counter-intuitive derivations are not found with propositional symbols, e.g., in SPINdle.
It is a problem related to the use of modal deontic operators in conjunction with first-order
formulae, for which one should perhaps define an alternative semantics for the modal operators
that does not encompass the SDL axiom in (19). However, this solution requires much further
research to properly investigate whether it could lead or not to other counter-intuitive effects.

5. LegalRuleML

Artificial Intelligence is currently in a transition phase, from standard solutions based onMachine
Learning to novel solutions based on symbolic reasoning fit to support human centricity, i.e.,
explainability and human-readability.

This is true also in AI for the legal domain, as witnessed by lot of recent literature, e.g., [25]
and [26], as well as related initiatives such as the yearly EXplainable & Responsible AI in Law
(XAILA) workshop8.

Building symbolic knowledge is highly time-consuming, especially in LegalTech where the
knowledge originates from norms written in natural language. Moreover, norms from real
legislation are highly dependent on the legal domain they regulate (finance, health, etc.); thus,
their proper formalization must necessarily involve lawyers or other domain experts, many of
whom are indeed unfamiliar with logic and technical details.

In our view, the involvement of domain experts towards the creation of large knowledge bases
of machine-readable formulae associated with existing legislation might be achieved only via a
standardized methodology, from the norms in natural language to the executable formalizations
in some legal reasoner.
In the future, we intend to define such a methodology around LegalRuleML, which became

an OASIS standard very recently, i.e., on August 30th, 20219.
LegalRuleML is an XML-based semi-formal language aiming at enhancing the interplay

between experts in law and experts in logic. By “semi-formal” we intend that no formal model-
theoretic semantics is associated with LegalRuleML. Well-formed LegalRuleML representations
need to be translated into another language having such a semantics, e.g., the input formats of
the legal reasoners considered above, similarly to what is done in Reaction RuleML 1.0 via the
so-called “semantics profiles” [27].
Still, LegalRuleML defines a specification, in terms of an XML vocabulary and composition

rules, that is able to represent the particularities of the legal normative rules with a rich,

6https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html#
_Toc38017882

7Personal communications between Livio Robaldo, Guido Governatori, Monica Palmirani, and Adam Wyner,
during the recent activities of the LegalRuleML TC.

8https://www.geist.re/xaila:start
9See https://www.oasis-open.org/standard/legalruleml

https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html#_Toc38017882
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html#_Toc38017882
https://www.geist.re/xaila:start
https://www.oasis-open.org/standard/legalruleml


articulated, and meaningful markup language.
The advocated annotations in LegalRuleML may be facilitated via a special graphical editor

that allows to compose the if-then rules and store them in the XML standard. Something
similar has been recently done in [28], which present a graphical editor to annotate norms
in reified I/O logic [29], a novel deontic logic based on reification [30] [31] which features a
computational complexity lower than standard approaches based on possible-world semantics
[32]. The LegalRuleML annotations so produced can be then automatically translated in a
computational language to check the compliance of the denoted norms with respect to a given
state of affairs.

In our future works, we will implement advanced editors for LegalRuleML, as well as transla-
tion algorithms from LegalRuleML to executable formats. Further modules may be developed
as well, e.g., NLP procedures to suggest draft LegalRuleML representations that the annotators
must validate or amend.
These editors will allow us to promote annotation campaigns involving domain experts

or even law students. These campaigns will be possibly part of the future activities of the
LegalRuleML technical committee and they are expected to stimulate and guide future research
towards standardized and interoperable solutions for automated legal reasoning.

6. Conclusions

In this paper, we investigated some of current technologies for compliance checking at the
first-order level, with conflicting and compensatory norms.
Most implemented legal reasoners, first of all SPINdle, are propositional. Nevertheless,

propositional reasoning is too limited for existing applications. Thus, we investigated and
compared some of main current reasoning languages with respect to a shared use case and a
shared vocabulary of atomic predicates each of which corresponds to a concept in the ontology
from Figure 1.
So far these reasoning languages were mostly studied in isolation. Investigating them

altogether with respect to a shared use case and a shared vocabulary of predicates allowed to
highlight their respective peculiarities.
Arg2P and PROLEG are inefficient, in particular Arg2P. However, these two reasoners are

currently the only ones able to explain their derivations. Conversely, ASP is very efficient but
lacks explainability because the declarative nature of the language itself makes it difficult to
debug the inferences.
Finally, we observed that some of the operators used in the different formats, e.g., modal

operators and negation-as-failure, could be hard to manipulate. Readability may be improved by
defining one-to-one translation procedures from/to LegalRuleML. LegalRuleML aims at being
an easy and intuitive formal language to allow domain experts, even those unfamiliar with logic
and technical details, to contribute in the construction of large knowledge bases of legal rules.
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Abstract
Modern SAT solvers employ a number of smart techniques and strategies to achieve maximum efficiency

in solving the Boolean Satisfiability problem. Among all components of a solver, the branching heuristics

plays a crucial role in affecting the performance of the entire solver. Traditionally, the main branching

heuristics that have appeared in the literature have been classified as look-back heuristics or look-ahead

heuristics. As SAT technology has evolved, the former have become more and more preferable, for their

demand for less computational effort.

Graphics Processor Units (GPUs) are massively parallel devices that have spread enormously over the

past few decades and offer great computing power at a relatively low cost. We describe how to exploit such

computational power to efficiently implement look-ahead heuristics. Our aim is to “rehabilitate” these

heuristics, by showing their effectiveness in the contest of a parallel SAT solver.

Keywords
SAT Solving, Branching Heuristics, GPU parallelism

1. Introduction

The central point of either DPLL [1] or CDCL [2] SAT solvers is the choice of the successive

variable to be assigned (variable selection heuristics) and the choice of the Boolean value to

be attempted first (polarity selection heuristics). The algorithms for implementing the two

choices are called branching heuristics, and, apart from the naive ones (e.g., leftmost variable,

random choice, etc.), they can be classified as look-back heuristics or look-ahead heuristics.

The former are, in general, easier to implement, since it is sufficient to collect and maintain

minimal information about the evolution of the computation. Look-ahead heuristics require a

(partial) exploration of the “future” of the computation in order to determine the potential impact

of alternative choices the solver can make at a choice point and this can be computationally

expensive. This is a reason why look-ahead heuristics have largely been abandoned in modern

solvers, in favor of the “lighter” (and, somehow, possibly coarser) look-back heuristics.
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GPU manufacturer NVIDIA, through its platform called Computing Unified Device Archi-

tecture (CUDA) [3], is a leading pioneer in GPU-computing. CUDA, unveiled in 2006, is a

general-purpose parallel computing platform and programming model that leverages the parallel

computing engine of NVIDIA GPUs. It can be programmed in C or C++ and it enables the

development of applications that scale their parallelism transparently and take advantage of

the growing number of CPU and GPU cores. Although initially GPU were used for graphical

purposes, e.g., video games, they are nowadays widely used in Deep Learning computation. A

stream of works trying to exploit them for SAT/ASP solving exists [4, 5, 6, 7].

In this paper, we describe how to exploit the computational power of GPUs by developing a

CUDA C library that implements the look-ahead heuristics. In a sense, our aim is to “rehabilitate”

these heuristics, by showing their effectiveness in the contest of a parallel SAT solver. In Section 2

we introduce the main notions and notation used in the paper. Section 3 describes the main ideas

behind the GPU implementation of the look-ahead heuristics. In Section 4 we report on the

experiments made using our implementation with a DPLL and a CDCL solver. Conclusions are

drawn in Section 5.

2. Background

Let 𝒱 be a (denumerable) set of variables. If 𝑥 ∈ 𝒱 then 𝑥 and ¬𝑥 are said literals. A disjunction

𝜔 = (ℓ1∨ · · · ∨ ℓ𝑘) of literals is said a clause. If 𝑘 = 1 the clause 𝜔 is said unit clause (or, simply,

unit). A Boolean formula Φ in Conjunctive Normal Form (CNF) is a conjunction (𝜔1 ∧ · · · ∧ 𝜔ℎ)
of clauses. As common, for denotational convenience, we might refer to Φ as a set of clauses and,

similarly, to a clause 𝜔 as a set of literals.

A (partial) Boolean assignment 𝜎 is a mapping from 𝑋 ⊆ 𝒱 to {false, true}. An assignment

can be applied to literals, clauses, and formulas, and evaluated using the classical semantics of

propositional connectives ¬,∨,∧. In particular, for any clause 𝜔, 𝜎(𝜔) = true if and only if

𝜎(ℓ) = true for some ℓ ∈ 𝜔. In such case, we say that 𝜔 is satisfied by 𝜎. If 𝜎(ℓ) = false for each

ℓ ∈ 𝜔, then 𝜎(𝜔) = false. Given a set of clauses Φ (i.e., a CNF Boolean formula), an assignment

𝜎 is a solution for Φ if 𝜎 satisfies all 𝜔 ∈ Φ. The Boolean Satisfiability (SAT) problem is the

problem of establishing whether a solution exists for a given Φ.

An assignment 𝜎 may be partial. Namely, it might be the case that 𝜎(ℓ) is not defined for some

ℓ ∈ 𝒱 . In case some literals in a clause 𝜔 are not assigned by 𝜎, and 𝜔 is not satisfied by 𝜎, the

clause is said unresolved (w.r.t. 𝜎). An unresolved clause 𝜔 with only one undefined literal is said

unit (w.r.t. 𝜎).

2.1. SAT Solving

The relevance of SAT for the 𝒫 versus 𝒩𝒫 problem is clear since the seminal papers by Cook

and Levin [8, 9]. However, the research of an automatic procedure capable of solving concrete

instances of SAT was already one of the most important research area of theorem proving. In this

context, a milestone was posed by Davis and Putnam [10] developing a procedure later refined

for reducing space occupation by their co-authors Logemann and Loveland [1]. The algorithm,

known as DPLL, combines three stages:



1. (unit) propagation: deterministically infer values for variables under a given partial assign-

ment 𝜎: whenever a clause 𝜔 is unit w.r.t. 𝜎, extend 𝜎 so as to satisfy 𝜔;

2. choice: non-deterministically choose a not yet assigned variable 𝑥, assign it a value among

false and true, and extend the current partial assignment accordingly;

3. backtracking: if a failure is reached because no solutions were found under the current

assignment, backtrack the last choice made in assigning a variable.

The simplest possible solver starts from the empty assignment (all variables are unassigned)

and alternates propagation and choice steps. At each moment in time, the number of active

choices performed is the decision level currently reached in the search for a solution. The search

proceeds until either a solution is found (i.e., an assignment satisfying all clauses) or a clause

gets falsified by the current (partial) assignment. In this case the computation backtracks and the

decision level is decreased (undoing the effects of the last choice). Hence, the solver proceeds by

visiting a tree-shaped search space and the decision level is the depth currently reached in the

search tree.

Implementing a DPLL solver requires the selection of the algorithms to perform step (2).

Concretely, one has to choose two heuristics to be used in choice points to select

• the variable to be assigned, called Variable Selection Heuristics (VSH), and

• the truth value to be attempted first, called Polarity Selection Heuristics (PSH).

A second family of SAT solvers extends the idea of DPLL by analyzing the reasons why an

assignment has lead the search to a failure. Solvers of this family are called Conflict-Driven

Clause-Learning (CDCL) solvers. These solvers proceed as DPLL until a failure is detected.

Then, a step called conflict analysis is performed to detect a reason for the failure, namely, a set of

variable assignments (made by the choice steps (2)) that conjunctively prevent the satisfaction of

some clauses of the input formula Φ. This set of variable assignments identifies a new clause that

can be learned and added to Φ. The rational is that any learned clause 𝜔 is a logical consequence

of Φ. Hence, if 𝜎 is a solution of Φ, it is also a solution of Φ∧𝜔. After a new clause is learned, the

solver backjumps to a decision level preceding (at least some of) conflicting choices (undoing their

effects on the current assignment). Each learned clause is expected to speed up the subsequent

search because it prevents the solver from making the same failing set of assignments again. Here,

usually, unit propagation enters into play: whenever all but one of the assignments of such set

are done, the presence of the learned clause forces a different value selection for the remaining

assignment. Clearly, “short” learned clauses are more effective in speeding up the search by

reducing the search space. We refer the reader to [2] for a detailed formal description of CDCL

solvers.

The branching heuristics can be partitioned into two families:

1. look-back heuristics, which rank variables on the basis of the computation performed till

the choice point;

2. look-ahead heuristics, which rank variables on the basis of the effect of their assignment in

the subsequent part of the computation.

Look-back heuristics are, in general, easier to implement. It suffices to gather, during the

computation, some information about the assignments and their effects (e.g., the simplifications



of the input formula enabled by the performed assignments, or some statistics about failures, etc.).

The overhead involved by these heuristics is small w.r.t. the whole computation. Conversely,

look-ahead heuristics require a (partial) exploration of the “future” of the computation in order to

determine the potential impact of alternative choices the solver can make at a choice point. This

usually amounts to speculatively performing some steps of unit propagation. Albeit, in principle,

look-ahead heuristics may lead to better choices (those that speed up the search the most), they

also involve higher computational overhead, especially in a sequential implementation. This is a

reason why look-ahead heuristics have largely been abandoned in modern solvers, in favor of the

“lighter”, but possibly coarser, look-back heuristics.

2.2. Look-ahead Heuristics

Look-ahead heuristics score variables depending on the effect their assignment has on the current

state of the search. These heuristics can be considered as greedy algorithms: they evaluate,

with respect to some estimation function, the alternative possible choices and select the most

effective/promising one. If the best ranked option is not unique, one could select any of the

best-ranked variables. In our implementation, we force determinism by selecting the variable with

the lowest index. This way, the serial and the parallel implementations make the same choice,

ensuring fairness in comparison.

Let us briefly recall the main families of look-ahead heuristics we are interested in.

Maximum Occurrences in Clauses of Minimum Size

These heuristics [11], briefly referred to as MOM heuristics, aim at selecting the unassigned

variable that might impact the most in the subsequent unit propagation step, being present in

“small” clauses. Variants of the schema appeared in the literature:

1. Jeroslow-Wang heuristics (JW). The goal of the JW heuristics is to select variable and

value in such a way to maximize the chances of satisfying the formula [12]. This is made

by computing the following weight function w for each literal ℓ:

w(ℓ) =
∑︁

𝜔∈Φ∧ ℓ∈𝜔

2−|𝜔| (1)

where Φ is the current set of unresolved clauses and |𝜔| denotes the number of unassigned

literals in the clause 𝜔. There are two subvariants of JW:

• JW-OS (JW One-Sided) considers the weights w(𝑥) and w(¬𝑥) separately: the VSH

selects the unassigned variable 𝑥 having the largest individual weight (being it w(𝑥)
or w(¬𝑥)).

• JW-TS (JW Two-Sided) combines the weights w(𝑥) and w(¬𝑥): the VSH selects the

unassigned variable 𝑥 having the largest |w(𝑥)− w(¬𝑥)| value.

In both cases, the PSH assigns 𝑥 true, if w(𝑥) ≥ w(¬𝑥), false otherwise.

2. BOHM heuristics [13]. This heuristics associates to each unassigned variable 𝑥 an array

of weights ⟨w1(𝑥),w2(𝑥), . . . ,w𝑛(𝑥)⟩ such that, 𝑛 is the number of literals in the largest



clause, and for each 𝑖 ∈ {1, . . . , 𝑛}:

w𝑖(𝑥) = 𝛼 ·max
(︁

𝑙𝑐𝑖(𝑥), 𝑙𝑐𝑖(¬𝑥)
)︁

+ 𝛽 ·min
(︁

𝑙𝑐𝑖(𝑥), 𝑙𝑐𝑖(¬𝑥)
)︁

,

where 𝑙𝑐𝑖(ℓ) denotes the number of occurrences of the literal ℓ in unresolved clauses of

size 𝑖, and 𝛼 and 𝛽 are experimentally tuned parameters. The values used in [13] are

𝛼 = 1 and 𝛽 = 2. The VSH selects the unassigned variable 𝑥 having the maximum

array (considering the lexicographical ordering). The PSH assigns 𝑥 true if
∑︀

𝑖 𝑙𝑐𝑖(𝑥) ≥
∑︀

𝑖 𝑙𝑐𝑖(¬𝑥), false otherwise.

3. PrOpositional SatIsfiability Testbed heuristics (POSIT) [11]. This heuristics gives higher

priority to unassigned variables having a high number of occurrences in the smallest

unresolved clauses. This weight function is evaluated for each variable 𝑥:

w(𝑥) = 𝑙𝑐𝑚𝑖𝑛(𝑥) · 𝑙𝑐𝑚𝑖𝑛(¬𝑥) · 2
𝜂 + 𝑙𝑐𝑚𝑖𝑛(𝑥) + 𝑙𝑐𝑚𝑖𝑛(¬𝑥),

where 𝑙𝑐𝑚𝑖𝑛(ℓ) denotes the number of occurrences of the literal ℓ in the smallest unresolved

clauses, and 𝜂 is a sufficiently large constant.1 The VSH selects the unassigned variable

𝑥 having the largest weight. The PSH assigns 𝑥 false if 𝑙𝑐𝑚𝑖𝑛(𝑥) ≥ 𝑙𝑐𝑚𝑖𝑛(¬𝑥), true

otherwise. The aim of this heuristics is to maximize the effect of the unit propagation step

that will follow the choice step.

Literal Count Heuristics

Briefly referred to as LC heuristics [14], their purpose is to select the variable whose assignment

causes the satisfaction of the largest number of clauses. To this aim, they classify variables

according to the number of their occurrences in unresolved clauses. Let 𝑙𝑐(ℓ) denote the number

of occurrences of ℓ in unresolved clauses. There are two main LC heuristics:

1. Dynamic Largest Individual Sum (DLIS) [15] that considers the values 𝑙𝑐(𝑥) and 𝑙𝑐(¬𝑥)
separately: the VSH selects the unassigned variable 𝑥 having the largest value (being it

𝑙𝑐(𝑥) or 𝑙𝑐(¬𝑥)).

2. Dynamic Largest Combined Sum (DLCS) [14] that selects the unassigned variable 𝑥 having

the largest 𝑙𝑐(𝑥) + 𝑙𝑐(¬𝑥) value.

For both DLIS and DLCS, the PSH assigns 𝑥 true if 𝑙𝑐(𝑥) ≥ 𝑙𝑐(¬𝑥), false otherwise.

2.3. GPU and CUDA

The CUDA framework [3] is a general-purpose parallel computing platform and programming

model that leverages the parallel computing engine of NVIDIA GPUs. It introduces a number of

key abstractions that specifies, in particular,

• a hierarchical organization of threads (i.e., execution flows);

1According to [11], η should be such that 2η is larger than the number of unresolved clauses, but small enough to

avoid overflow in calculation of w(x). This allows the solver to enforce preference for variables x having a similar

number of occurrences of x and ¬x.
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• a hierarchy of memories (global, shared, constant, local, registers, etc.), with different

scopes and lifetimes;

• some synchronization mechanisms.

These abstractions lead the programmer to partition the problem into subproblems that are

independently solved in parallel by groups of threads, called blocks. In turn, the blocks are

organized in grids. In particular, CUDA C extends the C language allowing the definition of

particular functions, called kernels. Kernels, identified by the use of the keyword __global__

in their definition, are called by the host (CPU) and ran, in parallel, on multiple threads, on the

device (GPU). The desired values of the size of grid and of the blocks per grid are passed as

parameter:

kernelName<<<GridDim3D, BlockDim3D>>>(Actual Arguments).

The NVIDIA GPU architecture consists of thousands of identical compute units, called cores,

grouped into a uniform collection of Streaming Multiprocessors (SMs). SMs feature a Single-

Instruction Multiple-Thread (SIMT) execution mode, designed to execute hundreds of threads

concurrently. Each SM creates, schedules, and executes blocks of threads, further partitioned

in groups of 32 threads, called warps. Threads in a warp are intended to execute in lock-step

mode. However, each thread has its own program counter and register status. This allows each

thread to branch out and execute independently, diverging from the execution of the other threads

of its warp. The maximum performance is reached when thread divergence is avoided (so, all

threads of a warp execute the same instruction) and when memory accesses patterns are designed

to exploit the full bandwidth of each specific kind of memory. We refer the reader to [3] for a

detailed presentation of CUDA and to [5, 6, 7] for descriptions of specific implementations of

CUDA-based parallel solvers for SAT and ASP.

3. GPU-enhanced Look-ahead Heuristics

We have developed a CUDA C library, called MiraCle, implementing the look-ahead heuristics

described in Section 2.2. For comparison purposes, the CPU versions have also been implemented

using exactly the same data structures.



0 0 0

0 0 0 0

0 1 2 3

0 1 2

1

Miracle

CNF formula

Decision level

Variable assignments

Clause satisfiability

x1 x2 x3

ωo ω1 ω2 ω3

Figure 2: Miracle data structure d_mrc at (the starting) decision level 1. All variables are
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Data Structures Employed

A CNF formula (i.e., a set of clauses) is represented by the data structure depicted in Figure 1.

It stores the numbers of variables, clauses, and literals, as well as a clause array and a clause

indexing array. Each literal is represented by an integer index (negative values represent negative

literals). Each clause is stored as the sequence of the indices representing its literals. Clauses

are stored consecutively in the clause array. Their starting positions are recorded in the clause

indexing array. Such a representation of a CNF formula is part of a larger data structure (called

Miracle and instantiated as d_mrc in Figure 2 and in Table 1) which represents the state of the

search in a specific moment in time. This data structure encompasses these parts:

• the CNF formula (as described in Figure 1);

• the current decision level (the starting decision level is 1);

• an array 𝑣𝑎 storing the current variable assignments as signed integer values: for each

variable 𝑖, 𝑣𝑎[𝑖] = ℓ means that 𝑖 has been assigned at level |ℓ| with polarity corresponding

to the sign of ℓ. For unassigned variables we set 𝑣𝑎[𝑖] = 0;

• the array 𝑐𝑠 storing information about clause satisfiability: 𝑐𝑠[𝑗] = ℓ if 𝜔𝑗 has been satisfied

at decision level ℓ, or 𝑐𝑠[𝑗] = 0 if 𝜔𝑗 is unresolved.

MiraCle Implementation Details

The library provides functionalities that can be partitioned into three parts:

1. initialization and removal of the formula;

2. updating and restoring the formula;

3. computation of look-ahead heuristics.

We list the procedures of the three groups in Table 1. Due to space limitation, we can-

not go into detail on all of them here. The interested reader can access the source code in

http://clp.dimi.uniud.it/sw/, where they are documented. We restrict our presentation to those

of the third group (see also the bottom part of Table 1). In particular, let us focus on the

JW One-Sided heuristics, since the others essentially differ in the evaluation of the weight-

ing function used to rank literals (cf., Section 2.2). This heuristics is computed by the function

mrc_gpu_JW_OS_heuristics() (a simplified version of it is shown in Alg. 1 and illustrated in

http://clp.dimi.uniud.it/sw/


Miracle mrc_create_miracle(filename) Import a SAT instance in CNF

format into the host data structure.

Return a pointer to host memory.

Miracle mrc_gpu_transfer_miracle_host_to_dev(mrc) Copy the data structure to the device.

Return a pointer to device memory.

mrc_destroy_miracle(mrc)

mrc_gpu_destroy_miracle(d_mrc)

Destroy host-side and device-side

data structure, respectively.

mrc_gpu_increase_decision_level(d_mrc) Increase the decision level (called

before mrc_gpu_assign_lits()).

mrc_gpu_assign_lits(lits, lits_len, d_mrc) Assign the literals lits true and

update the data structure on the device.

mrc_gpu_backjump(dl, d_mrc) Backjump to the decision level dl

and update the device data structure.

Lit mrc_gpu_JW_OS_heuristics(d_mrc)

Lit mrc_gpu_JW_TS_heuristics(d_mrc)

Lit mrc_gpu_BOHM_heuristics(d_mrc, a, b)

Lit mrc_gpu_POSIT_heuristics(d_mrc, n)

Lit mrc_gpu_DLIS_heuristics(d_mrc)

Lit mrc_gpu_DLCS_heuristics(d_mrc)

Compute heuristics on the device,

w.r.t. the current assignment stored

in d_mrc (a,b,n are the parameters

α, β, η described in Section 2.2).

Return the “best” literal.

Table 1

Main components of the MiraCle library (see Section 3).

Figure 3). The computation proceeds as follows. After resetting the working array lit_weights

in global memory and configuring the launch parameters (w.r.t. the number of available SMs),

the kernel JW_weigh_lits_unres_clauses_krn() is run. In its grid, each thread processes

one or more clauses by adopting a grid-stride loop. For each unresolved clause, in lines 16–21,

its contribute to the weight of each of its unassigned literals is computed according to (1). The

global weights are updated using an atomic instruction for all unassigned literals (lines 22-24)

to avoid race conditions. The best selectable literal and its weight are singled out by reducing

the array lit_weights. The computation of the logarithmic reduction is performed on the GPU

by find_idx_max_float(), called in line 7 (where, for readability, we improperly used a

compact form to denote the retrieval of the result).

Integration Into a SAT Solver

The library has been designed by abstracting from CUDA implementation details and to be

easily integrable into any DPLL or CDCL solver. Hence, its use does not require deep CUDA

programming skills. Table 1 lists the basic functions that can be used to enhance a (serial) SAT

solver with CUDA-based evaluation of look-ahead heuristics. To this aim, it suffices adding

suitable calls into the code of the solver. More specifically, the solver has to first initialize

the Miracle data structure by calling mrc_create_miracle(). This creates a representation

of the SAT problem (cf., Figure 2) on host (called mrc in Table 1). Then, mrc is copied to

device global memory, using mrc_gpu_transfer_miracle_host_to_dev(). This function

returns a reference d_mrc to the device-side structure, that will be used by all subsequent calls

to the library functions. Once d_mrc has been created, the solver can proceed as its original

algorithm dictates, but each time the solver assigns a literal, increases the current decision

level, and consequently performs some propagations, it has to update the device-side structure

by calling mrc_gpu_increase_decision_level() and mrc_gpu_assign_lits() (the
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Figure 3: Computation scheme of the JW One-Sided heuristics on the GPU. First, each thread

processes an unresolved clause and updates the weight of each unassigned literals in it according

to (1). Then, the best selectable literal is computed by reducing the array of literal weights.

latter requires the list of assigned and propagated literals as argument). Similarly, whenever the

solver performs a backjump to a level dl, the function mrc_gpu_backjump() should be used to

update d_mrc. Each time the solver needs the GPU-based computation of one or more heuristics,

the corresponding functions (listed in the bottom part of Table 1) can be called.

4. Experimental Results

To experiment with the library, we integrated it into two existing SAT solvers:

• SATSolverDPLL: a DPLL solver developed by Sukrut Rao [16]. This is a basic SAT solver

implementing the raw DPLL algorithm. We have chosen this minimal implementation

because its essentiality guarantees a fairer comparison between the various branching

heuristics (in both their serial and parallel versions), not biased by the effect of other

strategies, techniques, and optimizations that are often adopted in implementing a SAT

solver.

• microsat: a CDCL solver originally developed by Marijn Heule and later modified by

Armin Biere [17]. This is a simple conflict-driven SAT solver exploiting watched literals,

clause learning, restart, and clause forgetting. It exposes greater performance w.r.t. the

aforementioned SATSolverDPLL solver. We used this solver to compare the “quality” of

the look-ahead heuristics against the lock-back heuristics used by microsat, namely VMTF

(Variable Move-To-Front [18]).

To experiment with the two GPU-enhanced SAT solvers, we used a server equipped with

an octa-core (16 threads) Intel i9-11900K 3.5GHz, with 16 MB cache and 64 GB DRAM,

running Ubuntu 20.04.3 LTS (kernel 5.11.0). In this section, we report on experiments ran using

a device NVIDIA GeForce RTX 3090 (compute capability 8.6, Ampere architecture, 24 GB,

82 SMs, 10496 CUDA-cores, clock rate 1.7 GHz). The code was compiled using GCC 9.3.0



Algorithm 1: Host and device code for evaluation of the JW-OS heuristics (simplified)

static Lit MRC_GPU_JW_OS_HEURISTICS(d_mrc){
Data: nlits, num_clauses: number of clauses and literals

Data: lit_weights: array for literal weights (device-side)

1 int blks, tpb;

/* clear lit_weights: */

2 cudaMemset(lit_weights, 0, sizeof(float)*nlits);

/* retrieve values blks and tpb, computed depending on GPU specs: */

3 configureLaunchParam(num_clauses, &blks, &tpb);

/* compute literal ranking on the device: */

4 JW_weigh_lits_unres_clauses_krn<<<blks, tpb>>>(d_mrc);

/* logarithmic parallel reduction to determine the “best” literal: */

5 Lidx blidx; /* Selected JW-OS branching literal index */

6 float lw_blidx; /* and its weight */

/* retrieval of the result: */

7 (blidx,lw_blidx) = find_idx_max_float(lit_weights);

8 return ((lw_blidx == 0)?UNDEF_LIT:lidx_to_lit(blidx));

}

__global__ void JW_WEIGH_LITS_UNRES_CLAUSES_KRN(d_mrc){
Data: ncls: number of clauses

9 float W; /* weight of a literal */

10 Lidx lidx; /* index of a literal in a clause */

11 register int c_size; /* number of unassigned literals in a clause */

/* pointers into d_mrc, kept in registers to speed up accesses: */

12 register int * clss = d_mrc->clause_sat;

13 register int * vars = d_mrc->var_ass;

14 register int K; register int B;

15 for (i=threadIdx.x+blockIdx.x*blockDim.x; i<ncls; i+=blockDim.x*gridDim.x){

/* using a stride-loop each thread processes one or more clauses */

16 if (!(clss[i])){ /* if the clause is unresolved */

17 c_size = 0; B = cl_idxs[i]; K = cl_idxs[i+1];

18 for (int l = B; l < K; l++){ /* count unassigned lits of clause */

19 lidx = cls[l];

20 if (!(vars[lidx_to_var(lidx)])) c_size++;

}

21 W = exp2f((float)-c_size); /* compute weight */

22 for (int l = B; l < K; l++){ /* update weights of unassigned lits */

23 lidx = cls[l];

24 if (!(vars[lidx_to_var(lidx)])) atomicAdd(&(lit_weights[lidx]),W);

}
}

}
}

and CUDA 11.5. We also ran analogous experiments using other GPUs (such as, NVIDIA Tesla

K40c and GeForce GTX 1060), obtaining results in line with those we present here.

The first experiment we report on tries to assess the “quality” of the heuristics, namely, how

much the outcome of different heuristic selection functions affects the overall computation of

SAT solvers. To this aim, we considered the number of heuristics calls a solver has to make

before reaching a solution of a SAT instance. Intuitively, a lower number of calls suggests that the

heuristics better drives the solver to the solution (or to the detection of unsatisfiability). To run this

experiment, we used a dataset of instances from [19]. In particular, we considered 180 instances

from the benchmarks aim, Beijing, blocksworld, dubois, ii16, ii32, jnh, logistics, pigeon-hole,

pret, ssa. Figure 4 shows the comparison of the look-ahead heuristics and the native look-back



Figure 4: Number of calls to the heuristics needed by microsat to solve the instances, using the

various look-ahead heuristics and its native look-back heuristics VMTF.

Id Instance Size (MB) Variables Clauses

I1
at-least-two-sokoban-sequential-p145-microban-

sequential.030-NOTKNOWN.cnf
45 198252 2385409

I2 SC21_Timetable_C_557_E_73_Cl_37_S_35.cnf 63 406207 2841961

I3 Mycielski-11-hints-4.cnf 79 15350 3975330

I4 E00X23.cnf 104 15364 2133873

I5 spg_400_281.cnf 111 792025 4063559

I6 9dlx_vliw_at_b_iq8.cnf 161 371419 7170909

I7 vlsat2_702_14170.cnf 224 70288 14170788

I8 13pipe_k.cnf 239 147626 12295313

I9 crafted_n12_d6_c4_num17.cnf 246 56064 15834160

I10 blocks-blocks-36-0.180-SAT.cnf 247 733825 13169160

I11 sokoban-p16.sas.ex.19-sc2016.cnf 264 2929760 6312685

I12 barman-pfile10-040.sas.ex.15.cnf 405 430288 976816

I13 Kakuro-easy-115-ext.xml.hg_5.cnf 616 171688 24612456

Table 2
Excerpt of the set of instances used in performance comparison of CPU and GPU implementa-

tions of branching heuristics (see Figure 6).

heuristics of microsat (VMTF) for an excerpt of those instances whose computation finished

within a timeout of 10 minutes, for each of the heuristics we used. The cactus-plot shows the

cumulative number of calls (𝑌 -axis) needed to solve a number of instances (𝑋-axis). We observe

that the worst performance are those of the two variants of Jeroslow-Wang heuristics, while all

the others allow the solver to compute the solution using a significantly lower number of calls to

the library functions (observe that the plot uses a log-scale for the 𝑌 -axis).

Similar results have been obtained for the solver SATSolverDPLL, as can be observed from the

analogous cactus-plot shown in Figure 5.

To compare the performance of CPU and GPU implementations of the look-ahead heuristics in



Figure 5: Number of calls to the heuristics needed by SATSolverDPLL to solve the instances,

using the various look-ahead heuristics and its native heuristics (STATIC, in the chart). Such a

native static branching heuristics is the same as DLIS but is executed once for all at the beginning

of the computation.

MiraCle, we ran microsat on a selection of instances from [20] and evaluated the average time

spent in computing each branching literal. We only considered instances having size greater than

40 MB. Figure 6 reports the comparison of the time spent by the 7 different implementations

of the BOHM heuristics for a significant excerpt of the dataset (see Table 2). We observe that

all parallel implementations outperform the serial one, obtaining 100x average speedup. The

best performance are obtained by using 512 threads-per-block: 136x average speedup and 534x

maximum speedup. We also notice that the number of threads-per-block significantly influences

the performance of the solver in almost all instances. In fact, for each instance, Figure 6 shows

how the average time decreases as the number of threads-per-block increases (note that the plot

uses a log-scale for the 𝑌 -axis). Analogous results have been obtained for the other look-ahead

heuristics (charts omitted because of space limits).

The results of the experiments seem to confirm that a GPU-based parallel implementations of a

look-ahead heuristics can provide better performance in heuristic function evaluations. Moreover,

as expected, the quality of the outcome of these branching heuristics is in general greater than

those of the look-back options. Even when this is not the case, as for Jeroslow-Wang (cf., Figs. 4

and 5), the sub-optimal choices in literal selection is compensated by a higher efficiency in

heuristics computation (cf., Figure 6).

5. Concluding Remarks

Due to the high computational cost of look-ahead heuristics, designers of modern SAT solvers

tend to prefer alternative look-back heuristics. In an attempt to rehabilitate look-ahead heuristics,

we described a GPU-based C library, MiraCle, implementing CUDA versions of the main



Figure 6: Average time spent in each BOHM heuristics evaluation by the CDCL solver. 𝑋-axis:

an excerpt of the instances we experimented with. 𝑌 -axis: average time in ms. For each

instance, we compare the time spent by the CPU implementation and by 6 versions of the CUDA

implementation (using 32, 64, 128, 256, 512, and 1024 threads-per-block, resp.).

branching heuristics. We have shown the feasibility of the proposal by realizing the integration

of the GPU-based functionalities into two different SAT solvers. Experimentation carried out

on a significant number of instances has emphasized how CUDA implementations of the most

common look-ahead heuristics can fully exploit the computational power of graphics cards.

This allows to enhance a generic SAT solver (not necessarily parallel) by providing it with

the parallel computation of such branching heuristics, that, in a purely serial context, would

represent an inefficient computational bottleneck. Ameliorations of the library are currently under

development. For instance, we plan to improve the implementation of the functionalities offered

by MiraCle by introducing optimizations that depend on the compute capability of specific GPU

in use (e.g., the possibility of exploiting cutting-edge technologies such as tensor cores and

warp-level optimized intrinsic functions). We intend to extend the library by considering other

heuristics that appeared in the literature, to investigate whether they might benefit from a parallel

implementation. Some examples are the Clause Reduction Heuristics (CRH) [21] proposed

in OKsolver, the Weighted Binaries Heuristics (WBH) [22] applied in the solver Satz, and the

Backbone Search Heuristics (BSH) [23]. This would be a first step toward the realization of a

purely GPU-based full-blown SAT solver, by means of an integration of MiraCle into the existing

parallel solvers, such as, for example, the one described in [5].

Other lines of research can benefit from the experience made in designing and improving

MiraCle. In fact, many of the software solutions designed and implemented to realize a (library

supporting) GPU-based SAT solving, have application in the broader field of Computational

Logic [24, 25]. We intend to adopt and adapt the approach we described in this paper for SAT,

to the prototypical GPU-based solvers we proposed in past research for Answer Set Program-

ming [26, 27] and Constraint Solving [28, 29, 30].
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Abstract
Over the last few years, the fields of Artificial Intelligence, Robotics and IoT have gained a lot of attention.

This increasing interest has brought, among other things, to the development of autonomous multi-agent

systems where robotic entities may interact with each other. As for all the other autonomous settings,

also these systems require arbitration. Our work tries to address this problem by presenting a framework

that embeds both a classical and a multi-agent epistemic (epistemic, for brevity) planner in a robotic

control architecture. The idea is to combine the (i) classical and the (ii) epistemic solvers to model

efficiently the interaction with: the (i) physical world and the (ii) information flows, respectively. In

particular, the presented architecture starts by planning on the “epistemic level" refining then single-

agent world-altering actions thanks to the classical planner. To further optimize the solving process,

we also introduce the concept of macros in epistemic planning. Macros, in fact, have been successfully

employed in classical planning as they allow for opportune aggregations of actions that may lead to a

reduction of plans’ length. Finally, the overall framework is exemplified and validated with two Franka

Emika manipulators. This allowed us to empirically justify how the combination of the two planning

approaches (classical and epistemic), and the introduction of macros, reduce the computational time

required by the orchestrating phase.

Keywords
Multi-Agent Planning, Epistemic Reasoning, Answer Set Programming, Robot Operating System

1. Introduction

In the recent years, the field of cognitive robotics experienced significant progress, both from

the academic (see [1] for a detailed survey) and the industrial, e.g. [2], [3], [4], point of view.

Even if most of current autonomous systems frameworks are designed for scenarios where only

a single entity interacts with the environment, also multi-agent settings are well studied [5], [6].

However, there is not focus on modeling robots beliefs in goals or action pre/post conditions.

In particular, we envisioned and developed e-PICO (EPIstemic Reasoner Collaborative

RObots): a planning framework that coordinates a set of autonomous agents. This setup is able
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to reason on complex multi-agent epistemic concepts while dealing with their computational

issues, that arise from the inherent complexity of epistemic reasoning. This is achieved by

combining techniques from the Multi-agent Epistemic Planning (MEP) field and the more

efficient classical planning approaches. Thanks to this combination our architecture can benefit

from the generality derived by MEP solvers and the efficiency of the classical ones. That is,

e-PICO consider both of an epistemic and a classical description of the planning problem and

combines the two solving techniques in a hierarchical way. As we will see later (Section 4) in

much greater detail, the architecture firstly solves the problem with a greater level of abstraction

using the epistemic solver. Then, the classical resolution process is used to refine the world-

altering actions suggested by the epistemic counterpart.

Finally, inspired by [7], we also propose the concept of macros in the MEP environment.

The use of macros helps in reducing the burden of the epistemic planning process, allowing

e-PICO to address multi-agent robotics planning scenarios. In fact, such domains present

several complications, e.g., the number of possible actions, that if not addressed correctly could

render the solving process unfeasible.

To the best of our knowledge, both i) the combination of the epistemic and a classical solving

processes to model a robotic environment with epistemic goals; and ii) the use of macros in the

multi-agent epistemic planning context are original contributions of this work.

2. Action Languages and Planning

The area of automated planning is one of the most prominent in Artificial Intelligence. This

branch studies how to devise tools that help us in deciding the best course of actions to

reach a given goal, an activity that is done continuously in our life. Automated planning,

therefore, represents one of the most interesting aspect of AI and, consequently, has been

vastly studied [8, 9, 10]. Even if we often need to make decisions based on our beliefs, about

the environments and about others’ beliefs, automated planners usually do not consider such

intricacy. In fact, most of the efforts in the planning community address domains where the

concept of beliefs and/or knowledge is not taken into account. Nonetheless, the growing interest

in AI is pushing researchers to steadily improve and to model more realistic scenarios. This

momentum brought, among other things, to the formalization of a far more compelling (w.r.t.

more classical approaches) form of planning, that is the so-called Epistemic Multi-Agent Planning

(MEP). This area of planning reasons within environments where the streams of “knowledge"

or “beliefs" need to be considered (see [11, 12] for a more detailed introduction to the topic).

2.1. Multi-Agent Epistemic Planning

Formalizing and reasoning on the idea of knowledge and beliefs has always been of great interest

among various research fields (e.g., philosophy, logics, and computer science). In particular,

in 1962, Hintikka proposed the first complete axiomatization of these concepts [13]. From

this initial effort stemmed the field of epistemic/doxastic logic which aims to formalize and

reason on information. While this area of research presents various challenges, it focused only

on capturing the knowledge relations in static domains. To represent even more interesting

and realistic scenarios Dynamic Epistemic Logic (DEL) was introduced; that is the logic of



reasoning on information flows in dynamic domains where agents can act and alter these

relations themselves.

DEL represents the foundation of Multi-Agent Epistemic Planning, the setting concerned with

finding the best series of action, that modifies the information flows, to reach goals that (might)

refer to agents’ knowledge/beliefs. In what follows, for brevity, we will use the term “knowledge”

to encapsulate both the notions of an agent’s knowledge and beliefs. In fact, these concepts are

captured by the same modal operator in DEL and their difference resides in structural properties

that the epistemic states respect (see [11] for more details). As it is not the objective of this paper

to completely present MEP, in what follows we will provide only some fundamental concepts

that are necessary to explain the contribution of this work. Far more complete introductions to

this topic may be found in [11, 14, 15].

Let us start by presenting the language of well-formed DEL formulae used to express agents’

knowledge. This is expressed as follows:

ϕ ::= f | ¬ϕ | ϕ ∧ ψ | Biϕ | Cαϕ,

where f is a propositional atom called a fluent, i is an agent that belongs to the set of agents 𝒜𝒢
s.t. |𝒜𝒢| ≥ 1, ϕ and ψ are belief formulae and ∅ ̸= α ⊆ 𝒜𝒢. A fluent formula is a DEL formula

with no occurrences of modal operators. A belief formula is recursively defined as follows:

• A fluent formula is a belief formula;

• If ϕ is a belief formula and i ∈ 𝒜𝒢, then Biϕ (“i knows/believes that ϕ”) is a belief formula

where the modal operator B captures the concept of knowledge;

• If ϕ1, ϕ2 and ϕ3 are belief formulae, then ¬ϕ3 and ϕ1 opϕ2 are belief formulae, where

op ∈ {∧,∨,⇒};

• If ϕ is a belief formula and ∅ ̸= α ⊆ 𝒜𝒢 then Cαϕ is a belief formula where Cα captures

the Common knowledge of the set of agents α.

The formula Cαϕ translates intuitively into the conjunction of the following belief formulae:

• every agent in α knows ϕ;

• every agent in α knows that every agent in α knows ϕ;

• and so on ad infinitum.

The semantics of DEL formulae is traditionally expressed using pointed Kripke structures [16],

but also other representations are possible [17, 18]. We refer the interested reader to [11, 12, 17]

for a comprehensive introduction to how Kripke structures, or similar formalisms, are used to

capture the idea of an epistemic state and how the concept of entailment is defined.

Let us note that the epistemic action language that we will consider in our work implements

three types of action and three observability relations. These are standard concepts in the

epistemic planning community and, therefore, we will provide an intuitive description of those

addressing the interested reader to [14] for a complete description of this topic. In particular,

we assume that each agent can execute one of the following types of action:



• World-altering action (also called ontic): used to modify certain properties (i.e., fluents) of

the world.

• Sensing action: used by an agent to refine her beliefs about the world.

• Announcement action: used by an agent to affect the beliefs of other agents.

Moreover, each agent is associated to one of the following observability relations during an

action execution:

• Fully-observant: the agent is aware of the action execution and also knows the effect of

the action.

• Partially-observant: the agent is aware of the action execution without knowing the

effects of the action. Let us note that no agent can be partially observant of an ontic

action as it is impossible to decouple the witnessing of a world-altering action and the

witnessing of its effects.

• Oblivious: the agent is not even aware of the action execution.

Each type of action defines a transition function and alter an epistemic state in different

ways. Given the complexity of the topic and the space limitations we address the reader

to [14, 18, 19] for a formal definition of these, and others, update functions on diverse epistemic

state representations.

Finally, let us introduce the concept ofMEP domain that, intuitively, contains the information

needed to describe a planning problem in a multi-agent epistemic setting.

Definition 2.1 (MEP Domain). A multi-agent epistemic planning domain is a tuple 𝒟 =
⟨ℱ ,𝒜𝒢,𝒜, ϕini, ϕgoal⟩, whereℱ ,𝒜𝒢,𝒜 are the sets of fluents, agents, actions of𝒟, respectively;

ϕini and ϕgoal are DEL formulae that must be entailed by the initial and goal e-state, respectively.

The former e-state describes the domain’s initial configuration while the latter encodes the desired

one.

We refer to the elements of a domain 𝒟 with the parenthesis operator; e.g., the fluent set

of 𝒟 is denoted by 𝒟(ℱ). An action instance a⟨i⟩ ∈ 𝒟(𝒜ℐ) = 𝒟(𝒜)×𝒟(𝒜𝒢) identifies the
execution of action a by an agent i. Let 𝒟(𝒮) be the set of all possible e-states of the domain.

The transition function Φ : 𝒟(𝒜ℐ)×𝒟(𝒮) → 𝒟(𝒮) ∪ {∅} formalizes the semantics of action

instances (the result is the empty set if the action instance is not executable).

2.2. The 𝒜V language

In this section we briefly introduce the𝒜V action description language, which has been designed

to be integrated into e-PICO. It essentially corresponds to language𝒜, but some typed variables

have been introduced (see [20] as a reference for the nomenclature of planning languages).

Typed variables are merely used to write schemes describing finite sets of causal laws that are

formed according to the same pattern. Schemes are particularly useful in some application



domains, such as when an action that models an agent’s movement can be parameterized by a

variable that can be instantiated with a series of different positions.

In e-PICO the 𝒜V planning instances are translated into an Answer Set Programming ASP

instances. ASP is one the most prominent logic programming paradigms and it is particularly

useful in knowledge-intensive applications, see Gelfond and Lifschitz [21] for an introduction

to its semantic. Its use as a planning framework, has been deeply explained in [22]. For space

reasons we omit the correctness proof of the compiler from 𝒜V to ASP.

The choice of encoding the planning problems in ASP, already presented in [23], is justified

by the fact that ASP as a planning engine outperforms standard task planner for PDDL, where

i) domains are rich in fluents and ii) plans are usually short [24]. Such characteristics precisely

characterize how we want to use the classical planner in the robotics domain use case.

3. Collaborative Robots

3.1. Robot Operating System

Robot Operating System (ROS) is the standard de facto framework for developing robotic

applications. It consists of a communication framework for sending messages between processes.

The ROS integrated executable programs are instantiated as special processes, known as nodes,

and are organized in packages. A ROS package might contain ROS nodes, a ROS-independent

library, a dataset, configuration files, a third-party piece of software, or anything else that

logically constitutes a useful module. There are several packages which are directly provided by

ROS and which can be used by user-defined programs. One package that is particularly used in

this work is MoveIt!, which is widely used for motion planning and execution in the robotics

community.

3.2. The Robots Franka Emika

The framework here presented has been validated in a simple multi-agent scenario in which

two Franka Emika robots have been involved. Franka Emika is a robotic arm with 7 Degrees Of

Freedom (DOF) with torque sensors at each joint. It is also equipped with a gripper that allows

the automated “arm" to handle objects.

The client side of the Franka Control Interface is called libfranka. At a higher level we

find franka_ros, which is a ROS package that contains the description of the robot and the

end-effector in terms of kinematics, joint limits, visual surfaces and collision space, an hardware

abstraction of the robot for the ROS control framework based on the libfranka API, and a set

of services to expose the full libfranka API in the ROS ecosystem. Let us note that, although

the target robots are two Franka Emika, the architecture can be adapted to another collection of

manipulators with only minor changes.



4. The e-PICO System

4.1. Macros in Multi-Agent Epistemic Planning

As already mentioned, a significant contribution of this work is the formalization, and conse-

quent employment, of macros in the MEP setting. A macro, that can be informally described as

“an encapsulated sequences of elementary planning operators”, is formally defined as follows:

Definition 4.1 (Macro). Let 𝒟(i),𝒟(j) ∈ 𝒟(𝒜ℐ) be two action instances, and s ∈ 𝒟(𝒜𝒢) be an
e-state of a given a domain 𝒟. A macro mi,j ∈ 𝒟 representing the subsequent execution of j after i

can be defined as Φ(j,Φ(i, s)). Let us note that i) we assume that if action a is not executable in

a state s, then the result of the update Φ(a, s) is ⊥; and ii) the execution of any action a over ⊥
results in ⊥ as well.

The introduction of macros is justified by the fact that, often, patterns of actions performed

in sequence are repeated in the same domain. For example, it often happens that an ontic action

is followed by an announcement action, because an agent may want to communicate the results

of the former to another (oblivious) agent. For now, as pointed out in the Dagstuhl seminar [25],

there have been many proposals in the classification of epistemic actions. As pointed out above,

the community mostly agrees that the basic classification considers ontic, announcement and

sensing as possible categories. Among these three types of actions, only the ontic one has

some effect on the physical world. That is why we consider the renaming two, i.e., sensing and

announcement, as purely epistemic actions. Consequently, we say that a task is purely epistemic

if it involves only announcement or sensing actions, or a macro aggregating these two type. In

Listing 1 the function call is_pure_epistemic_task(task) checks exactly this property.

4.2. The Architecture

In this section, we describe the general architecture and functionality of the e-PICO system, that

is the main contribution of this work. e-PICO provides high-level knowledge representation

and planning capabilities to ROS-based autonomous robots via the action description languages

𝒜V (Section 2) and E-PDDL [26]. The main object of our framework is to provide a tool that

supports multi-agent epistemic planning in the robotics setting. This is accomplished through a

combination of MEP and classical planning solving techniques. In particular, e-PICO combines

these two strategies in a hierarchical way. To be more precise, our architecture firstly employs

multi-agent epistemic planning for generating tasks, then, at lower level, it exploits a classical

planner to break down tasks into simpler actions. Finally, e-PICO directly converts the results

of the planning processes into MoveIt! commands that can be then executed by the robots. Let

us note that we employ an hierarchical combination of the two solving techniques (i.e., classical

and epistemic) to avoid unfeasibility in the planning process for domains rich in fluents and

actions. The key idea is, in fact, to abstract most of the domain intricacy from the epistemic level

and handle it at the classical level, when it is possible, given its vastly superior performances.

Let us now explain in greater detail how the e-PICO system processes, solves and executes a

planning problem in the robotic environment. To better visualize the overall framework, we

present a graphical representation of it in Figure 1. First of all the master process reads the

domain descriptions, that contain the initial state description for both the MEP and classical



Figure 1: A class-based representation of the e-PICO system.

setting. At this point it is able to send messages to the actuator process regarding the objects that

need to be considered by the motion planner in order to avoid collisions. Once these messages

arrive to the actuator process, it adds them to the MoveIt! planning scene.

Then, it sends the epistemic planning instance, specified in E-PDDL [26], to an epistemic

planner, i.e., EFP [18], which is employed as a black box and returns the sequence of epistemic

tasks to be executed. After this first resolution, each task is properly processed following

Listing 1. The first step is to break down (to flat) macros, then we can reason on a sequence

of no macro tasks, hereinafter called simple tasks. Intuitively, a simple pure epistemic task

can be directly executed. Simple ontic tasks that alter the physical world will undergo further

processing. To break down ontic simple tasks into a sequence of classical actions, the master

process defines an instance of classical planning where the initial and the goal states are defined

to match the ontic simple task’s conditions and effects. Then, iteratively, the master process

sends the classical action tasks to the actuator process, which translate them into MoveIt!

commands, and makes finally the robots execute the movement.

Listing 1: pseudo-code for the main steps of e-PICO.

def p r o c e s s _ e _p l a n ( l i s t < task > t a sk_p l an , c _ i n i t _ s t a t e c _ i n i t ) :
for t a s k in t a s k _p l a n :

i f i s _mac ro_ t a s k ( t a s k ) :
s imp l e _ t a s k _p l a n = break_down_macro ( macro= t a s k )
for s imp l e _ t a s k in s imp l e _ t a s k _p l a n :

c _ i n i t = p r o c e s s _ s imp l e _ t a s k ( t , c _ i n i t )
e l se :

c _ i n i t = p r o c e s s _ s imp l e _ t a s k ( t a s k )



def p r o c e s s _ s imp l e _ t a s k ( t a s k t , c _ i n i t _ s t a t e c _ i n i t ) :
# i n v a r i a n t : n o t i s _ma c r o _ t a s k ( t )

i f i s _ e p i s t em i c _ t a s k ( t a s k = t ) : # s e n s i n g o r announcement

exe cu t e ( p u r e _ e p i s t em i c _ t a s k = t )
e l se :

c_p lan , c _ i n i t = s end_ t o_ c_p l anne r ( o n t i c _ t a s k =t , i n i t i a l _ s t a t e =
c _ i n i t )

for c _ a c t i o n in c_p l an :
s e n d _ t o _ a c t u a t o r ( c _ a c t i o n )

return c _ i n i t

4.3. Modeling the Problem Instance

When we model a scenario as a planning problem in order to eventually effectively execute it,

we need to address the “anchoring” problem. I.e., we need to connect the model description

to the physical objects in the real world. Furthermore, in the e-PICO approach, the user also

needs to choose what should be modelled at the epistemic level and what at the classical one,

the latter in fact should provide low-level actions that are easy to interface with the MoveIt!

API. Let us take the process of grasping, executed by an automated arm, as an example. It is

composed of different phases: i) pre-grasping, in which the end-effector approaches the object to

be grasped with a given direction and orientation. ii) actual grasping, in which the final joints

of the gripper close. Finally, iii) post-grasping, in which the end-effector moves away from the

position in which it grasped the object in a given direction and orientation. During each of these

phases process we must make sure that the robotic arm does not collide with the objects in its

workspace. Therefore, MoveIt! is provided with information about location of fixed objects to

calculate a trajectory without collisions with fast algorithms, such as Rapidly-exploring Random

Tree. Furthermore, the aspects of pre-grasping and post-grasping are hidden in the planning

model, that sees the grasping action as atomic, the control of the three-phases of grasping has

been hard-coded in the actuator process.

4.4. Case study

We can now present an application of e-PICO in a two agents scenario. The diverse problem

instances contain several fluents and actions, as usual in the robotics domain.

The two agents involved are two robotic arms, called robot1 and robot2. In front of each

of them, three stacks of colored blocks lie on a table. Initially, the they do not know what blocks

they are able to manipulate (Figure 2a presents an example of initial state). To collect such

information, they can perform sensing actions to see which blocks they initially have in front of

them. Robots can also take a block (as depicted in Figure 2b) to then place it on the shared table,

as in Figure 2c. We assume that only once a robot has placed the block on the shared table, it

is able to communicate the color of such a block to the other arm. Examples in Figure 2 are

obtained using the RViz simulator [27] integrated in MoveIt!.

For the sake of readability, we will not report all the actions’ descriptions, rather we will

show only some meaningful examples. Initial state and the fluents encoding are not presented,

because they just follow the standard PDDL notation [28, 29]. Let us start, by showing an ontic



(a) Initial state. (b) A robot picking up a block from
its table.

(c) A robot placing a block on the
shared table.

Figure 2: Examples of the robotic test environment states. A video of the “real” execution with the
Panda Robots is available: http://clp.dimi.uniud.it/sw/

action in Listing 2. This action encodes the idea that if an agent beliefs that it is holding a block

of a certain color and the shared table is free, then, after the execution, the agent will occupy

the shared table with the aforementioned block (and will know about this). For a detailed

explanantion on the syntax of E-PDDL we address the reader to [26]

Listing 2: Example of ontic action.

(
: a c t i on p i ck_and_p l a c e_on_ sha r ed
: a c t _ type o n t i c

:parameters ( ? ag ? ag2 − agent ? c ? c2 − c o l o r )
:precondi t ion ( and ( [ ? ag ] ( ho ld ? ag ? c ) ) ( not ( occup_by ? ag2 ? c2 ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: observers ( ? ag )

)

Similarly, for instance, an annoucement action can be executed by the agent that has just

moved the block, announcing the newly verified property to the other arm.

Listing 3: Example of annoucement action.

(
: a c t i on announce_b l o ck_on_ba r r i e r
: a c t _ type announc emen t

:parameters ( ? ag − agent )
:precondi t ion ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) ( [ ? ag ] ( occup_by ?

ag ? c ) ) ( [ ? ag ] ( ho ld ? ag ? c ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: observers ( f o r a l l ( ? ag2 − agent ) ( ? ag2 ) )

)

http://clp.dimi.uniud.it/sw/


We can now apply the 4.1 definition to actions Listings 2 and 3 with the following macro as

result, see Listing 4.

Listing 4: Example of a macro aggregating an ontic and an announcing action.

(
: a c t i on announce_p i ck_and_p lace_on_shared
: a c t _ type o n t i c

:parameters ( ? ag ? ag2 − agent ? c ? c2 − c o l o r )
:precondi t ion ( and ( [ ? ag ] ( ho ld ? ag ? c ) ) ( not ( occup_by ? ag2 ? c2 ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: observers ( f o r a l l ( ? ag2 − agent ) ( ? ag2 ) )

)

Let us now consider what happens to an epistemic ontic action that is refined by the classical

planner. Consider a configuration in which the a red block is stacked under a black block and

the epistemic ontic action suggests to move the red block on the shared table. The robot cannot

take directly the red block, but it should firstly move the black one at the top of another stack

and then take the red block to put it on the shared table. Therefore such an epistemic ontic task

may be translated into the following sequence of actions:

Listing 5: List of single-arm actions.

% p i c k t h e b l a c k b l o c k o v e r t h e r e d one from s t a c k 2 , po s 1

p i ck ( b lack , red , 1 , 2 )

% p l a c e t h e b l a c k b l o c k o v e r t h e g r e e n one i n s t a c k 1 , po s 2

p l a c e ( b l ack , green , 2 , 1 )

% p i c k t h e r e d b l o c k from s t a c k 2 , po s 0

p i ck ( red , t a b l e , 0 , 2 )

% p l a c e t h e r e d b l o c k on t h e s h a r e d t a b l e

pu t _ on_ b a r r i e r ( red )

5. Experimental results

To further asses and demonstrate the capabilities of the developed framework, we tested our

architecture on a wide spectrum of scenarios that stem from the configuration described in

Section 4.4. Experiments showed the positive impact of using macros in the MEP setting.

Furthermore, we were also able to prove the feasibility of the solving procedure in real-world

situations.

All the experiments have been conducted on Intel i7-8565U CPU at 1.80GHz and Ubuntu

18.04 OS. For each problem instance, a time limit of 110 seconds was applied. Clingo [30] was

used to solve the ASP encoding of 𝒜V , and EFP [18] to tackle the resolution of MEP problems.

First let us highlight how the use of macros can help in reducing the solving time, in Table 1.

Test-cases are obtained with a cross product between goal with an increasing difficulty and



with an increasing number of blocks inserted in the domain (rows and columns of Table 1

respectively). In particular, we have that:

α: has the objective to let one agent know the color of at least one block initially located in

the table in front of the other robot;

β: has same goal as of α while also requesting that the shared table must be free at the end

of the plan;

γ: encodes the scenario where the goal is for a robot to know two different colors of blocks

initially placed in front of the other arm;

δ: shares the goal of γ with an “extra” condition imposing that the shared table must be free

when the planning process is concluded.

For the sake of readability we will make use of the following notations in Table 1:

• ND, that stands for Not Defined. This is used, for example, to indicate that instance γ

cannot be performed with just one color as it required that a robot learns two different

colors while only one is available.

• TO stands for Time Out. As said before, after 110 seconds the planning procedure is

forcefully stopped if it could not find a solution.

From the domain it is evident that whenever an agent takes a block from the shared

table, to place it on top of one of its stacks, announcing that the table has been freed

right after is very convenient. This small sequence of actions constitutes the macro

announce_pick_and_place_on_shared. Finally, in Table 1, we compare the solving pro-

cess when this macro is not activated (“Macro no”) and when it is (“Macro yes”). In summary, it

is evident that macros improve considerably performance. Their use makes it possible to have

better scalability both in terms of number of fluents and of plan lengths.

1 Color 2 Colors 3 Colors 4 Colors

Macro no yes no yes no yes no yes

α 0.019 0.004 1.200 0.080 5.192 1.382 104.000 25.889

β 0.083 0.013 4.946 0.242 21.780 4.235 TO 85.144

γ ND ND 18.663 1.427 TO 24.805 TO TO

δ ND ND TO 4.827 TO 92.998 TO TO

Table 1

Time, in seconds, to find a goal, given an initial state. Each instance varies the number of available colors.
In boldface is highlighted the fastest solving process w.r.t. the activation of the pspb_and_announce
macro. Let us note that all the values were obtained by averaging the times of 5 iterations on the same
instance.

For the sake of completeness, let us now address the initial state generation. It is the first

step performed during the calculation of the espitemic plan. This process is empirically almost

independent of the use of macros, but it is affected by the number of fluents and actions used in



the planning model. To better exemplify this, let us report the average times needed to compute

the initial states, increasing the number of fluents, in our case the number of colored blocks:

1) for one color 0.003 s; 2) for two colors 0.031 s; 3) for three colors 0.126 s; and 4) for four

colors 2.117 s. As a consequence of this observation, it is a good rule of thumb, to limit the

number of fluents considered to the strict necessary required for the epistemic planning.

Finally, as a design choice we decided to run the classical planner at run-time, each time its

use is required to break down an ontic task in a sub-plan of classical actions. Justification for

this choice is provided by Table 2, in which, for each instance, the cumulative time required by

the AV solver and the times it was called are reported. Let us note that we did not report the

times required by the epistemic planner without the support of the classical one, i.e., the times

required by the solver if the domain was entirely described at the epistemic level. The reason is

that, without the assistance of the “breakdown” procedure, provided by the classical solver, the

solving time always reached the timeout.

1 Color 2 Colors 3 Colors 4 Colors

time calls time calls time calls time calls

α 0.074 1 0.083 1 0.092 1 0.112 1

β 0.157 2 0.172 2 0.177 2 0.202 2

γ ND ND 0.250 3 0.267 3 TO TO

δ ND ND 0.332 4 0.351 4 TO TO

Table 2

Cumulative time, in seconds, to break down ontic tasks into classical actions. The number of calls to the
classical planner is reported in the column “calls”.

6. Related Work and Conclusions

While the field of cognitive robotics has made significant progress over the last few years, there

are still some opening questions regarding how to integrated new AI components. Moreover,

multi-agent scenarios where the acting entities can perform low-level sensing and control tasks

are becoming more and more available both in the industrial and academic environments. And,

at the same time, epistemic planning is receiving a lot of interest.

In [31] and in [32] Capitanelli et al. propose a set of PDDL+ formulations that allows to

model the problem of manipulating articulated objects in a three-dimensional workspace with

a dual-arm robot. Instead, [7] address the same domains while encoding the planning problem

directly in ASP making a strong use of macros. Another similar tool that inspired our research

is the ROSoClingo [33] ROS package. This framework integrates Clingo [30] into the ROS

service and actionlib architecture, providing an high-level ASP-based interface to control

the behavior of a robot. While these works provided the foundation for our research and are

far more complete tools, they do not consider neither the information flows between agents,

nor their knowledge. This aspect is key in every multi-agent scenario, where reasoning on the

perspective of others should be taken into consideration.

That is why we proposed e-PICO, a framework that offers the possibility of modeling



multi-agent epistemic planning problems in robotics environments. This tool stems from the

aforementioned approaches and integrates the latest MEP techniques to tackle the planning

problems considering also the information flows. While integrating the epistemic aspect of

multi-agent domain is, in our opinion, of the utmost importance, it requires high computational

resources. That is why, e-PICO also introduces two methods to improve the planning times and

to have feasible solving processes: i) a hierarchical usage of epistemic and classical planners to

abstract and simplify the problemswhen considered by epistemic solvers; and ii) the employment

of macros in epistemic planning.
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Abstract
Over the last few years, Artificial Intelligence (AI) has pervaded our lives. As a result, automated tools
that “reason” on different scenarios have become more and more common. As this trend continues to
grow, it has become necessary to ensure that newly developed tools and technologies can be safely
adopted, as demonstrated by the numerous EU regulations. This is especially true when the concept
of AI is intertwined with the field of medicine, where every decision may be critical. That is why, in
this work, we decided to tackle the problem of automated interpretation of Computed Tomography (CT)
scans using an explainable approach. In fact, while several methods based on Machine Learning (ML) are
currently available, these are still outperformed by medical doctors and provide answers that cannot be
traced back to a logical deduction. This paper presents CARING, a new methodology based on Answer
Set Programming (ASP), which returns reliable, easy-to-program and explainable interpretations of
CT scans. In particular, CARING makes use of transparent technologies in order to handle medical
knowledge provided either by experts or by verified ontologies. This proof of concept shows that Logic
Programming is a mature technology that can match the newest challenges in the xAI field.

Keywords
Explainable AI, Answer Set Programming, CT Scan, Image processing, Tissue Segmentation

1. Motivation

This paper investigates the design of CARING (CT-scan Automated Reasoning INterpretation
Guidance)1. The purpose of this tool is to implement an AI pipeline that reproduces the mental
process of analysis and interpretation of a CT scan performed by radiologists. The input of
the tool is the set of raw data from the acquisition system and the output is the labelling of
organs and structures contained in the body scan. The goal of the tool is to provide the basis
for further automated analyses and to support Medical Doctor decisions.
The problem contains various challenges that combine artificial vision and reasoning tasks.

Even if the problem has been largely studied in the literature, the attempts proposed so far (see
Section 2.1) can be classified as black box approaches: the user has little control about accuracy
and accountability of system’s results; introducing/updating medical information to the system
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require significant rewriting/training. According to recent EU regulations about explainable
AI (see Section 2.2), Medical Doctors can include an AI based system in their workflow under
certain requirements. The most relevant ones are that the system must provide a support or
proof for its outputs. We believe that this perspective poses interesting challenges to the Logic
Programming (LP) community, since this paradigm naturally supports such requirements.

Radiologists, when interpreting the content of a CT scan, typically start from spatially local
details, find relations among regions and eventually recognize all anatomic details. Local details
are combined into geometric regions and (higher-level) medical knowledge allows to map
relations among local details, in order to support the proposed classification. The process has to
cope with a remarkable body’s variability: e.g., organs can appear in different sizes, locations
and shapes. Structural relationships are by far more preserved, even if several anatomical
structural variants are documented (see, e.g., [1] for blood vessel ones).
In this context, details in the scans, or features, are represented by visible surfaces that

separate regions with different properties (hypothetical boundary between organs/tissues) and
uniform regions that may belong to the same object. These features can be easily noticed in the
scan, even by an untrained viewer, and they are one of the first points of attention in the analysis
performed by radiologists. Each feature does not necessarily correspond to a specific tissue or
organ, but this first step of abstraction has the effect of reducing the computational burden of
the next phase. Common edge detection and segmentation algorithms (classical off-the-shelf
tools, Machine Learning approaches, Neural Networks) often go beyond simple geometric
analyses and encode some higher level strategy to resolve some ambiguities to deliver a more
accurate result. Unfortunately, such approaches hard code some declarative properties about
the domain that can not be easily controlled as high level properties (e.g., there are parameters
to be tuned; a trained network provides no understanding of the rules that drive the process).
We find here two main issues: (i) the algorithms’ output provides no high level explanation
of the assumptions made, (ii) it is difficult and/or impossible to modify the behaviour of such
algorithms depending on some high level requirements.

Such scenario suggests a processing pipeline where the identification of pure geometric basic
elements is decoupled from reasoning about their possible anatomic role. In order to create an
explainable reasoning, geometric feature extraction must operate with the lack of any medical
information.

The goal is to delay the interpretation process to the reasoning phase. The advantage is that
the reasoning is completely in charge of exploiting medical knowledge and it is able to give
proof of every hypothesis and deduction process.
The paper presents a background Section 2 with a brief overview on CT scans, explainable

AI, medical ontology and LP methods employed. Section 3 introduces a CSP based geometric
feature extraction and Section 2.3 describes the ASP based reasoner on geometric features. In
Section 5 we show some preliminary results and in Section 6 we conclude.
Let us conclude the introduction with a summary of the advantages of having an LP core

inside the pipeline:

• medical knowledge is modelled in a LP framework. It can be handled as a collaborative
knowledge base (with possibility to merge inconsistent facts; retrieve legal liability of
authors of input knowledge; incremental and distributedmanagement) and/or as ontology;



• medical knowledge can be translated into and from natural language for easier interaction
with Medical Doctors;

• the reasoner offers a transparent approach and the output is explainable: the set of
activated rules that support the results can be provided, discussed and argued by medical
doctors, in the same way colleague’s opinions are compared and this can stimulate
knowledge base reviewing, in a constant process of refinement;

• lack of information, incoherent knowledge, uncertainty and hierarchical labeling can be
handled;

• there is no need for training sets (like in neural network cases). Knowledge base can be
built either manually, but this task is less time consuming, compared to setting up training
sets (hundreds of CT scans with manual classification of volumes), or automatically from
ontologies processing.

2. Background

2.1. CT scans

Computer Assisted Tomography (in short CT) scan [2] is a well established X-ray based acquisi-
tion procedure suitable for diagnoses of pathology and traumas as well as surgical preparation
procedures. A patient’s body image is acquired and rendered as a 3D volumetric information
about X-ray absorption performed by various objects composing human body. Each voxel

(volume element) of the scan has a typical size of 1 mm3. Such volumetric information is
arranged in a 3D matrix, where each cell contains a scalar number which corresponds to the
radiometric absorption of that specific voxel (from now on intensity). The unit of measure is
the HU (Hounsfield Unit). Different chemical elements, as well as different body structures,
cause different X-ray absorptions. Therefore, 3D images can be used to identify the location
of organs, vessels, bones, etc. and to assess their correct functional status. Note that different
structures can show similar intensity levels. At the same time acquisition noise can reduce the
clear perception of smaller issues. The goal of the training of radiologists is to cope with such
issues and to be able to recognise finer details and problems. For example, typical tumours are
less dense than healthy tissues and therefore they absorb less X-rays. This fact can be visualized
on a 3D image as a darker area compared to the neighborhood, assuming to depict values
with shades of gray ranging from black (low absorption, e.g., air) to white (high absorption,
e.g., bones). However, while small tumours are more difficult to be identified, the prognosis is
more favourable in case of early detection. Therefore computer assisted analysis have gained
attention over the last decade, in order to improve the detection rate. There are various domains
of analysis for a CT scan: e.g., vision related ones are about organ and multi-organ segmentation
(see [3] for a survey) and cancer detection (e.g., [4]). Interestingly most methodologies, despite
their sensible precision, are based on methods that are not xAI compliant (see Section 2.2). Our
goal is therefore to design a novel pipeline that does not rely on such methods.



2.2. Explainable Artificial Intelligence

In the last decades we witnessed a very fast growing advances in AI based systems. In particular,
from 2012 onward, sub-symbolic techniques such as Deep Learning (DL) became de-facto
standards to deal with Computer Vision challenges, especially classification tasks such as
recognition. Furthermore, they also showed great and increasing performances in object
detection and image segmentation [5]. Another example of success is in natural language
processing challenges with remarkable results in text generation [6]. This advance is also due
to the accessibility of huge amount of information used to train systems, and by the availability
of increasingly powerful hardware architectures that made it possible to use optimization
algorithms on very large parameter spaces, such as those of deep neural networks. The measure
of success of such techniques can be observed in how much AI is becoming more and more
pervasive in daily life. Sub-symbolic methods heavily rely on learning algorithms over latent
spaces that consist of billions of parameters and (in case of neural networks) hundreds of
hidden layers, whose final goal is to learn approximations of an answer. Therefore, beside the
impressing results obtained by DL, such approximations have been subject to criticism about
their weakness to biasedness and the subsequent lack of robustness [7]. As another significant
drawback of DL-based pipelines, is that such parametric spaces have to be treated as black-
boxes, working as provider of intuitive information rather than transparent and reasoning-based
decisions. For most situations the lack of transparency is not a problem, but their application
to critical areas becomes an issue. In AI systems supporting medical decisions, the ability
of interpret and explain the recommendations provided by the system is crucial. This also
has to do with the concept of trustworthiness and reliability with reference to an audience of
human users [8]. In recent years, the focus on ethical challenges in AI leads to move towards
the so called eXplainable Artificial Intelligence (xAI), which aims at providing transparent and
interpretable models and thus to increase trust in system based decisions. Explainability, and
thus xAI, finds different definitions in literature, according to two main different approaches,
namely the integration of inherently interpretable techniques in the system design, and the
post-hoc explanation of what the system already have been done. The latter method is mostly
employed in DL based AI, providing later description of the decision rather than unwrapping
the black-box [9]. Such a method is yet under discussion, and concepts of explainability and
causability in DL-based approaches are far from being attained.
In this work, the need of an intrinsically interpretable system is motivated by the degree of

criticality of the task. As a matter of fact, it is desirable to introduce xAI techniques where the
central point of the system regards the health of a patient and the detection of system errors
of must be early and easy. The transparency allows, in fact, the users (Medical Doctors) to
make informed choice and to be more confident when using the program. For this and other
reasons, the topic of xAI in critical systems is being addressed by the European Commission,
which developed an AI strategy to rule the trustworthiness of AI systems and enhance the
excellence in such field [10, 11]. The development of such a strategy which led to a complex
legal framework is motivated by the risk factors in the employment of AI-based systems in
everyday life, as they became more and more pervasive as already said. In particular, one of the
main reasons provided by the EU Commission is that whenever is not possible (or difficult) to
find out why a decision or prediction has been made by an AI system, it consequently becomes



not possible (or difficult) to detect whether someone has been unfairly disadvantaged. An AI
improvement, according to the EU legal framework, must be subject to rules in order to protect
the functioning of markets and the public sector, people’s safety and fundamental rights. Such a
legal framework divides AI systems in a pyramidal structure that identifies four degrees of risk,
namely, minimal risk, limited risk, high risk and unacceptable risk. While unacceptable risk AI
systems are clearly recognized as a threat for people’s safety, and thus banned or prohibited,
high risk systems comprises many AI technologies used in critical settings, such as health.
Limited risk refers to systems which need specific transparency duties, such as chatbots, and
finally, minimal risk are the vast majority of common systems, covering all applications that
make everyday tasks more comfortable and/or easier. For the scope of this work, the proposed
AI system falls in the high risk and thus subject to specific obligations before it can be proposed
as a complete working system. Those obligations comprise (but are not limited to) the use of
high quality of datasets as input of the system, in order to minimize discriminatory or riskful
outcomes, the traceability of results, and the providing of clear and adequate information to
the user. In particular, “High-risk AI systems shall be designed and developed in such a way to
ensure that their operation is sufficiently transparent to enable users to interpret the system’s
output and use it appropriately.” [11].

2.3. Human Anatomy Ontology

Clinical medicine uses standards for many types of data ranging from diseases (International
Classification of Diseases2 - ICD) to diagnoses and procedures (Systematized Nomenclature of

Medicine3 - SNOMED) and from laboratory data (Logical Observation Identifiers Names and Codes4

- LOINC) to imaging data (Digital Imaging and Communications in Medicine5 - DICOM). One of
the earliest hierarchical terminology developed allows for cataloguing biomedical information
and indexing journal articles (Medical Subject Headings6 - MeSH). This controlled vocabulary is
still used for MEDLINE, PubMed and National Library of Medicine databases. However, there
are more formal and rich mechanisms to represent concepts and relationships, that is ontologies.
In Computer Science, an ontology is a mean to formally model information and knowledge
in a specific domain using simple representational primitives, such as classes, attributes, and
relations among the members of the classes [12]. The concepts and relations belonging to the
ontology are typically specified in a language that abstracts implementation strategies. In the
literature, these languages are classified in various ways, however, they are commonly based
on either first-order logic or description logic [13]. In particular, the Web Ontology Language
(OWL) is a kind of language endorsed by the World Wide Web Consortium and conceived when
the information needs to be processed by applications instead of just presented to humans
[14]. In particular, OWL features include a collection of expressive operators for the concept,
properties and relationships description, the ability to specify characteristics of properties
(e.g., transitivity, domains and ranges), and a semantic facilitating the use of inference and

2ICD: https://icd.who.int.
3SNOMED: https://www.snomed.org.
4LOINC: https://loinc.org.
5DICOM: https://www.dicomstandard.org.
6MeSH: https://www.nlm.nih.gov/mesh/meshhome.html.

https://icd.who.int
https://www.snomed.org
https://loinc.org
https://www.dicomstandard.org
https://www.nlm.nih.gov/mesh/meshhome.html


reasoning [15]. The use of computational reasoning to answer complex questions has increased
the development of ontologies in several medical fields supporting precision medicine and
trustworthy artificial intelligence [16]. In biomedical and health sciences, ontologies are used
to represent knowledge in different areas. The Disease Ontology extensively uses medical
terminology standards (e.g., MeSH, ICD, SNOMED) to semantically integrates disease and
medical vocabularies [17], whereas the Infectious Disease Ontology is a set of interoperable
ontologies covering the clinical aspects and the pathogens of most infectious diseases [18]. Other
ontologies address the need for consistent descriptions of gene products across databases [19],
represent phenotypic abnormalities encountered in human disease [20], annotate clinical trials
[21], and support automated reasoning based on vaccine knowledge [22]. The Foundational
Model of Anatomy ontology (FMA) represents a declarative knowledge about the whole human
anatomy [23]. The last version of FMA (ver. 5.0.0) consists of 104,721 classes, organised
hierarchically, and 168 properties that describe various characteristics of the concepts, such
as “constitutional_part_of”, “adjacent_to”, “dimension” and “bounds”, to name a
few. For instance, the Left lung (code FMA:7310) is “subclass_of” Lung (code FMA:7195);
is a “constitutional_part_of” Left pulmopleural compartment (code FMA:85056), Left
hemithorax (code: FMA:20360) and Intrathoracic part of chest (code FMA:73438); and is related
as “regional_part_of” to the Lower lobe of left lung (code FMA:7371) and Upper lobe of left

lung (code FMA:7370). In this work, FMA codes of some high-level concepts are used to create
the labels to be assigned to the cluster of voxels.

2.4. Constraint Satisfaction Problem

The field of automated reasoning requires ways of formalizing and describing scenarios and
procedures with a great level of abstraction [24]. From this need stemmed the well-known
logic/declarative programming paradigms. In contrast with the more common imperative and
object-oriented paradigms, that require precise lists of instructions, the declarative ones “simply”
need to state constraints and objective function [25]. This allows to describe a problem, and its
solution, without the distraction of algorithmic details. Among various declarative paradigms,
one of the most mature and employed in AI is Constraint Programming (CP) that, as said by [26],
“is a powerful paradigm for solving combinatorial search problems”. CP directly derives from
the constraint satisfaction problem, that is the process of finding a solution through a set of
constraints that impose conditions that the variables must satisfy [27]. Several techniques, that
range from search, constraint propagation, and backtracking, are employed in solving CP models.
Due to space limitations we will not provide further details on the topic and we address the
interests readers to [26, 27] for a complete introduction on the topic of constraint programming.
In our work we utilize CP to identify sub-partitions of CT scans’ regions (see Section 3.2).

The problems that need to be solved are dynamically generated with constraints that depend
on the analyzed regions. This can be easily modeled into constraint satisfaction problems, as
we know the set of rules and constraints that a set of voxels must respect to be considered as a
sub-region. Instead, trying to generate an imperative procedure flexible enough to tackle all
the various cases could result impossible given the great variety of cases that different regions
generate.



2.5. Answer Set Programming

Answer Set Programming (ASP) is a language that derives from the logic programming paradigm
and that stems from the idea of stable models [28]. In particular, ASP can be used to model
diverse domains through values, facts, variables, rules, and constraints. These domains are then
solved trying to find a possible set of variables assignments, i.e., a variable, if considered by the
solution, must be assigned to a value without contradicting any constraint. More formally, as
said by [29], a program P in the language ASP is formed by set of rules r of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each element ai, with 0 ≤ i ≤ n, is an atom of the form p(t1, . . . , tk),
p is a predicate symbol of arity k and t1, . . . , tk are terms built using variables, constants
and function symbols. Negation-as-failure (naf) literals are of the form not a, where a is an
atom. Let r be a rule, we denote with h(r) = a0 its head, and B+(r) = {a1, . . . , am} and
B−(r) = {am+1, . . . , an} the positive and negative parts of its body, respectively; we denote
the body with B(r) = {a1, . . . , not an}. A rule is called a fact whenever B(r) = ∅; a rule is a
constraint when its head is empty (h(r) = false); ifm = n the rule is a definite rule. A definite

program consists of only definite rules.
A term, atom, rule, or program is said to be ground if it does not contain variables. Given a

program P , its ground instance is the set of all ground rules obtained by substituting all variables
in each rule with ground terms. In what follows we assume atoms, rules and programs to be
grounded. LetM be a set of ground atoms (false /∈M ) and let r be a rule: we say thatM |= r if
B+(r) ̸⊆ M or B−(r) ∩M ̸= ∅ or h(r) ∈ M . M is a model of P if M |= r for each r ∈ P .
The reduct of a program P w.r.t. M , denoted by PM , is the definite program obtained from P
as follows: (i) for each a ∈ M , delete all the rules r such that a ∈ B−(r), and (ii) remove all
naf-literals in the the remaining rules. A set of atoms M is an answer set [28] of a program P if
M is the minimal model of PM . A program P is consistent if it admits an answer set.
The declarative nature of ASP allowed us to define a solid base containing the anatomical

knowledge derived by ontologies or medical operators. We then used this knowledge base
in our tool to autonomously classify the CT scan respecting the information provided by the
experts. A more detailed explanation of how this process was envisioned and realized will be
presented in Section 4.1.

3. Features extraction

3.1. Pre-processing and smoothing

One relevant issue about CT scan is that acquisition noise can be significant and it can even
mask tumors. Radiologists are trained to mentally filter out noise and investigate scan content.
Their first task is to correctly recognize the objects in the scan so they can then observe finer
details, where texture (typical local arrangements of intensity absorption) can suggest potential
pathologies. Often texture and noise merge and make the process difficult.
In this paper we focus on the first task and we set the general goal to interpret any voxel

of the scan. This goes beyond the common goal in the literature where multi-organ detection



targets main organs (liver, spleen, pancreas etc). Our approach could potentially identify any
visible object according to a general ontology. Single organ detection precision, reached through
DL, is still rather unsatisfactory, e.g., up to 86% of pancreas volume is correctly classified [30].
We believe that the classification problem should be solved with a holistic approach, i.e., an
evaluation that considers at the same time every property about every element.

The processing pipeline starts with a rather strong smoothing of data. The resulting scan has
little to no texture but it preserves boundaries between different regions. Organs and tissues
are made of similar intensity voxels and any surface that separates such voxels is a suggestion
to be considered during reasoning.
We selected a Total Variation based 3D smoothing named Directional Fast Gradient Pro-

jection [31]: this family of filters is particularly effective in CT scan domains and in surface
preserving even in presence of strong noise. In Figure 1 we show in a rainbow palette the
comparison between original raw data and smoothed version for a slice of a scan that intersects
two vertebrae (red-blue color), a part of the kidney (top right dark green) and skin of the back
(red bottom line). Cyan color is air. It can be noticed how structures are well preserved, while
texture and noise are almost flattened.

Figure 1: Raw data (left) and smoothed data (right)

The filtered version is processed with the goal of retrieving regular 3D regions. Unfortunately
simple thresholding can not be applied, even if typical HU values are well documented: same
intensity values can belong to different organs.

3.2. Geometric clustering

We set up a detection of regions that are defined in terms of simple mathematical relations. The
resulting regions have little relation to target organs, but they can be handled as equivalence
class for clustered voxels.
The idea is to group together voxels that have similar intensity and that are separated by

sudden changes (high gradients). We show in Figure 2 on the left a simplification on a 2D
domain. The same concepts can be generalized in the 3D space. Each point, associated to a voxel
and a local intensity value, has a local neighbor (in the 3x3x3 window) with highest intensity



(except for the local maximum). A graph induced by this relation defines connected components
that reach a local maximum (dark blue and red points). This already represents a partitioning of
the space, with the property that only monotonic paths are contained. A typical smooth CT scan,
made of 5123 voxels may host some million local maxima. Inside a region, a finer analysis can
reveal that along path there are maximal gradients values that cooperate to form a cut surface
(see dashed line and black arrows that separate green and light blue points). It is important
to separate such sub-partitions, since they represent visible changes that suggest an interface
between different objects. In Figure 2 on the center, we depict with different colors the 3D points
belonging to the same region but to different sub-regions: it can be seen that the bone-muscle
interface (white - blue - green voxels, only one scan slice is depicted) is correctly partitioned by
green and blue points (each point represents voxels in neighbor planes). Moreover the set of
red points correctly suggests another division between white and blue voxels (different inner
structures of the bone).

Figure 2: Example of geometric clustering. (left) Maximal gradient approximation for regions, (center)

best surface cuts and sub-partitions, (right) clustering of sub-partitions.

In order to identify such sub-partitions inside a region, we set up a Minizinc [32] model that
optimizes the best partitions that provide the highest cut in the corresponding graph. Each
point is a variable that can be assigned to a partition code (3 different codes are enough for
most cases). Each edge, defined above, is associated to the gradient magnitude. The constraints
impose that the partition codes must satisfy the precedence imposed by edges directions. The
only other constraint is that the local maximum is assigned to the maximum code (i.e., 2 for
our tests). The cost function is the sum of the edges that connect two different codes points.
We found that Coin BC solver [33] was the most efficient among the ones provided by default
Minizinc interface.
The resulting sub-partitions are almost constant valued, but their number is still very large

to be used for reasoning. We also introduce a clustering that merges neighboring sub-partitions
that also share same intensity and/or gradient directions along the shared surface of contact.
Again, the resulting clustered voxels have similar intensities, but they collect a large set of
sub-partitions. In Figure 2 on the right, we show with cyan points how the green sub-partition
in the central picture gets merged with compatible neighboring partitions (in this case all
red-white colored voxels).
The result of this procedure is a manageable set of (several thousands of) clusters that are

retrieved by no medical information exploitation.



4. Ontology/Medical Knowledge Mapping into the Graph

Geometric clustering provides a set of partitioned volumes with annotated features that are
considered from now on as the nodes of our search graph. Edges of such graph connect two
volumes that share some surface of contact.

The goal of the labeling is to assign to each node a FMA code from the ontology. Since
anatomic ontology is naturally hierarchical, we adapt our graph coloring like procedure in order
to account for a hierarchical handling of FMA codes for domains. Ideally the root of the ontology
represents any possible body’s object, while following a particular branch in the ontology, it
specializes the assignment for the specific node. Our optimal solution assigns the lowest label
in the ontology to each node. Most quality results gets leaf values from the ontology.

Medical knowledge determines the constraints over ontology values and specify how spatial
relations, intensity values and anatomic relations among objects apply.
We therefore define a set of ASP rules (the medical knowledge) and an ASP program that

receives as input the graph structure as processed by the feature extraction.

4.1. ASP for Models Generation

As already mentioned, one of the main objectives of this work is to provide a tool that is able to
support medical experts while providing proofs for its outputs. To accomplish this we decided
to employ Answer Set Programming, through the Clingo solver [34], to analyze the information,
expressed in the form of a graph, extrapolated by the scans. The motivation behind this choice
is threefold: i) thanks to its declarative programming, ASP allows us to express anatomical rules
in a concise and effective manner; ii) the process that leads ASP in finding the best model is
completely traceable and only derived by the rules that reflect actual medical knowledge; and
iii) finally, given the declarative nature of ASP and the consequent succinctness, enriching the
program with new medical knowledge can be done fairly easily.

The main role that the ASP module of CARING undertakes is to identify the right class, w.r.t.
the standard classifications introduced in Section 2.3, in which each node of graph falls into.
This is done by inheriting the hierarchical approach typical of the medical knowledge.

In particular, we envisioned our ASP model to “firstly” identify the macro categories (the
first level of FMA) of the various nodes. This means that each node is assigned to one, or
more, of the following classes: air, lung, fat, tissue, bone or unknown. To do so we define
the possible labels that each node can be assigned to by looking at their intensity values.
While most of the nodes falls perfectly into only one category, some of them have values that
can belong to multiple labels or even to none (that is why we also introduced the unknown
category). The possible labels that a node N can be assigned to are captured by the set of ASP
predicates poss_lab(N,L), where N is the node id and L is one of the aforementioned labels.
This predicate is defined as follows:

poss_lab(N, L):- node(N, I), lab(L), in_min(L, MIN), in_max(L, MAX),
in_tolerance(L, T), I+ T ≥ MIN, I− T < MAX.

where: i) node(N,I) is the description of a node, in terms of id and intensity, provided by
the features extraction procedure; ii) lab(L) express that L must belong to the aforemen-



tioned set of labels; iii) in_min(L, MIN) and in_max(L, MAX) describe the range in which
a label L is defined by providing its minimum and maximum intensity, respectively; and
iv) in_tolerance(L,T) provides the tolerance T of the intensity range for the label L.
After generating the possible label domain for each node we try to minimize the number

of unknown. This is done by allowing the unknown nodes to assume their neighbors’ labels if
their intensity is not too distant. The ASP model will return, as solution, the one that minimize
the number of unknown nodes. An example of one of the rules used to reduce the unknown is
as follows:

poss_lab(N, L):- poss_lab(N, unknown), node(N, I), lab(N2, L), L! = unknown,
edge(N, N2, _, _), in_tolerance(L, T1), T = T1 * 2,
in_min(L, MIN), in_max(L, MAX), I+ T ≥ MIN, I− T ≤ MAX.

where: i) lab(N2,L) is the label assigned to N2 in the solution of the model, generated by
“1{lab(N, L) : poss_lab(N, L)}1:-node(N, _).”; and ii) edge(N,N2,_,_) is the fact, derived
by the imperative procedure, that indicates that nodes N and N2 are connected in the graph.
Finally, the ASP program also discriminates among different entities that fall in the same

category. In particular, for this work, we focused on distinguishing the various bones that
were present in our working area. To do so we defined some rules that relate intensity of the
nodes, labelled as bones, in relation to the minimal and maximal intensity of the contact surface
with other bone-labelled nodes. This allowed us to identify bone-labelled nodes with a strong
difference between the average intensity and the intensity on the contact surface, hinting that
the two connected nodes may belong to two different bones. This is because two bones that
are in contact are always separated by lower intensity zones. We then impose that the nodes
that belong to the same bone must be transitively connected. Some results of this classification
process are presented in Figure 3.

This is a minimal test-bed domain that we used to show our the resolution schema rather than
the overall performances. The accuracy of the program, in fact, is under constant improvement
as it is extended to cover additional regions and sub-labels.

Figure 3: An example of result of the CARING procedure. The tool allows to extract the set of voxels

that describe specific anatomical objects. In this case we rendered (with a white surface) the set of point

that CARING assigned to a single vertebra. From left to right we see the vertebra rendered on different

slices of the scan.

Let us note that, even if our description of the ASP model is presented as a sequence of
properties, the solving process of ASP takes advantage of all conditions simultaneously. We
refer the interested reader to [35] for an insightful explanation of this solving process.



5. Results

Our proof of concept processed a raw abdominal CT scan with size 512x512x70 voxels. Total
variation filtering on a P100 Nvidia GPU took a few seconds of processing. We focused on a
region with 110 x 110 x 38 voxels that covers two vertebrae, one rib, the lower end of a lung,
part of a kidney and spleen.

Geometric clustering for the whole scan produced 740K maximal voxels (average of 25 voxels
per partition), while the region of interest contained 5K maximal voxels (average of 83 voxels
per partition). Computing sub-partitions with Minizinc (5K CSPs solved in a batch task) took 80
minutes on a 2.3GHz i9 Macbook Pro. This phase will require some optimization/reencoding in
order to make it scalable for complete scans (100x–1000x of speedup needed).
Minizinc computation returned 22K sub-partitions, that were clustered into 5355 clusters.

Based on intensity ranges, we directly labelled 3931 clusters with most general FMA code. The
ASP procedure labelled 1424 clusters with a time of 0.602 seconds. The procedure is still in
its infancy, as the accumulated medical knowledge is far from being complete. Nonetheless
CARING is able to discriminate between the macro categories of anatomical bodies and to label
geometric features into compatible clusters. Our proof of concept implements the complete xAI
pipeline and shows the feasibility of the approach. Our current knowledge base is limited but
we expect promising results with a more extended set of properties.

6. Conclusions

In this paper we described the design of an xAI pipeline for the interpretation of CT scans. We
covered the foundational aspects that helped us to guarantee explainability of the deduction
process. As proof of concept, we implemented a first model that was able to analyze a region of
a CT scan and to recover correct classification for contained regions.

This work can be extended along several directions: i) quality and efficiency improvement for
the feature extraction phase; ii) increase the scalability of the ASP reasoner to tackle complete
CT scans; iii) a multi level and hierarchical search for labeling ontology codes; iv) the definition
of a knowledge base automatically extracted from FMA codes and their relationships; v) the
possibility to manually add knowledge, with handling of liability and handling of inconsis-
tent knowledge; vi) generate natural language descriptions for Medical Doctors’ validation;
vii) testing over challenging scans; and viii) comparison with the state of the art non-xAI
systems.
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Abstract
The AllDifferent constraint is a fundamental tool in Constraint Programming. It naturally arises in
many problems, from puzzles to scheduling and routing applications. Such popularity has prompted
an extensive literature on filtering and propagation for this constraint. Motivated by the benefits that
GPUs offer to other branches of AI, this paper investigates the use of GPUs to accelerate filtering and
propagation. In particular, we present an efficient parallelization of the AllDifferent constraint on GPU;
we analyze different design and implementation choices and evaluates the performance of the resulting
system on medium to large instances of the Travelling Salesman Problem with encouraging results.

Keywords
Constraint Propagation, AllDifferent, Parallelism, GPU computing

1. Introduction

Constraint programming (CP) is a declarative paradigm to modeling and solving combinatorial
problems. Users model a problem using a set of variables, each of them provided with a set of
possible values (the domain of the variable), and a set of constraints that characterize the feasible
solutions. Dedicated constraint solvers are used to process the problem models and identify
solutions. Thanks to the MiniZinc Challenge [1], an annual competition among solvers, the
constraint programming language MiniZinc [2] has emerged as a de-facto standard modeling
language for the CP community.
Traditional constraint solvers work by alternating two stages: non-deterministic variables

assignment and constraint propagation. Once a value has been assigned to a variable, constraint
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propagation eliminates all values from domains of other variables that are incompatible in any
solution with the assignment that has just been made. Alternative assignments are typically
explored through backtracking.
The effectiveness of constraint propagation is heavily dependent on how the problem is

modeled. For example, it is frequently possible to model the same problem using either a
collection of elementary (e.g., binary or ternary) constraints or a single constraint involving
many variables (i.e., a global constraint). Global constraints have the advantage of capturing
a complex relationship between many variables, typically allowing a more extensive level of
propagation. The impact of propagation on the structure of the search tree explored by a
constraint solver can be significant—indeed, the propagation of global constraints is the subject
of many studies and optimizations [3].
The AllDifferent constraint, which requires all variables in the constraint to be assigned

a distinct value, naturally arises in many problems, from puzzles to scheduling and routing
applications. Such popularity has prompted extensive studies on the propagation of this global
constraint. There are different algorithms to propagate the AllDifferent constraint, each with a
different trade-off between propagation strength and computational cost [4]. The most popular
approach is the one by Régin [5].
Recently, branches of AI like Machine Learning have obtained huge benefits from the use

of GPUs to speed up their tasks. Relatively more limited work has been done in exploring the
use of GPUs for logic-based AI, e.g., [6] for SAT, [7] for ASP, and [8] for CP. For additional
references, please see the recent surveys on parallelism in constraint and logic programming
[9, 10, 11].
In this paper, we present a GPU-accelerated propagator for the AllDifferent constraint and

its implementation within a simple constraint solver compatible with the MiniZinc language.
Our contributions are: an analysis of Regin’s algorithm to identify which parts are amenable
of parallelization using a GPU; the comparison of alternative parallelization approaches; the
integration of both the MiniZinc support and our GPU-accelerator propagator in a lightweight
constraint solver [12]; and a comparison between the standard propagator and our GPU-
accelerated version. Results on medium to large instances of the Travelling Salesman Problem
demonstrate encouraging speedup.

The rest of the paper is organized as follows: Section 2 gives an introduction to CP, the Regin’s
algorithm for AllDifferent and the use of GPU for general computation. Section 3 describes the
parallelization process, the implementation details of the final algorithm, and the integration in
a constraint solver. In Section 4, we describe the benchmarks used to test the GPU-accelerated
propagators and their results. Finally, Section 5 summarizes the paper and gives some directions
for future works.

2. Background

2.1. Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) can be described by a triple P = ⟨𝒱,𝒟, 𝒞⟩, where
𝒱 = {V1, . . . , Vn} is a finite set of variables, 𝒟 = {𝒟1, . . . ,𝒟n} is a finite set of sets, called
domains, and 𝒞 is a set of constraints on the variables 𝒱 . The domain 𝒟i captures the allowable



values for the variable Vi. Every constraint c ∈ 𝒞 is defined over a subset var(c) ⊆ 𝒱 . Assume
var(c) = {Vi1 , . . . , Vim}, then c is a relation on 𝒟i1 × · · · ×𝒟im , namely c ⊆ 𝒟i1 × · · · ×𝒟im .
A solution is an assignment σ : 𝒱 −→ 𝒟1 ∪ · · · ∪ 𝒟n such that:

∙ for i = 1, . . . , n : σ(Vi) ∈ 𝒟i and

∙ for all c in 𝒞, if var(c) = {Vi1 , . . . , Vim}, then ⟨σ(Vi1), . . . , σ(Vim)⟩ ∈ c.

In this paper, we focus on CSPs on finite domains, i.e., each 𝒟i is a finite set. Whenever clear
from the context, we will use syntactic sugars for commonly understood constraints (e.g.,
V3 < 2V5). We will use the term global constraint to refer to constraints that define relationships
between a non-fixed number of variables.
Given a CSP P , a constraint solver looks for one or more solutions of P . A typical solver

alternates two types of processes in the search for solutions: (1) constraint propagation and
(2) non-deterministic choices. The latter step is used to select the next variable to be assigned
and to select non-deterministically a value to be given to the variable (drawn from its current
domain). Constraint propagation makes use of the constraints to remove from the domains of
the variables values that can be proved not to belong to a solution. The choice of the variable is
typically fast compared to the cost of constraint propagation.
During constraint propagation, constraints are placed in a queue for processing — i.e., to

filter the domains of the variables involved in the constraints. A general property one could
consider during propagation is hyper-arc consistency [3]. Anm-ary constraint c on the variables
var(c) = {Vi1 , . . . , Vim} is hyper arc consistent (HAC) if for all j = 1, . . . ,m it holds that:

(∀aj ∈ 𝒟ij )(∃a1 ∈ 𝒟i1) · · · (∃ai−1 ∈ 𝒟ij−1
)

(∃ai+1 ∈ 𝒟ij+1
) · · · (∃am ∈ 𝒟im)(⟨a1, . . . , am⟩ ∈ c)

A CSP is hyper-arc consistent if all constraints in 𝒞 are HAC. In case of binary constraints (i.e.,
m = 2) the HAC property reduces to arc consistency.

The complexity of naive algorithms for obtaining HAC is exponential inm. It is also common
practice to simplify constraints involvingmany variables into collections of constraints involving
a smaller number of variables (e.g., 2 or 3). For example, a constraint likeX+2Y +3U < 4V +Z
can be translated to A < B,A = X + C,C = 2Y + 3U,B = 4V + Z . However, this type of
translations may lead to a reduced filtering capability during constraint propagation, since the
HAC property is guaranteed only for the simple constraints. In the example above, a built-in
constraint capable of handling sums of linear terms can be more efficient. We can first rewrite
the constraint as X + 2Y + 3U − 4V − Z < 0 and then use the scalar product to write it
equivalently as: [X,Y, U, V, Z] · [1, 2, 3,−4,−1] < 0.
The constraint programming literature has explored a number of dedicated algorithms to

handle propagation for specific types of constraints. In this work, we focus on the global
constraint AllDifferent.

2.2. AllDifferent

The AllDifferent global constraint deals with a list of variables (of any length) and aims at
ensuring that all of them are assigned pairwise different values in the solution. Even though
AllDifferent(x1, . . . , xn) admits exactly the same set of solutions as the set of binary constraints



{xi ̸= xj : 1 ≤ i < j ≤ n}, arc consistency applied to the individual binary constraints delivers
a weaker filtering of the domains than considering the original global constraint (see, e.g., [4]).

Régin’s well-known algorithm [5] for AllDifferent is based on a bipartite graph representation
of the constraint that matches variables with values. In general, a bipartite graphG(N1∪N2, E),
is defined over two disjoint sets of vertices N1 and N2 and E ⊆ {{u, v} : u ∈ N1, v ∈ N2}
are undirected edges. A matching of a bipartite graph is a set of edgesM ⊆ E such that no two
distinct edges share a vertex. A maximum matching is a maximum cardinality matching. The
Hopcroft–Karp algorithm [13] for computing a maximum matching in a bipartite graph has
O(

√
n · |E|) running time, while the Ford–Fulkerson algorithm, which reduces the problem to

a maximum flow, has time complexity O(n · |E|) [14], where n = |N1|+ |N2|.
A directed graph (digraph)G(N,A) pairs a set of verticesN with a set of arcsA ⊆ N×N , i.e.,

a set of directed edges. A path x0, x1, . . . , xm is a sequence of vertices such that (xi, xi+1) ∈ A
for i = 0, . . . ,m− 1. If xm = x0 the path is called a cycle. A Strongly Connected Component

(SCC) M of G is a maximal subset of N such that, for all pairs u, v ∈ M , there is a path
u = x0, x1, . . . , xm = v. It follows that there are no cycles with edges between different SCCs.
The set of SCCs forms a partition of the vertices of the digraph. Tarjan’s algorithm can be used
to efficiently compute the SCCs of any digraph in O(|N |+ |A|) time [15].
Before discussing the GPU-based implementation, it is perhaps useful to briefly review the

steps adopted in the propagation for the AllDifferent constraint. In particular, consider the
constraint applied to n variables, i.e.

AllDifferent(x1, . . . , xn)

Consider the following preliminary definitions. Given a bipartite graph G(N1 ∪N2, E) and
a matchingM of G, the residual graph from G andM is a directed graph R(NR, AR) built as
follows (see Figure 1):

1. The matchingM is used to define the set of arcs A1 that directs the edges of E

A1 = {(x, d) : x ∈ N1, d ∈ N2, {x, d} ∈ E ∖M} ∪
{(d, x) : x ∈ N1, d ∈ N2, {x, d} ∈ M}

Namely, for each matching edge, there is an arc from value to variable and for each
non-matching edge, the arc is directed from variable to value.

2. A new sink node t ̸∈ N1 ∪N2 is added and NR = N1 ∪N2 ∪ {t}.
3. The matchingM is used to define the set of arcs between t and the nodes in N2

A2 = {(d, t) : d ∈ N2, (∄x ∈ N1)({d, x} ∈ M)} ∪
{(t, d) : d ∈ N2, (∃x ∈ N1)({d, x} ∈ M}

4. Finally, the set of arcs AR is defined as AR = A1 ∪A2

Let us now review the algorithm to propagate AllDifferent(x1, . . . , xn). The algorithm con-
structs a bipartite graph G = (N1 ∪N2, E) where:

• N1 = {x1, . . . , xn},



(a) (b) (c)

Figure 1: Quick overview of Regin’s algorithm on x1, x2, x3, x4 where D1 = {1, 2}, D2 = {1, 2, 3},
D3 = {3}, D4 = {3, 4, 5}. In (a) is highlighted the maximum match of step 1. In (b) is pictured the

residual graph of step 3. In (c) are highlighted the SCCs of step 4, each with a different color, and in red

the arcs considered in step 5.

• N2 =
⋃︀

i∈1..n𝒟i, where 𝒟i is the domain of the variable xi, and

• E = {{xi, d} | i ∈ 1..n ∧ d ∈ 𝒟i}
The algorithms proceeds as follows (see also Figure 1)

1. Find a maximum matchingM for G(N1 ∪N2, E).
2. If |M | < n, then the constraint is unsatisfiable
3. Otherwise, construct the residual digraph R(NR, AR) from G andM .
4. Compute the strongly connected components of R.
5. For every variable xi, remove from its domains all the values d such that there exists an

arc (xi, d) ∈ AR or (d, xi) ∈ AR that is not inM and connects two distinct SCCs.

In our implementationwe use the Hopcroft-Karp’s algorithm for step 1, with a time complexity
O(

√︀

|N1|+ |N2| · |E|). Step 2 has complexity O(1) since is just a check. Step 3 has complexity
O(|N1|+|N2|+|E|) as described below. In step 4 we use the Tarjan’s algorithmwith complexity
O(|N1| + |N2| + |A|). Finally, step 5 has time complexity O(|A|) since it scans all the arcs.
In practice, the computational time can be reduced using several optimizations [16]. Our
implementation mitigates the cost of step 1 using an incremental approach as is traditionally
done.
Correctness of the procedure follows from a theorem by Berge that characterize the edges

that belongs to some but not to all maximum matchings by just analyzing a single maximum
matching [17].

2.3. GPGPU with CUDA

General-Purpose computing on Graphics Processing Units (GPGPU) is the use of a Graphics
Processing Unit (GPU) to speed up computations traditionally handled by the Central Processing



Figure 2: Simplified GPU architecture

Unit (CPU). NVIDIA introduced the Compute Unified Device Architecture (CUDA), a general-
purpose programming library that allows programmers to ignore the underlying graphical
concepts in favor of high-performance computing concepts [18]. CUDA has been successfully
used to accelerate computations in a variety of domains, such as physics, bioinformatics, and
machine learning [19].

The architecture of a GPU (Figure 2) includes a main memory (DRAM), typically off-chip and
used as global memory, an L2 cache, and an array of Streaming Multiprocessors (SM). Each SM
contains a small amount of on-chip fast memory, used as L1 cache or scratchpad memory (the
Shared memory), and several CUDA cores, responsible for the actual execution of instructions.
The architecture is designed to enable rapid context switching of lightweight threads.

The underlying conceptual model for parallelism supported by CUDA is Single-Instruction
Multiple-Thread (SIMT), (variant of SIMD) where the same instruction is executed by different
threads, while data and operands may differ from thread to thread. A CUDA program includes
parts meant for execution on the CPU (the host) and parts meant for parallel execution on
the GPU (the device). Typically, the host code transfers data to the device memory (DRAM in
Fig. 2), starts parallel computations on the device, and retrieves the results from device memory.
The CUDA library supports interaction, synchronization, and communication between host
and device. Each device computation is described as a collection of concurrent threads, each
executing the same function (called a kernel, in CUDA terminology). Each thread is executed by
a CUDA core; these threads are hierarchically organized in blocks of threads, assigned to SMs.
The threads in a block assigned to an SM execute the same instruction on different data. In
case of control flow divergence among the threads within a block, their execution is serialized.
Device global memory is accessible by all threads, whereas threads of the same block may access
the high-throughput shared memory.

3. Design and Implementation

In this section we explore the development of a constraint solver which supports parallel
propagation of AllDifferent on GPUs.
The first step in this process consists of selecting an existing constraint solver suitable to



host a GPU-enabled AllDifferent. Initially, we had a look at the fastest solvers compatible with
the MiniZinc language and, thus, we selected OR-Tools [20], JaCoP [21], and Gecode [22]
respectively Gold and Silver medal of the last MiniZinc challenge [23]. We realized soon that
their efficiency is also due to several optimizations that makes the code difficult to modify.
Our choice converged on MiniCP [12], a lightweight solver specifically designed to enable

research and exploration of diverse search and propagation methodologies. MiniCP provides
a comprehensive documentation and a clean design. In particular, our research builds on
MiniCPP [24], a C++ implementation of MiniCP, suitable to host C++ CUDA kernels. With
minor optimizations, MiniCPP provides a performance that is comparable to that of other solvers
(e.g., JaCoP) for several classes of problems.

To use MiniCPP as a base solver, it was necessary to implement the support for the MiniZinc
language, using the FlatZinc skeleton parser provided by Gecode, and implement all the standard
integer and Boolean constraints. Moreover, we created the necessary definitions to allow the
MiniZinc compiler to recognize the MiniCPP’s native AllDifferent as a global constraint, thus
avoiding its decomposition in a collection of binary constraints.
The following subsection describes the implementation of the parallel version of the

AllDifferent filtering algorithm on GPU and how it has been integrated in the solver. We enabled
the FlatZinc parser to recognize the annotation ::gpu to instruct the solver to propagate the
annotated constraint using the GPU algorithm in place of the standard CPU algorithm.

3.1. Parallelization

The key components of the filtering algorithm for AllDifferent propagation are (1) the computa-
tion of a Maximum Matching in a bipartite graph (MM) and (2) the computation of the Strongly
Connected Components (SCC) of a directed graph (see Section 2.2).
Before discussing the parallelization process we introduce some preliminary definitions.

Breadth-First Search (BFS) is a graph traversal algorithm that explores the graph’s vertices in the
order of their distance from a source vertex s. Given a graph G = (V,E) and a source vertex
s ∈ V , BFS systematically traverses the edges in such a way that all vertices at distance k from
s are discovered before any vertices at distance k + 1. By BFS is possible to find all the v ∈ V
reachable from s. In case of digraph, the forward reachability of a vertex s is defined as the set
of nodes F such that exists a path from s to any v ∈ F . Similarly the backward reachability of
a vertex s is the set of nodes B such that for any v ∈ B exists a path from v to s. Forward /
backward reachability can be expressed as a binary matrix where the element at coordinates
(i, j) is 1 if and only if vertex i reaches / is reachable from vertex j.

Computing a MaximumMatching on an GPU. There are several approaches to solving
such problems on GPU. For maximum matching there are implementations based on the
auction [25], push-relabel [26], and the BFS [27] algorithms.
The auction algorithm works as an auction where persons compete for objects by raising their
prices. It alternates bidding and assignment phases until all the person have been assigned
to an object. The bidding and assignment phases are offloaded on the GPU, where bids and
assignments are computed in parallel.
The push-relabel approach solves the maximum matching reducing it to a flow problem. The



initial bipartite graph G = (N1 ∪ N2, E) is modified by adding two nodes s and t, the first
connected to all the n ∈ N1 and the second reached by all the n ∈ N2. The resulting graph is
seen as a flow network such that:

• through an edge can pass 0 or 1 unit of flow
• the node s produces N1 units of flow and the node t can receive N1 units of flow
• the sum of the ingoing flow in a node must be equal to the sum of the outgoing flows

The problem is to find which edges to use to move the maximum amount of flow from s to t.
The push-relabel algorithm alternates push operations where flow is pushed through an edge,
and relabel operation to mark the nodes with an excess of ingoing flow. Such alternation is
repeated until no nodes, except t, have an excess of ingoing flow. The push and relabel phases
are offloaded to the GPU where each node is processed in parallel.
The BFS algorithms are based on the Hopcroft-Karp algorithm and make use of a GPU-
accelerated parallel BFS to find the augmenting paths in place of the standard Depth First
Search.
We started our study with a push-relabel algorithm based on [26]. We choose it because its

more studied than the other approaches and it does not assume the existence of a matching.
Despite our optimization efforts, offloading the calculation of MM on the GPU does not pay off:
the algorithm does not scale [28] and is slower than on the CPU since the solvers can quickly
calculate MM incrementally [16]. Moreover, for large instances, the cost of MM is negligible
compared with the cost of SCCs. In the end, the computation of the maximum matching was
kept on the CPU.

Strongly Connected Components on a GPU. For SCCs, the majority of the GPU implemen-
tations [29, 30] ultimately make use of forward/backward reachability [31]. The literature about
SCCs on GPU considers enormous sparse graphs with millions of nodes. The trend is to use, as a
fundamental step, a parallel BFS to calculate forward/backward reachability. This scenario does
not fit our context where (1) a major constraint leads to a dense graph of hundreds/thousands
of nodes and (2) we aim for low latency and BFS notoriously suffers from load imbalance [32].
The first observation direct us to calculate SCCs using forward reachability as follows.

Let A be the adjacency (binary) matrix of the graph, namely A(i, j) = 1 iff there is an edge
between node i and node j. Then:

1. Compute the forward reachability matrix F from A.
2. Transpose F to obtain the backward reachability matrix B.
3. Create a matrix C such that C(i, j) = F (i, j) ·B(i, j). That is, C(i, j) = 1 if and only if

there is a cycle containing node i and node j.
4. The identifier of the SCC of the node i is the minimum j such that C(i, j) = 1.

The second observation made us look for alternatives to BFS. Let G(V,E) be a graph, the
standard algorithms to calculate the reachability matrix are:

• Matrix multiplication, with complexity O(|V |2.8log2(|V |)) [33].
• Warshall algorithm, with complexity O(|V |3) [34].

We explored the parallelization of both of these approaches (see Section 3.2) and chose Warshall
algorithm.



3.2. Implementation Details

Data transfer. To begin with, we had to decide which data to transfer to the GPU. We
opted to transfer the residual graph as a binary adjacency matrix. Preliminary tests showed
that it is better than transferring only the domains and the match necessary to generate the
graph’s adjacency matrix. This is because, in our case, most of the transmission’s cost is in the
initialization phase than in the actual data transfer. Moreover, the build of the adjacency matrix
requires many sparse memory accesses, and the CPU is sensibly faster than the GPU for such
tasks.

Matrix representation. We choose to represent the adjacency matrix as a bit matrix for its
several benefits. It enables the use of bitwise operations, it can be initialized by dumping the
domains’ internal representation, and it minimizes the amount of data to transfer. In preliminary
tests, we also explored the use of other representations suited for hardware accelerated matrix
multiplication (i.e., Tensor Core), and for sparse matrices. In both cases, the matrix multiplication
performs worst than an ad-hoc matrix multiplication encoded by us using bitwise operations. In
the first case, the penalty come from the more general algorithm and dealing with floating-point
numbers, while in the second case it comes from the fast increasing density of the matrices and
dealing with integer numbers.

Matrix multiplication. After the choice of the representation, we focused on matrix multi-
plication. We tested two of the state-of-the-art GPU linear algebra libraries, namely cuBLAS
[35] and cuBool [36]. The performances were, at best, matching the classic algorithm on CPU.
Due to these poor results, we focused on binary matrix multiplication on GPU. There are

efficient implementations for multi-GPUs matrix multiplication [37] and to speedup Binarized
Neural Network [38], but their code is tailored to their use case. Thus, we decided to implement
binary matrix multiplication from scratch. We used a few known techniques in the design:

• tiled matrix multiplication to optimize cache usage

• data arrangement to optimize memory access, and

• bitwise operation to speed up the computation

The result was a simple but efficient binary matrix multiplication, with performances slightly
worst than [37] for squared matrices of a few thousand rows.

Warshall. Then, we focused on the Warshall algorithm. Despite sharing a similar nested
loops structure with the matrix multiplication, its nesting order is stricter and does not allows
the same optimizations. The majority of the GPU implementations that use an adjacency matrix
representation [39, 40] are based on a blocked version of the Warshall algorithm from [41].
Such an algorithm was developed to maximize the CPU’s cache utilization, and it is particularly
efficient to exploit the GPU’s shared memory. As the Warshall algorithm, this blocked version
starts from an adjacency matrix of size n×n and iteratively updates it to obtain the reachability
matrix. It begins by dividing the matrix in tiles of size t× t and then performing n/t steps. Each
step s is made of three phases (see Figure 3), each one updating a specific set of tiles according
to their dependency:



(a) (b) (c)

Figure 3: Illustration of the 4-th step of the blocked Warshall algorithm on a matrix divided in 25 tiles.

The tiles updated in each phase are highlighted in yellow, while the tiles already processed are colored

in green. Tiles dependencies are illustrated in with red arrows.

Phase 1 : This phase consider the s-th tile of the main diagonal, namedD, and update it using
the equation D(i, j) = D(i, j) ∨ (D(i, k)) ∧D(k, j)) for 0 ≤ k < t.

Phase 2 : This phase consider the tiles of the s-th row and s-th column excluding the D
tile. A generic tile of the s-th row, named R, is updated using the equation R(i, j) =
R(i, j) ∨ (D(i, k)) ∧R(k, j)). A tile of the s-th column, named C, is updated using the
equation C(i, j) = C(i, j) ∨ (C(i, k)) ∧D(k, j)).

Phase 3 : This phase consider all the remaining tiles. The equation to update a generic tile T
in position (r, c) is T (i, j) = T (i, k)∨ (R(i, k))∧C(k, j)) whereR is the tile in position
(r, s) an C is the tile in position (s, c).

Each tile within a phase can be updated independently, allowing parallelization of phases 2 and
3. These independent updates map well into the GPU computational model, where each tile
of size t × t is managed by a block of t threads. In this way, the i-th thread updates the i-th
row of the tile considering every 0 ≤ k < t. We paid particular attention to optimizing phase
3 since it involves most of the tiles. Unlike phase 2, where the update of the i-th row R(i, *)
depends on the k-th rowR(k, *), in phase 3, the update of the i-th row T (i, *) does not depends
on other lines of the tile. This fact makes possible to avoid threads synchronization, sensibly
reducing the computational time. Preliminary benchmarks show that the most convenient
tile size is t = 128. Such dimension allows reading each row in one memory access as one
uint4 (32*4 bit) and manipulating it by two 64-bit operations. Preliminary comparisons with
the matrix multiplication approach reported similar performance. However, in such tests, the
matrix multiplication approach performed only a few of the log2(|V |) iterations. In the end, we
chose as our approach the blocked Warshall algorithm because its runs in a slightly less amount
of time as a good case of the matrix multiplication approach.
Initial tests highlight that offloading the computation on GPU is not convenient when the

bipartite graphs are small (i.e. |V | ≤ 200). For these cases we created a single procedure that
performs steps 1, 4 without performing steps 2, 3.



4. Results and Analysis

It is expected that a GPU implementationwould provide benefits on instances that are sufficiently
large, as the setup overhead would otherwise overshadow the benefits of the parallel execution.
We chose as benchmark the Travelling Salesman Problem (TSP) because it can be simply
modeled using a Circuit constraint, that internally makes use of the AllDifferent constraint,
there is an established set of large benchmarks [42], and it is a fundamental problem for routing
applications.
We select about 80 instances from the TSPLib with 100 to 10,000 cities and convert them

into the MiniZinc format. We solve them using the MiniCP’s native AllDifferent propagator as
well as our GPU-accelerated propagator. All benchmarks have a timeout of 10 minutes and are
executed on a system equipped with an Intel Core i7-10700K, 32GB of DDR4 RAM, and GeForce
RTX 3080 running Ubuntu 21.04 and CUDA 11.4.
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Figure 4: Results of the TSPLib benchmarks. On the horizontal axis there are the instances sorted by

increasing size. The vertical values indicate the speedup of the GPU in terms of explored nodes.

Figure 4 illustrates the results of the benchmarks. The speedup is calculated as ratio between
the GPU search speed and the CPU search speed. The search speed is the number of visited
nodes over the search time. As expected from preliminary tests, the benefits of our approach
start to be visible when a constraint involves several hundreds of variables. The plot shows an
increasing speedup as the size of the instance increases, except for the largest instance. Such
behavior is due to the large time between two GPU-accelerated propagations, reducing the
opportunities to speed up the computation. To verify such explanation we increased the timeout
to 30 minutes and obtained a speedup of approximately 7 times.

5. Conclusion and Future Works

Motivated by the benefits that GPUs offer in terms of computational power, we designed and
implemented a GPU-accelerated propagator for the AllDifferent constraint. We described the



process of developing such a propagator, which challenges we encountered, and the motivations
behind the main implementation choices. The propagator has been integrated into an existing
solver. We tested our implementation on medium to large instances of the Travelling Salesman
Problem and obtained speedups up to 7 times in terms of explored nodes. Unlike other parallel
approaches, our method is immediately usable since modern PCs often have a GPU.

There are many ways to extend and improve this work: implementing on GPU propagators
for other global constraints, exploring their usage in Constraint-Based Local Search, etc. Our
next step will be focusing on problems containing multiple AllDifferent constraints. In such
cases it is possible to process the AllDifferent constraints in parallel. This promises significant
speedups even for small to medium problems, where the GPU propagation is still less efficient
than the CPU version.
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A Framework to build Abductive-Deductive Chatbots,
based on Natural Language Processing and
First-Order Logic
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Abstract
This paper presents a framework based on natural language processing and first-order logic, which
implicitly simulate the human brain features of selecting properly information related to a query from
a knowledge base (abductive pre-stage), before to infer new knowledge from such a selection acting
as deductive database. Such features are used with the aim of instantiating cognitive chatbots, able of
human-like fashioned reasoning, supported by a module which automatically transforms polar and
wh-questions into one or more likely assertions, in order to infer Boolean values or snippets with
variable length as factoid answer from a conceptual knowledge base. The latter is splitted into two layers,
representing both long- and short-term memory, and the transition of information between the two
layers is achieved leveraging both a greedy algorithm and the engine’s features of a NoSQL database,
with promising timing performance than respect using one layer. Furthermore, such chatbots don’t need
any scripts updates or code refactory when new knowledge has to income, but just the knowledge itself
in natural language.

Keywords
Artificial Intelligence, Chatbot, First-Order Logic, Cognitive Architecture, Deductive Database

1. Introduction

Nowadays, the momentousness which tech giants like Google, Meta (former Facebook), Mi-
crosoft, IBM and Amazon are giving to chatbots, is a strong indicator that this technology
will play a significant role in the future. Among applications leveraging Natural Language
Processing (NLP), those related to chatbots systems are growing very fast and present a wide
range of choices depending on the usage, each with different complexity levels, expressive
powers and integration capabilities. At the present, if you want to know trending movies in
your area, you could use the Fandango Bot1; or, if you want to get NBA highlights and updates,
you could use NBA’s bot2, and so forth. On the other hand, the way towards a human-like
fashioned reasoning chatbot is quite long and challenging. Such an ideal agent-chatbot, in addi-
tion to having deductive, abductive and inductive capabilities, should be able of commonsense
categorization, even making usage of the so-called Frames [1] and Scripts [2], and so on. In
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order to achieve that, the cognitive disciplines involving has become a mandatory step in the
overall process of such agent’s modelling, together with knowledge of the linguistic science.
In this work, which is somehow the evolution of [3] where we showed the effectiveness

of a similar approach in the case of automation commands provided in natural language, we
present a framework called AD-Caspar based on NLP and First-Order Logic (FOL), as baseline
platform for implementing scalable and flexible cognitive chatbots with both goal-oriented and
conversational features. A first overview of such an architecture has been presented here [4].
The first prototype of AD-Caspar is not yet provided with tools to build complex dialog systems,
but differently from other platforms, in order to handle additional question-answer couples, the
user has to provide just the related sentences in natural language, without the need of updating
the chatbot code at design-time. After the agent has parsed every sentence, a FOL representation
ot them is asserted in its conceptual KB, which will be able to act as a deductive database [5].
AD-Caspar inherits most of its features directly from its predecessor, namely Caspar [6], whose
name stands for: Cognitive Architecture System Planned and Reactive. Caspar was designed to
build goal-oriented agents (vocal assistants) with enhanced deductive capabilites, working on
Internet of Things (IoT) scenarios. The additional features introduced in AD-Caspar, where
AD- stands for: Abductive Deductive, are the usage of abduction as pre-stage of deduction, in
order to make inferences only on a narrow set of query-related clauses, plus the application of
question-answering techniques to deal with wh-questions and give back factoid answers (single
nouns or snippets) in the best cases; otherwise, optionally, only a relevance-based output will
be returned.
This paper is structured as follows: Section 2 is about the related literature of the typical

approaches of chatbot applications; Section 3 shows in detail all the architecture’s components
and underlying modules, referring sometimes the reader to legacy-related literature for the sake
of shortness; Section 4 shows how AD-Caspar deals with polar and wh-questions; Section 5 is
about a case-study where it is shown a typical instance of a Telegram chatbot, working on small
KBs; Section 6 summarizes the content of the paper and provides our conclusions, together
with some future work perspective.

A Python prototype implementation of AD-Caspar is also provided for research purposes in
a Github repository3.

2. Related Work

In the plethora of known chatbot systems, first of all stand out the ones participating to the
Loebner Prize Competition4. Typical sentences to prove Loebner price candidates effectiveness
do not require particular logical inference, but mainly the ability to possible gloss, convincingly,
as a human being would. Some chatbots make usage also of language tricks, such as monologues,
not repeating itself, identify gibberish, play knock-knock jokes, etc. But despite such features,
these chatbots can hardly aspire to be somehow useful for the task of decision-making, but just
to fool their interlocutor. This is because of the historical approach of such a technology, which
always aimed, before all, at passing the well-known Turing Test [7] as intelligence evaluation

3http://www.github.com/fabiuslongo/ad-caspar
4https://www.ocf.berkeley.edu/~arihuang/academic/research/loebner.html

http://www.github.com/fabiuslongo/ad-caspar
https://www.ocf.berkeley.edu/~arihuang/academic/research/loebner.html


criterion, event though the reader can find copious literature on this theme about which it is
insufficient in such a task.

The first distinction between the chatbot platforms divides them into two bigmacro-categories:
goal-oriented and conversational. The former is the most frequent kind, often designed for
business platforms support, assisting users on tasks like buying goods or execute commands
in domotic environments. In this case, it is crucial to extract from an utterance the intentions
together with all related parameters, then to execute the wanted operation, providing also a
proper feedback to the user. As for conversational ones, they are mainly focused on having
a conversation, giving the user the feeling to communicate with a sentient being, returning
back reasonable answers optionally taking into account discussions topics and past interactions.
One of the most common platforms for building conversational chatbot is AIML5 (Artificial
Intelligence Markup Language), based on words pattern-matching defined at design-time; in
the last decade it has become a standard for its flexibility to create conversation. In [8], AIML
and Chatscript6 are compared and mentioned as the two widespread opensource frameworks
for building chatbots. On the other hand, AIML chatbots are difficult to scale if patterns are
manually built, they have great limitations on information extraction capabilities and they are
not suitable for task oriented chatbots. Other kinds of chatbots are based on deep learning
techniques [9], making usage of huge corpus of examples of conversations to train a generative
model that, given an input, is able to generate answers with arguable levels of accuracy.
In general, all chatbots are not easily scalable without writing additional code or repeating

the training of a model with fresh datasets. As for the latter, unfortunately neural networks
(in particular, the ones used in deep learning applications) suffer from the problem known as
catastrophic interference: a process where new knowledge overwrites, rather than integrates,
previous knowledge. At this regard, the usage of neural models working at semantic tier as
dependency parsers, in order to build logical models of utterances in natural language, prevents
much more such a drawback.

3. The Architecture

As outlined in the introduction, the proposed architecture, namely AD-Caspar, derives directly
from its predecessor Caspar, but, differently from the latter, has been endowed with important
features which permit to handle better large KBs and achieve abduction at the same time. The
KB is divided into two distinct groups operating separately (orange boxes in Figure 1), which we
will distinguish as Beliefs KB and Clauses KB: the former is managed by the Belief-Desire-Intention
framework Phidias [10], and contains beliefs which support all framework operations, even
those related with interaction with environment; the latter contains conceptual information
on which we want the agent to make logical inference. Moreover, the Clauses KB is splitted
into two different layers: Low Clauses KB and High Clauses KB. The whole knowledge is stored
in the low layer, but the logical inference is achieved in the high one, whose clauses will be
the most relevant for the query in exam, taking into account a specific confidence threshold
which will be discussed ahead. The two KBs can be seen, somehow, as the two types of human

5http://www.aiml.foundation/
6https://github.com/ChatScript/ChatScript
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Figure 1: A sempliflied functional scheme of AD-Caspar.

being memory: the so called procedural memory or implicit memory [11], made of thoughts
directly linked to concrete and physical entities; the conceptual memory, based on cognitive
processes of comparative evaluation. Nevertheless, the two layers of the Clauses KB can be
seen as Short-Term Memory (High Clauses KB) and Long-Term Memory (Low Clauses KB). As
well as in human being, in this architecture, Beliefs KB and Clauses KB can interact with each
other in a reactive decision-making process (meta-reasoning).

A simplified functional scheme of AD-Caspar is depicted in Figure 1, with each component
highlighted with a distinct colour. Specifically, the Chat Environment (red box in Figure 1)
is responsible of interfacing the agent with all required to establish a communication with a
chatbot system. When a question is detected, the text is sent to another module called QA Shifter
(gray box in Figure 1), whose details are reported in Section 4, with the task of transforming
a question into one or more likely assertions as possible answers to such a question. The
Translation Service (yellow box in Figure 1) is the component responsible of translating a natural
language sentence, by leveraging a dependency parser [12] and a production rules system, into
in a neo-Davidsonian FOL expression. The latter inherits the shape from the event-based formal
representation of Davidson [13], with every term t as follows:

t:= x | L:POS(t1) | L:POS(t1, t2, t3) | L:POS(t1, t2),
where x is a variable bound either to a universal or to an existential quantifier, L a WordNet [14]
Synset (selected with a disambiguation process taking in account of the context) or a lemma,
POS a Part-of-Speech (POS) tag, and t1, t2, t3 other terms (recursively defined). Implication
symbols are also admitted, when a group of predicates subordinate the remaining ones. The
outcome of the Translation Service, for a basic verbal phrase, will be as follows:

synset1:POS1(e1, x1, x2) ∧ synset2:POS2(x1) ∧ synset3:POS3(x2),



where synset1 and POS1 are related to a verb, while synset2, POS2, synset3, POS3 to nouns.
Additional possible predicates corresponding to other grammatical elements (adjectives, adverbs
and prepositions), will share the same variable of predicates which are referred to. Before
being sent to the next module, the above formula will be furtherly translated as follows7, by
suppressing the first argument e1 from the predicate with label synset1:POS1:

synset1:POS1(synset2:POS2(x1), synset3:POS3(x2)).
The rationale behind such a notation choice is explained next: a definite clause is either atomic
or an implication whose antecedent is a conjunction of positive literals and whose consequent
is a single positive literal. Because of such restrictions, in order to make clauses suitable for
inference with the Backward-Chaining algorithm (which requires a KB made of definite clauses),
we must be able to encapsulate all their information properly. The strategy followed is to create
composite terms, taking into account of the POS and applying the following hierarchy to every
noun expression as follows:

IN(JJ(NN(NNP(x))), t), (1)

where IN is a preposition label, JJ an adjective label, NP and NNP are noun and proper noun
labels, x is a bound variable and t a predicate.
As for the verbal phrases, the nesting hierarchy will be the following:

ADV(IN(VB(t1, t2), t3)),
where ADV is an adverb label, IN a preposition label, VB a verb label, and t1, t2, t3 are predicates;
the nesting hierarchy of ADV and IN can also be swapped; in the case of imperative or intransitive
verb, instead of respectively t1 or t2, the arguments of VB will be left void. As we can see, a
preposition (IN) might be related either to a noun or a verb. For a detailed description of
the Translation Service, since such component is utterly inherited from Caspar, the reader
is referred to [6]. The Cognitive Reasoner (blue box in Figure 1) enables the architecture with
reasoning and meta-reasoning capabilities. Differently from the correspondent component in
Caspar, each assertion is made on both High and Low Clauses KB. Since the High Clauses KB is
a volatile memory, it will be emptied after the agent is restarted, but at the same time is the one
where first the deduction is attempted; then, after a possible unsuccessful reasoning, the Low
Clauses KB will be used to populate the High one with fresh nested definite clauses, having a
specific number of features compliant with a wanted threshold described ahead in Section 4.
After the High Clauses KB is being populated, the deductive reasoning is re-attempted.

4. Question Answering

This section shows how the proposed architecture is able to deal with question-answering.
The Low Clauses KB has a very important role in such a task, because it supports abduction
as pre-stage of deduction and it is the source from which the High Clauses KB is populated,
in order to make logical inference. Each record in the Low Clauses KB is stored in a NoSQL

7After such a step the POS can be either removed from the formula as in Figure 6 and Figure 7, or not to keep a
shallow label tipization as in Figure 4.



database and it is made of three fields related to a specific sentence in natural language. Each
field is defined as follows:

- Nested Definite Clause: definite clause made possibly of composite predicates.
- Features Vector: vector of labels of the above definite clause.
- Sentence: the sentence in natural language.

For instance, let the sentence to be stored be:

Barack Obama became president of United States in 2009.

In this case, the record in the Low Clauses KB will be as follows:

- In(Become(Barack_Obama(x1), Of(President(x2), United_States(x3))), 2009(x4))

- [In, Become, Barack_Obama, Of, President, United_States, 2009]

- Barack Obama became president of United States in 2009

The abductive strategy of getting useful clauses from the Low Clauses KB, takes into account a
metric Confidence𝑐 defined as follows:

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑐 = |⋂(𝐹𝑒𝑎𝑡𝑠𝑞, 𝐹 𝑒𝑎𝑡𝑠𝑐)||𝐹 𝑒𝑎𝑡𝑠𝑞| (2)

where Feats𝑞 is the features vector extracted from the query, and Feats𝑐 is the features vector of a
generic record stored in the Low Clauses KB. A typical access to the Low Clauses KB creates the
sorted list of all features occurrences, together with the related clauses, then the most relevant
clauses will be copied in the High Clauses KB.

Algorithm 1 aggregate_clauses_greedy(clause, aggregated, threshold)
Input: (i) clause: a definite clause, (ii) aggregated : a set of definite clauses (empty in the first call), (iii) threshold : the

minimum confidence threshold
Output: a set of definite clauses.
1: ft ←− extract_features(clause);
2: aggr ←− get_relevant_clauses_from_db(ft);
3: foreach record in aggr do
4: occurrencies_found ←− record.features_occurrencies
5: confidence ←− occurrencies_found / size(ft)
6: foreach cls in record.clauses do
7: if cls not in aggregated and confidence ≥ threshold then do
8: aggregated.append(cls);
9: aggregate_clauses_greedy(cls, aggregated, threshold);
10: return aggregated

Such an operation is accomplished via the aggregate_clauses_greedy algorithm shown in
Algorithm 1. The latter, with a greedy heuristic, takes in input the query clause, the set aggregated
and the wanted limitation of confidence threshold for abduction; as output, it gives back the set
aggregated of clauses from the db that are going to be copied in the High Clauses KB, taking in
account of the wanted distance (2) from the query.



Table 1
A simple instance of clauses related features.

Clauses Features
cls1 [a, x, z, y]
cls2 [a, b]
cls3 [a, b, x, y]
cls4 [a, b, c, d]
cls5 [a, b, c, w]

4.1. Algorithm

First, at line 1 of Algorithm 1, aggregate_clauses_greedy extracts all clause features; at line
2, it creates a list of tuples in descending order (by the first field) containing an integer value
and a lists of clauses having in common such value as number of common features with clause.
More in detail, considering the Table 1, having a query cls𝑞 with features vector [a, b, c],
the function get_relevant_clauses_from_db will create a list made of the following two
tuples, by excluding those with only one feature in common, since in such a domain a minimal
meaningful verbal phrase8 is made at least of two entities (verb plus subject):

(3, [cls4, cls5])
(2, [cls2, cls3])

The rationale behind such function’s output is that the first value of each tuple is the size of the
intersection between the features of the query and the features of Table 1 (feature_occurencies in
Algorithm 1), while the second value (clauses in Algorithm 1) is a vector containing the clauses
themselves having in common such an intersection size. At line 4, the first value of each tuple
is extracted and used in line 5 to calculate the confidence (2). In the loop at line 6, all clauses
having the same features occurrences are considered, and at line 7 the algorithm checks whether
the clause has an admitted confidence level and it is not already in aggregated. In this case, the
clause will be appended to the aggregated list. At line 9, there is a recursive call taking in input
cls (the current clause which is being processed) instead of clause, the updated aggregated and
the threshold of the same procedure call. Finally, at line 10, the list aggregated is returned.
Although there can be more strategies to implement the function at line 2 of Algorithm

1, for this work’s prototype the desired result has been achieved by leveraging the Mongodb
aggregation operator, in a single fast and efficient database operation shown in Figure 2. The
latter is a pipeline of four different operations: the first, at line 4, is the processing of all possible
sizes of intersections between features fields in the db and the features of the query clause. At
line 6 all clauses with the common value of such a size are grouped in tuples. At line 7 such
tuples are sorted by the intersection size. Finally, at line 8 the output is limited to the two most
significant tuples. Nonetheless, we can affirm the algorithm is sound, accomplishing its job in
at most: 𝑂(𝑡 ∗ 𝑠2)

8For instance a reflective verbal phrase as: Roy runs.



✞
1 aggr = db.clauses.aggregate([
2 {"$project": {
3 "value": 1,
4 "intersection": {"$size": {"$setIntersection": ["$features", features]}}
5 }},
6 {"$group": {"_id": "$intersection", "group": {"$push": "$value"}}},
7 {"$sort": {"_id": -1}},
8 {"$limit": 2}
9 ])
✡✝ ✆

Figure 2: The Python Mongodb aggregate operator implementing the function
get_relevant_clauses_from_db at line 2 of Algorithm 1.

with 0 <t <1 as the confidence threshold and s the size of the Low Clauses KB.

4.2. Polar Questions

Polar questions in the shape of nominal assertion (excepting for the question mark at the
end) are transformed into nested definite clauses and treated as query as they are, while those
beginning with an auxiliary term, for instance:

Has Margot said the truth about her life?

which can be distinguished by means of the following dependency:

aux(said, Has)

will be treated by removing the auxiliary and considering the remaining text (without the ending
question mark) as source to be converted into a clause-query.

4.3. Wh-Questions

Differently from polar questions, for dealing with wh-question we have to transform a question
into one or more assertions that can be expected as likely answer, then to query the agent with
them. To achieve that, after an analysis of several types of questions for each category9, by
leveraging the dependencies of the questions, we found it useful to divide the sentences text
into specific chunks as it follows:

[PRE_AUX][AUX][POST_AUX][ROOT][POST_ROOT][COMPL_ROOT]

The delimiter indexes between every chunk are given starting from the AUX and ROOT dependen-
cies positions in the sentence. The remaining chunks are extracted on the basis of the latters.
For the likely answers composition, the module QA Shifter has the task of recombining the
question chunks in a different permutation, depending on the idiom in exam, considering also
the wh-question type. Such an operation, which is strictly language specific, is accomplished
thanks to an ad-hoc production rule system which takes in account of languages diversity. For
instance, let the question in exam be:

9Who, What, Where, When, How.



Who could be Biden?

In this case, the chunks sequence will be as follows:

[PRE_AUX][could][POST_AUX][be][Biden][COMPL_ROOT]

where only AUX, ROOT and POST_ROOT are populated, while the other chunks are empty. In
this case a specific production rule of the QA Shifter will recombine all chunks in a different
sequence, by adding also another specific word in order to compose a likely assertion as follows:

[PRE_AUX][POST_AUX][Biden][could][be][COMPL_ROOT][Dummy]

At this point, joining all the words in such a sequence, the candidate sentence as likely assertion
to used as query, might be the following one:

Biden could be Dummy.

The meaning of the keyword Dummy will be clarified shortly. In all verbal phrases where ROOT
is a copular10 verb (like be), the verb has the same properties of the identity function. Then, in
the case of the above sentence, we can consider also the following candidate sentence:

Dummy could be Biden.

All wh-questions for their own nature require a factoid answer, made of one or more words
(snippet); so, in the presence of the question: Who is Biden? as answer we expect something
like:

Biden is something. (3)

But something surely is not what we are looking for as information, but the elected president of
United States or something similar. This means that, within the FOL expression of the query,
something in (3) must be represented by a mere variable. In light of this, instead of something,
this architecture uses the keyword Dummy: the rationale of this choice is that, during the
creation of a FOL expression containing such a word, the Translation Service will impose the
extra POS DM to Dummy, whose parsing is not expected to be used to build a nested definite
clause, thus it will be discarded. At the end of this process, as FOL expression of the query we’ll
have the following literal:

Be(Biden(x1), x2), (4)

which means that, if the High Clauses KB contains the representation of Biden is the president
of America, namely:

Be(Biden(x1), Of(President(x2), America(x3))),

querying with the (4) by using the Backward-Chaining algorithm, the latter will return back as
result a unifying substitution with the previous clause as follows:

10A copular verb is a special kind of verb used to join an adjective or noun complement to a subject. Common
examples are: be (is, am, are, was, were), appear, seem, look, sound, smell, taste, feel, become, and get. A copular
verb expresses either that the subject and its complement denote the same thing or that the subject has the property
denoted by its complement.



Figure 3: Starting a Telegram chat session with an instance of AD-Caspar (left) and querying it with
who and when questions (right).

{v_41: x1, x2: Of(President(v_42), America(v_43))},

which contains, in correspondence of the variable x2, the logic representation of the snippet:
president of America as possible and correct answer. Furthermore, starting from the lemmas
composing the only answer-literal within the substitution, with a simple operation on a string, it
is possible to extract the minimum snippet from the original sentence containing such lemmas.

5. Case-study

In this section, a simple Python prototype of a Telegram chatbot based on the AD-Caspar ar-
chitecture is shown, focusing on how it deals with each type of interaction with the user.

5.1. Starting, Asserting and Querying the chatbot

As the agent is running, to start a new session the user has to provide the keyword hello, to
make the agent come out from its idle state, then feed or enquiry the chatbot with the wanted
information.
In Figure 4 it is shown the content of both High and Low Clauses KB in the case of new

assertions, after the events of Figure 3 (left), by means the AD-Caspar native commands hkb()
and lkb(). In Figure 3 (right) we can see how the chatbot is queried with wh-questions, giving
back as result a substitution from the High Clauses KB (From HKB: True) containing a literal,
which is a logic representation of a snippet-result in natural language. Regarding the substitution
of the variable x5, e.g., the literal is the representation of the snippet Barack Obama, whose
words are concatenated together their POS.

After the chatbot reboot, as we can see for instance in Figure 5 (left), the result is extracted
from Low Clauses KB (From LKB: True) taking into account the confidence threshold (0.6



✞
1
2 eShell: main > hkb()
3
4 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))
5
6 1 clauses in High Knowledge Base
7
8 eShell: main > lkb()
9
10 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))
11 ['In_IN', 'Become_VBD', 'Barack_NNP_Obama_NNP', 'Of_IN', 'President_NN', 'United_NNP_States_NNP', 'N2009_CD']
12 Barack Obama became the president of United States in 2009.
13
14 1 clauses in Low Knowledge Base

✡✝ ✆

Figure 4: AD-Caspar High and Low Clauses KB changes, after assertions.

Figure 5: On the left, querying the chatbot with who and when questions, after the rebooting and the
Low Clauses KB was fed. On the right, abductive results with confidence threshold equal to 0.6, after
querying with when questions.

in this case), because High Clauses KB is still empty (From HKB: False). Such a threshold,
depending on the domain, can be changed by modifying the value of a specific parameter. In the
bot closed-world assumption, the agent can give back only answers unifying with the content
of its own knowledge, otherwise it will return False. Optionally, by setting another parameter
in a configuration file, the closest results can be shown together with their confidence (Figure 5
right).

5.2. Runtime Evaluation

In the scope of chatbot applications, the issue of responsiveness is worth of attention, because
the user should have the feeling, somehow, of relating to a sentient being providing reasonable



✞
1 Be(Nono(x1), Hostile(Nation(x2)))
2 Be(Colonel_West(x1), American(x2))
3 Be(Missile(x1), Weapon(x2))
4 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3))
5 To(Sell(American(x1), Weapon(x2)), Hostile(Nation(x3))) ==> Be(American(x4), Criminal(x5))
✡✝ ✆

Figure 6: AD-Caspar High Clauses after five assertions related to the Colonel West KB.

response times. In light of above, to address such an issue, since a chatbot relays on the internet,
its real-time performances depends firstly on the bandwidth and secondly on the chatbot engine.
Since the bandwidth is the more volatile parameter between the two, because it depends on
physical features, protocols and temporally congestion, in this work we decided to focus only
on the engine performances considering a widespread specific hardware. For this reason, in
order to achieve a runtime evaluation of the engine, an instance of AD-Caspar was tested,
whose timings in seconds are shown in Table 2. The hardware the chatbot has been tested on is
the Intel i7-8550U 1.80Ghz with 8GB RAM. The first column Knowledge Base of Table 2 refers
to three distinct KBs, each with different size, containing the clauses in Figure 7. Such clauses
are asserted starting from the five sentences related to the Colonel West case, namely:

- Colonel West is American.
- Nono is a hostile nation.
- missiles are weapons.
- Colonel West sells missiles to Nono.
- When an American sells weapons to a hostile nation, that American is a criminal.

whose corresponding FOL notation, seen before in Section 3 (see also Figure 6), is not sufficient
to infer that Colonel West is a criminal.
For this reason, together with each sentence related clause, AD-Caspar adopts a specific
expansion of the KB, inherited from Caspar, which leverages the so-defined assignment rules
and clause conceptual generalizations. For the sake of shortness we will not report the details
of such an expansion, for which the reader is referred to [6]. Anyway, such an expansion
improves the chances of successful reasoning, by increasing the clauses from 5 in Figure 6 up
to 25 in Figure 7. The first column in Table 2 is about three distinct KBs: the first, namely
West25, contains exactly such 25 clauses; West104 and West303 contain either such clauses, but
respectively plus 79 and plus 278 random unrelated clauses. The column HKB of Table 2 refers
to five computation timings for each of the KBs, considering only the High Clauses KB and the
query: Colonel West is a criminal. We remind that an instance of AD-Caspar attempts firstly
to achieve a reasoning making usage of only the High Clauses KB, as in the case of Caspar,
otherwise it will get likely candidates from the Low Clauses KB, considering their relevance to
the query according to a specific threshold confidence (2). The third column LKB+HKB of Table
2 shows timings in the case the High Clauses KB is initially empty, thus both High Clauses
KB and Low Clauses KB are involved. Focusing on the third column, it appear clear timings
in general are lesser than the second column, excepting for the values in first rows, which
comprises the Mongodb access time and the filling of the High Clauses KB with clauses coming



✞
1 Be(Nono(x1), Nation(x2))
2 Be(Nono(x1), Hostile(Nation(x2)))
3 Nono(x) ==> Nation(x)
4 Nono(x) ==> Hostile(Nation(x))
5 Be(Colonel_West(x1), American(x2))
6 Colonel_West(x) ==> American(x))
7 Be(Missile(x1), Weapon(x2))
8 Missile(x) ==> Weapon(x)
9 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(v_0), Missile(x4))
10 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(x3), Weapon(v_1))
11 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(Colonel_West(x1), Weapon(v_2))
12 Sell(Colonel_West(x1), Missile(x2))
13 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Nation(v_4))
14 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_5), Missile(v_6)), Nation(v_4))
15 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_7), Weapon(v_8)), Nation(v_4))
16 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_9), Weapon(v_10)), Nation(v_4))
17 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Hostile(Nation(v_11))
18 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_12), Missile(v_13)), Hostile(Nation(v_11))
19 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_14), Weapon(v_15)), Hostile(Nation(v_11))
20 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_16), Weapon(v_17)), Hostile(Nation(v_11))
21 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_18), Missile(v_19)), Nono(x3))
22 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_22), Weapon(v_23)), Nono(x3))
23 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_26), Weapon(v_27)), Nono(x3))
24 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3))
25 To(Sell(American(x1), Weapon(x2)), Hostile(Nation(x3))) ==> Be(American(x4), Criminal(x5))

✡✝ ✆

Figure 7: AD-Caspar Colonel West KB in Figure 6 after its expansion.

from the Low one, via the aggregate_clauses_greedy in Algorithm 1. The other values in
the third column are lower than in the second one because the reasoning is achieved over a
lesser number of clauses (19) for each distinct KB. The average timings in the bottom row show
how the first rows’ value is amortized, by compensating the loss, due to the gain achieved from
reasoning on a fewer number of clauses than respect the initial content of all KBs in exam
(West25, West104 and West303). Intuitively it is expected such bias to be increased for larger KBs,
which demonstrates the effectiveness of such approach for two distinct tasks: firstly, to deal
with larger KBs considering only the most relevant clauses in the reasoning process; secondly,
to permit at the same time abduction as pre-stage of deduction, in order to give back closer
results also in presence of non-successful reasoning.

6. Conclusions and Future works

In this paper, a framework based on natural language processing and first-order logic, with the
aim of instantiating cognitive chatbots able of abductive-deductive reasoning, was presented. By
the means of its module Translation Service, AD-Caspar parses sentences in natural language
in order to populate its KBs with beliefs or nested definite clauses endowed of rich semantic.
Moreover, the module QA Shifter is able to reshape wh-questions into likely assertions one
can expect as answer, thanks to a production rule system leveraging a dependency parser. The
combination of Translation Service and QA Shifter makes the Telegram Bot proposed in this
work easily scalable on the knowledge we want it to deal with, because the user has to provide



Table 2
Real-time cognitive performances (in seconds) of a Telegram chatbot engine based on AD-Caspar, in
the case of successful reasoning with KBs of different sizes.

Knowledge Base HKB LKB+HKB
0,377 0,469

West25 0,378 0,353 (19/25)
0,437 0,385 (19/25)
0,374 0,366 (19/25)
0,355 0,399 (19/25)
0,423 0,426

West104 0,362 0,327 (19/104)
0,342 0,327 (19/104)
0,353 0,388 (19/104)
0,731 0,323 (19/104)
0,407 0,463

West303 0,421 0,357 (19/303)
0,377 0,333 (19/303)
0,461 0,368 (19/303)
0,443 0,387 (19/303)

Overall AVG 0,416 0,378

only the new sentences in natural language at runtime, like in a common conversation. As
future work, we plan to include a module for the design of enhanced dialog systems, taking in
account of contexts and history, and also integrate a module for Argumentation.
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Abstract
Answer Set Programming (ASP) is a branch of Logic Programming particularly useful for representing

complex domains. Logic abduction, the reasoning strategy that deals with incomplete data, is tightly

related to ASP, and encodes incompleteness through abducibles. The goal of logic abduction is to find

the minimal set of abducibles (where minimality is usually considered in terms of set inclusion) that

explains a query. Recently, abductive reasoning has been introduced in the context of Probabilistic Logic

Programming, but no solutions are available for Probabilistic Answer Set Programming (PASP). In this

paper, we close this gap and propose an algorithm to perform abduction both in ASP and in PASP.

Keywords
Abduction, Statistical Relational Artificial Intelligence, Probabilistic Answer Set Programming

1. Introduction

Abductive Logic Programming (ALP) [1, 2] is an extension of Logic Programming (LP) [3] that

copes with incomplete data: given a set of abducible facts and a set of integrity constraints, the

goal is to find the minimal set, where minimality is usually considered in terms of set inclusion,

that explains a given query. This minimal set is often called abductive explanation.

Answer Set Programming (ASP) [4] is a powerful formalism to encode complex problems,

where the possible solutions are represented as answer sets. In the first contribution of this

paper, we propose a simple yet effective algorithm to perform abduction in ASP.

One limitation of ASP (and Logic Programming in general) is that it cannot manage uncertain

data. Probabilistic Logic Programming (PLP) [5, 6] under the Distribution Semantics (DS) [7] is

a possible formalism to express uncertain information using a logic-based language. Recently,

the authors of [8] introduced the concept of probabilistic abductive explanation and proposed an

algorithm to perform abduction in PLP under the DS. A possible extension to ASP that manages

uncertainty is Probabilistic Answer Set Programming (PASP) under the Credal Semantics (CS) [9,

10]. With this semantics, the probability of a query is not a sharp value, but it is represented

by an interval, i.e., it has a lower and an upper probability bound. In a second contribution of

this paper, we propose an algorithm to perform abduction in PASP, where the goal is to find,

given a query, the minimal set of abducible facts that maximizes the joint lower probability of

the query and the integrity constraints.
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Overall, our contribution is two-fold: first, we provide an algorithm to compute abductive

explanations in ASP. Then, we introduce the concept of abductive reasoning in PASP under the

CS and propose an algorithm to compute probabilistic abductive explanations. To study the

applicability of our approach, we tested both algorithms on three different datasets. The results

show that abduction for ASP is orders of magnitude faster than for PASP.

The paper is structured as follows: Section 2 introduces the basic concepts of ASP, PLP, and

PASP under the CS. Section 3 describes our algorithm to perform abduction in ASP while our

proposal for PASP under the Credal Semantics is presented in 4. The two algorithms are tested

in Section 5, related work is discussed in Section 6, and Section 7 concludes the paper.

2. Background

2.1. Answer Set Programming

We assume the reader is already familiar with the basic notions of Logic Programming. For an

in-depth treatment of the subject, see [3]. ASP also considers aggregate atoms [11] of the form

g0 ◦0 #f{e1; ...; en} ◦1 g1 where g0 and g1 are constants or variables and are called guards, f is

an aggregate function symbol, and ◦0 and ◦1 are arithmetic comparison operators. Each ei is

an expression of the form t1, ..., tl : C where each ti is a term whose variables appear in C , a

conjunction of literals. For example, a possible aggregate is 1 < #count{X : f(X)} < 5. g0◦0
or ◦1g1 or both may be omitted.

A rule is of the form h1; ...;hn ← b1, ..., bm, where each hi is an atom and each bi is a literal.

h1; ...;hn is called the head and b1, ..., bm is called the body. We only consider safe rules, i.e.,

rules where each variable of a rule also appears in a positive literal in the body. If n = 0 (no
atoms in the head) andm > 0, the rule is called an integrity constraint. If n = 1 andm = 0, the
rule is called a fact, and represents what is known to hold. If a rule does not contain variables,

it is called ground. The set of groundings of a rule can be obtained by replacing its variables

with the constants that appear in the program in all possible ways. An answer set program is a

set of rules.

The Herbrand base (BP ) of an answer set program P is the set of all ground atoms that can

be constructed using the symbols in the program. An interpretation I for P is a subset of BP . I

satisfies a ground rule if at least one hi is true in I when every bi is true in I . A model is an

interpretation that satisfies all the groundings of all the rules of P . If we consider a ground

program Pg and an interpretation I , by removing from Pg the rules in which a bi is false in I

we obtain the reduct [12] of Pg with respect to I . An answer set for P is an interpretation I

such that I is a minimal model (in term of set inclusion) of the reduct of Pg . With AS(P ) we
denote the set of all the answer sets of P .

2.2. Probabilistic Logic Programming (PLP)

Probabilistic Logic Programming [5, 6] extends Logic Programming by incorporating prob-

abilities into facts or rules. If we consider, for instance, ProbLog [13], a probabilistic fact is

represented with Π :: f where Π ∈]0, 1] and f is a logical atom. The Distribution Semantics

(DS) [7] is at the heart of many PLP languages, such as ProbLog. Following the DS, an atomic



choice is represented with a tuple (f, θ, k) where k ∈ {0, 1}: k = 1 means that the grounding

fθ for f is selected; k = 0 indicates that it is not. A consistent set of atomic choices is called a

composite choice (identified with κ) and its probability can be computed as

P (κ) =
∏︂

(fi,θ,1)∈κ

Πi ·
∏︂

(fi,θ,0)∈κ

(1−Πi)

If a composite choice contains an atomic choice for every grounding of every probabilistic fact

then it is called a selection. A selection identifies a world, i.e., a logic program composed by the

rules of the program and the selected probabilistic facts (those for which k = 1). The probability
of a world w, P (w), is the probability of the correspondent selection. Finally, the probability of

a query q (a conjunction of ground atoms) is computed as

P (q) =
∑︂

w|=q

P (w)

Probabilistic facts are considered independent. For example, the following (propositional)

program

0.3::nosleep.

0.6::lowvitamins.

tired:- nosleep.

tired:- lowvitamins.

has 2 probabilistic facts: nosleep, that is true with probability 0.3, and lowvitamins, that

is true with probability 0.6. The program has 22 = 4 worlds; the query tired is true in 3

of them (those where at least one of the two probabilistic facts is true) and it has probability

0.3 · 0.6 + 0.3 · (1− 0.6) + (1− 0.3) · 0.6 = 0.72.

2.3. Probabilistic ASP under the Credal Semantics

The Distribution Semantics only considers probabilistic logic programs where every world has

a unique two-valued well-founded model [14]. This usually does not hold if we consider ASP

programs with probabilistic facts (PASP).

In this case, the Credal Semantics (CS) [9, 10] has been proposed as a possible underlying

semantics. Under this semantics, every query q has lower and upper probability bounds, denoted

respectively with P (q) and P (q). In addition to the worlds, the computation of the probability

for a query also requires considering the answer sets for each of them: if the query is true in

at least one answer set of a world w, P (w) contributes to the upper probability; if the query

is true in every answer set of a world w, P (w) contributes to the lower probability. Clearly,

P (q) ≤ P (q). However, every world must have at least one answer set. If we slightly modify

the previous program in

0.3::nosleep.

0.6::lowvitamins.

tired:- nosleep.

tired; nottired:- lowvitamins.



and still consider the query tired, the worlds where both probabilistic facts are true and

the worlds where nosleep is true and lowvitamins is false have only 1 answer set each,

{nosleep, tired, lowvitamins} and {nosleep, tired} respectively, and the query is

true in them, so we have a contribution of 0.3 · 0.6 + 0.3 · (1− 0.6) to the lower probability.

The world where lowvitamins is true and nosleep is false has 2 answer sets ({tired,
lowvitamins} and {nottired, lowvitamins}) and the query is true in only one of the

two, so we get a contribution of (1− 0.3) · 0.6 to the upper probability. In the world where both

probabilistic facts are false, the query is false as well so it does not contribute to the probability.

Overall, the probability lies in the range [0.3, 0.72].

3. Abductive Answer Set Programming

An abductive answer set program is composed of an answer set program and a set of ground

atoms called the abducibles, that do not appear in the head of any rule. More formally, given

an answer set program P , and a possibly empty set of abducibles (also called abducible facts)

A, the goal is to find the minimal set of abducibles ∆, called abductive explanation, such that a

query is present in at least one answer set. If there are multiple minimal sets, we call them the

abductive explanations. Here, minimality is intended in terms of set inclusion [15]. For example,

if both∆
′

= {a} and∆
′′

= {a,b} are explanations for a query q, only∆
′

is considered as the

abductive explanation, since ∆
′′

⊃ ∆
′

, and thus ∆
′′

is not minimal. We consider integrity

constraints (ICs) as normal answer set constraints. To better illustrate these concepts, consider

the following example.

Example 1 (Smoke). The program and the graph of Figure 1 describe a network with 5 people

(nodes) connected by a friendship relation (edges). The friendship relation exists if the corresponding

abducible (denoted by prepending the functor abducible to the terms e/2) is selected. Some

individuals smoke, some others do not. In particular, b and d smoke. A disjunctive rule states that

a person X can either smoke or not smoke given that she is a friend of someone (Y) who smokes.

The integrity constraint states that at least 80% of the people smoke. The goal is to compute the

abductive explanation(s) for the query smokes(c).

We propose an algorithm to perform abduction in ASP.

Every abducible fact abducible a is replaced by a choice rule of the form 0{a}1, stating
that a can be included or not in every answer set. To encode the query query, we add a

constraint :- not query. In this way, we impose that the query is true in every answer set. By

applying this transformation to the program shown in Figure 1a, we obtain a new program with

62 answer sets. Every answer set represents a possible explanation but only some of them (2)

are abductive explanations, i.e., minimal (in terms of set inclusion), for the query smokes(c):

{{e(b,c)},{e(d,e),e(e,c)}}.
To compute the abductive explanations, a first solution could consist in enumerating all the

answer sets and removing the dominated ones. However, the number of abductive explanations

is usually orders of magnitude smaller than the possible answer sets (in this example, there are

2 abductive explanations, while the total number of answer sets is 62). For this reason we adopt

an alternative approach. First, we compute the cautious consequences (intersection of all the



abducible e(a,b). abducible e(b,c).

abducible e(a,d). abducible e(d,e).

abducible e(e,c).

friend(X,Y):- e(X,Y).

friend(X,Y):- e(Y,X).

smokes(b). smokes(d).

smokes(X) ; nosmokes(X):-

friend(X,Y), smokes(Y).

:- #count{X:nosmokes(X)} = N,

#count{X:smokes(X)} = S,

10*S < 8*(N+S).

(a) Program.

a

b

c

d e

(b) Network of 5 people (nodes) con-

nected by a friendship relation

(edges).

Figure 1: Example of an abductive answer set program and its graph representation.

models) of the whole program, and project [16] them on the abducibles. For every abducible a

in the cautious consequences, we add a constraint :- a in the program, since these are present

in every answer set, so we can avoid generating a choice for them. After this process, we add an

additional rule with an argument that stores the number of abducibles selected in the computed

answer sets. For example, for the program shown in Example 1a, we add c(C):- #count{Y,X
: e(X,Y)} = C. After that, we iteratively generate answer sets and, at each step, we add a

constraint to the program that imposes that the number of abducibles in the generated answer

sets is N , where N ranges from 0 to the total number of abducibles in the program. We go

from 0 to N , so we can keep track of the dominated explanations. The answer sets obtained

at each iteration are the abductive explanations. In other words, we call multiple times the

solver to generate the answer sets and, at each call, we generate only the answer sets with a

fixed number of abducibles. Moreover, at each iteration, we also impose a constraint to avoid

the generation of answer sets that are supersets of the already computed ones. This process is

described in Algorithm 1: first, abducibles are converted as previously described (line 2). Then,

we compute the minimal set of abducible facts (line 3) and add each fact of this minimal set

into the program, as integrity constraint (line 5). The loop at line 9 handles the generation of

sets of abducibles of increasing size. The function AddConstraintSizeAndComputed adds

a constraint to the program to limit the number of abducibles and a constraint to remove the

already computed solutions. At the end of the loop, we check whether there are some solutions

that are not minimal with the function Least and return the abductive explanation for the

query.

To clarify the overall process, let us apply Algorithm 1 on the program of Example 1. There are

no cautious consequences projected on the abducibles, so no constraint is added to the program.

Then, we begin generating the answer sets, starting from 0 abducibles with the constraint :-

c(X), X != 0. This program is unsatisfiable, so no further constraints are added. In the



Algorithm 1 Function AbductionASP: computation of the abductive explanations for a query

query and an ASP program P .

1: function Abduction(query,P)
2: probFacts, abducibles,Pp ← ConvertProgram(P)
3: minSet ← ComputeMinimalSet(Pp ∪ {: - not query.})
4: for all f ∈ minSet do
5: Pp ← Pp ∪ {: - not a.}
6: end for
7: alreadyComputed ← ∅
8: abduciblesSet ← ∅
9: for i ∈ range(0, len(abducibles)) do
10: Pc

p
← AddConstraintSizeAndComputed(Pp , i , alreadyComputed )

11: P
qc

p ← Pc

p
∪ {: - not query.}

12: projectSet ← abducibles

13: AS ← ProjectSolutions(P
qc

p , projectSet ) ▷ Computation of the answer sets.

14: for all as ∈ AS do
15: abduciblesSet ← abduciblesSet ∪as
16: alreadyComputed ← alreadyComputed ∪as
17: end for
18: end for
19: abduciblesSet ← Least(abduciblesSet )

20: return abduciblesSet .elements

21: end function

case the program is satisfiable with answer sets of size 0, this means that there is no need to

keep searching for abductive explanations since the empty explanation is sufficient, and we

can stop the search. We now consider answer sets with 1 abducible, we remove the constraint

for 0 abducibles and replace it with :- c(X), X != 1. There is one answer set, and thus

an abductive explanation, {e(b,c)}, so a constraint of the form :- e(b,c) is added to the

program. In this way, in the next iterations, we do not generate answer sets that contain this

abducible, since it is already in a smaller explanation. That is, if a is an abductive explanation,

all the subsequent explanations that contain a will be dominated, so they can be ignored. At the

third iteration, we replace the constraint for 1 abducible with :- c(X), X != 2, while the

constraints on the already discovered abducibles are kept. We obtain a new solution, {e(d,e),
e(e,c)}, so we add a new constraint to the program :- e(d,e), e(e,c). We continue this

process until considering 5 abducibles (all). At the end, we get {{e(b,c)},{e(d,e) e(e,c)}}
as abductive explanations. By default, abducibles not included into the abductive explanations

are not selected. Note that, if we consider as minimality measure the number of abducibles in

an answer set, we can solve this task by simply setting an optimization problem where the goal

is to minimize the number of abducibles in the answer sets. That is, if we use, for example, the

ASP system clingo [17], we can add the two rules:

c(C):- C = #count{X,Y : e(X,Y)}.
#minimize{C : c(C)}.

and get, as result, the minimal sets in terms of cardinality (e(b,c)).

In the next section we show how to extend this abductive framework in the case of Probabilistic

Answer Set Programming.



4. Abductive Reasoning in Probabilistic Answer Set

Programming

A probabilistic integrity constraint [8] is of the form

Π← l1, . . . , ln

where Π ∈ ]0, 1] and each li is a literal (abducibles are allowed). Here, we also allow li to

be an aggregate atom. Probabilistic facts and probabilistic integrity constraints identify the

worlds, each of which may have multiple answer sets. We obtain a world by adding or not each

ground probabilistic fact and each grounding of each probabilistic integrity constraint. For the

grounding of the integrity constraints, we consider the standard concept of global and local

variable [11]. In particular, a global variable of a rule is such that it appears in at least one literal

not involved in aggregations. Variables only appearing in aggregates are called local. A ground

instance of a rule with aggregates is obtained by first replacing global variables and then local

variables with ground terms.

The probability of a world is given by the product of the atomic choices for the probabilistic

facts with a factor Πi for every probabilistic integrity constraint i selected and a factor (1−Πj)
for every probabilistic integrity constraint j not selected.

Definition 1 (Probabilistic abductive answer set program). An answer set program P , a

set of probabilistic facts F , a set of abduciblesA, and a (possibly empty) set of probabilistic integrity

constraints IC define a probabilistic abductive answer set program.

Given a probabilistic abductive answer set program, the lower joint probability of the query q

and the constraints IC given an explanation ∆ is the sum of the probabilities of the worlds w

where ∆ is an explanation for the query q, all the constraints are satisfied, and q is true in all

the answer sets. In formula:

P (q, IC | ∆) =
∑︂

w:∀m∈AS(Pw∪∆),m|=q,m ̸|=ICPw

P (w)

where Pw is the abductive answer set program identified by a word w and ICPw
is the set of

IC involved in Pw.

Finally, the goal of (cautious) abduction in probabilistic answer set programming is to find

the minimal set of abducibles ∆ ⊆ A such that P (q, IC | ∆) is maximized, i.e., solve

least(argmax∆ P (q, IC | ∆))

where, as in [8], the function least removes the sets that are not minimal. The main goal is to

maximize the lower joint probability so, even if there are, for example, two solutions ∆′ ⊂ ∆
′′

that yield respectively probabilities P∆′ < P∆′′ , we only consider ∆
′′

as abductive explanation

(despite being not minimal), since it gives the highest probability. Note that if a set∆maximizes

the lower joint probability, it may not maximize the upper joint probability. For example, if we

consider the program:



abducible a.

abducible b.

0.5::fa.

0.5::fb.

query:- a,fa.

query;notquery:- b,fb.

the abductive explanation for the query query is ∆ = {a} that yields a lower joint probability
of 0.5, while the set of abducibles that maximizes the lower upper probability is {a,b} that
yields an upper probability of 0.75. The goal of (brave) abduction in probabilistic answer set

programming can be defined in a similar way by considering the upper probability. However,

here we focus on cautious abduction and every time we write abduction in probabilistic answer

set programming we consider the goal of cautious abduction.

Example 2 (Probabilistic Smoke). Suppose now that the relationships are uncertain. To model

this, we add a probabilistic fact fe/2 for every abducible in Example 1. Moreover, we suppose

that the information provided by the integrity constraint is also uncertain, and has an associated

probability of 0.2. The program became:

abducible e(a,b). abducible e(b,c).

abducible e(a,d). abducible e(d,e).

abducible e(e,c).

0.5::fe(a,b). 0.5::fe(b,c). 0.5::fe(a,d).

0.5::fe(d,e). 0.5::fe(e,c).

friend(X,Y):- e(X,Y), fe(X,Y).

friend(X,Y):- e(Y,X), fe(Y,X).

smokes(b). smokes(d).

smokes(X) ; nosmokes(X):-

friend(X,Y), smokes(Y).

0.2:- #count{X:nosmokes(X)} = N,

#count{X:smokes(X)} = S,

10*S < 8*(N+S).

The goal is to compute the abductive explanation for the query smokes(c).

Probabilistic integrity constraints require a particular conversion. For every probabilistic IC

of the form p:- bodywe add a probabilistic fact p::f, a rule ic :- body, and two constraints

:- f, ic, and :- not f, not ic imposing respectively that, if the fact is selected, the

constraint must be true and, if the fact is not selected, the constraint must be false. This new

probabilistic fact is parsed as previously described.



To find the abductive explanations in PASP we modified the algorithm described in the

previous section. We cannot impose the constraint that removes an already found explanation

e since another explanation e
′

⊃ e with a higher associated probability can exist. Moreover,

we cannot add the constraint :- not query, since we need to consider the lower probability,

and so ensure that the query is true in all the models for a world. Finally, we need to identify

the choices made for the abducibles at each iteration and compute the probability for each

world. If we consider Example 2 with the query smokes(c), the only probabilistic abductive

explanation is the set {e(b,c),e(d,e),e(e,c)} that gives a lower probability of 0.125. This

process is summarized in Algorithm 2: first, the probabilistic facts, and the probabilistic integrity

constraints are converted as previously explained (line 2). Then, we compute the minimal set of

probabilistic and abducible facts (line 3) and add each fact of this minimal set into the program, as

integrity constraint (line 5). The functionAddConstraintSize adds a constraint to the program

to limit the number of abducibles. The functions ExtractAbdChoices and ExtractWorlds

respectively extracts the set of abducibles and the set of probabilistic facts for every answer

set. The function ComputeContribution computes the contribution to both lower and upper

probability [18] for every choice of abducibles and the function UpdateSet keeps track of the

best solutions found so far. At the end of the loop, we check whether there are some solutions

that are not minimal with the function Least and return the probabilistic abductive explanation

and the probability range for the query.

Algorithm 2 Function AbductionPASP: computation of the probabilistic abductive explana-

tions for a query query and a PASP program P .

1: function Abduction(query,P)
2: probFacts, abducibles,Pp ← ConvertProgram(P)
3: minSet ← ComputeMinimalSet(Pp ∪ {: - not query.})
4: for all f ∈ minSet do
5: Pp ← Pp ∪ {: - not a.}
6: end for
7: alreadyComputed ← ∅
8: abduciblesSet ← ∅
9: for i ∈ range(0, len(abducibles)) do
10: Pc

p
← AddConstraintSize(Pp , i )

11: P
qc

p ← Pc

p
∪{q: - query.,nq: - not query.}

12: projectSet ← probFacts ∪ abducibles ∪{q} ∪ {nq}
13: AS ← ProjectSolutions(P

qc

p , projectSet )

14: for all as ∈ AS do
15: wa ← ExtractAbdChoices(as) ▷ Identify choices for the abducibles

16: wp ← ExtractWorlds(wa) ▷ Extract worlds

17: contributionsList ← ComputeContribution(wp)

18: abduciblesSet ← UpdateSet(contributionsList )

19: end for
20: end for
21: abduciblesSet ← Least(abduciblesSet )

22: return abduciblesSet .lp, abduciblesSet .up, abduciblesSet .elements

23: end function



5. Experiments

To evaluate our approach, we ran the proposed algorithm on a computer with Intel® Xeon®

E5-2630v3 running at 2.40 GHz with 16Gb of ram and a time limit of 8 hours. We used the ASP

solver clingo [17]. We tested three datasets, both for ASP and PASP1.

The first dataset, clauses, encodes a domain with an increasing number of abducibles ab/1,

a clause for every one of them and a constraint imposing that at least two abducibles should

be selected. The structure for the program of size 4 (where the size indicates the number of

abducibles) for ASP is the following:

abducible ab(1). abducible ab(2).

abducible ab(3). abducible ab(4).

qry:- ab(1). qry:- ab(2). qry:- ab(3). qry:- ab(4).

:- #count{X : a(X)} = C, C != 2.

The query is qry. For the PASP version we considered deterministic and probabilistic integrity

constraints. In the first case half of the ab/1 atoms are abducibles and half are probabilistic facts

with an associated probability of 0.5. In the second case, the IC has an associated probability of

0.5. In both cases, the integrity constraints only involves the number of abducibles that can

be selected. The remaining part of the program is the same. The goal of this experiment is to

test the inference time of the algorithm on programs with an increasing number of clauses that

must be considered for the computation of the (probabilistic) abductive explanation.

Results are shown in Figure 2. The execution times for PASP with deterministic and proba-

bilistic integrity constraints are similar, and, in both cases, we get a memory error for size 26.

Instead, the time required for the computation of abductive explanations in ASP is negligible

with respect to PASP.

0 10 20 30 40 50

0

2,000

4,000

6,000

Program Size

E
xe
cu
ti
o
n
T
im

e
(s
)

ASP

PASP - Deterministic IC

PASP - Probabilistic IC

Figure 2: Inference times for the clauses experiments.

The second dataset, bird, encodes a small biological domain composed of birds. Each bird

can either fly or not fly, and there are at least 60% of birds that fly. An example of program of

size 4 (with 4 birds) is the following:

1Source code and datasets available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta


bird(1). bird(2). bird(3). bird(4).

fly(X);nofly(X):- bird(X).

:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB<6*B.

the query is fly(1).

For the ASP version, we considered an increasing number of bird/1 facts as abducibles. For

PASP with deterministic constraints 1/3 of the bird/1 facts are certain, 1/3 are probabilistic

with an associated probability of 0.5, and 1/3 are abducibles. For PASP with probabilistic

integrity constraints the split is the same, but the constraint imposing that 60% of birds fly has

an associated probability of 0.5.

Results are shown in Figure 3a. As expected, the introduction of a probabilistic integrity

constraint in the PASP program increases the execution time with respect to the same program

with a deterministic IC, since an additional probabilistic fact must be considered. As before, the

execution time to compute the abductive explanation in ASP is constant and almost negligible

up to size 50.
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(a) Inference times for the bird experiments.
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Figure 3: Results for the bird and smoke experiments.

A third dataset, smoke, encodes a network where nodes represent people and edges represent

relationships. A person can either smoke or not smoke. Other people can either smoke or

not smoke if they are influenced by others. This benchmark has no integrity constraints. An

example program of size 4 is the following:

smokes(X) ; nosmokes(X) :- smokesFact(X).

smokes(X) ; nosmokes(X) :- smokes(Y), influences(X,Y).

smokesFact(1). smokesFact(2). smokesFact(3).

smokesFact(4). influences(0,1). influences(0,2).

influences(0,3). influences(1,3).

The goal is to compute the (probabilistic) abductive explanations for the query smokes(1).



For abduction in ASP, half of the smokesFact/1 facts are abducibles and half are certain.

Similarly, half of the influences/2 facts are abducibles and half are certain. For abduction in

PASP, half of the smokesFact/1 facts are probabilistic with an associated probability of 0.5

and half are certain, and half of the influences/2 facts are abducibles and half are certain.

The generation of influences/2 facts follow a Barabási-Albert model (we used the method

barabasi albert graph from the networkx [19] python package).

Results are shown in Figure 3b. The inference time trend in the two cases coincides with the

previous experiments.

The gap of execution time between abduction in ASP and PASP is too big to be analyzed.

Thus, we decided to run a separate experiment for abduction in ASP, with larger programs

for all the datasets. Results are shown in Figure 4. The bird and smoke datasets have similar

running time while the clauses one is the slowest among the three: this is probably because

each program has a significant number of abductive explanations: for example, the program of

size 10 has 45 while the program of size 360 has 64620 abductive explanations.
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Figure 4: Inference times for abduction in ASP with programs of different sizes for the 3 datasets.

6. Related Work

Abduction and Answer Set Programming are strongly related [20]. In [21] the authors propose

a specialized framework to perform abductive reasoning under the stable model semantics

by defining a special Tp operator. Differently from them, we leverage an existing ASP solver

(clingo) to perform abduction, and do not develop specialized operators. ABDUAL [22], later

refined in TABDUAL [23], is a framework that performs abduction in the context of well-funded

semantics with the capability to compute stable models. It is implemented in XSB Prolog [24]

and leverages common Logic Programming techniques such as tabling. Differently from them,

we use an ASP framework, easily supporting the whole ASP syntax. Recently, the authors

of [8] proposed an algorithm to perform abduction in probabilistic logic programs under the

Distribution Semantics. To the best of our knowledge, no existing frameworks can perform

abduction in Probabilistic Answer Set Programming under the Credal Semantics.



7. Conclusions

In this paper we proposed a new algorithm to perform abduction in Answer Set Programming

and Probabilistic Answer Set Programming under the Credal Semantics. For the former, the goal

is to find the minimal set, where minimality is defined in terms of set inclusion, of abducible

facts that explains a query, i.e., such that the query has at least one answer set. For the latter, the

goal is to find the minimal set which maximizes the lower joint probability of the query and the

constraints. Results on three datasets show that abduction for ASP is orders of magnitude faster

than for PASP, since the generation of all the worlds is not needed. As future work, we plan to

apply approximate inference [25] to speed up the computation in PASP. A further direction for

future work could consist in better exploring the relation between lower and upper probability

for abduction in PASP.
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[4] G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance, Communica-

tions of the ACM 54 (2011) 92–103. doi:10.1145/2043174.2043195.

[5] L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton (Eds.), Probabilistic Inductive Logic

Programming, volume 4911 of LNCS, Springer, 2008.

[6] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, semantics, infer-

ence and learning, River Publishers, Gistrup, Denmark, 2018.

[7] T. Sato, A statistical learning method for logic programs with distribution semantics, in:

L. Sterling (Ed.), ICLP 1995, MIT Press, 1995, pp. 715–729. doi:10.7551/mitpress/4298.

003.0069.

[8] D. Azzolini, E. Bellodi, S. Ferilli, F. Riguzzi, R. Zese, Abduction with probabilistic logic

programming under the distribution semantics, International Journal of Approximate

Reasoning 142 (2022) 41–63. doi:10.1016/j.ijar.2021.11.003.
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Abstract
In this paper we address the problem of hybridising symbolic and sub-symbolic approaches in artificial

intelligence, following the purpose of creating flexible and data-driven systems, which are simultaneously

comprehensible and capable of automated learning. In particular, we propose a logic API for supervised

machine learning, enabling logic programmers to exploit neural networks – among the others – in their

programs. Accordingly, we discuss the design and architecture of a library reifying APIs for the Prolog

language in the 2P-Kt logic ecosystem. Finally, we discuss a number of snippets aimed at exemplifying

the major benefits of our approach when designing hybrid systems.

Keywords
Logic programming, Machine Learning, API, 2P-Kt

1. Introduction

Symbolic and sub-symbolic artificial intelligence (AI) are complementary under several per-

spectives [1, 2]. For this reason, many recent contributions from the literature are discussing

the possible frameworks for their integration and hybridisation [3, 4, 5, 6]. However, what is

currently slowing down scientific progress in this context is not the lack of ideas concerning

how such integration and hybridisation may occur. Conversely, the bottleneck is caused by the

lack of suitable technologies enabling and easing the experimentation of integrated or hybrid

systems. Logic-based technologies are in fact technological islands, for which poor care is given

to the construction of bridges with the rest of the AI land.

Accordingly, in this paper, we address the issue of supporting machine learning (ML) – and,

in particular, neural-networks (NN) based training and inference – in logic programming (LP).

We do so by designing and prototyping a logic based API for machine learning. Along this line,

our contribution is twofold: (i) we let logic programmers exploit the benefits of sub-symbolic AI,

and, in particular, neural networks; and (ii) we enable the practical experimentation of hybrid
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systems—involving both logic and neural processing of data.

Our logic-based API for ML consists of a set of logic predicates enabling the representation,

training, testing, and exploitation of sub-symbolic predictors in LP—possibly, out of data ex-

pressed in logic form. In other words, our API lets logic programmers use neural networks in

their programs – e.g. to train or exploit classifiers or regressors – without requiring them to

abandon the logic realm. Of course, to make this possible, our API supports the whole gamma

of low level tasks that are commonly involved in an ML workflow—including, but not limited

to, data preprocessing, cross-validation, etc.

Technically, we prototype our API via a logic library – namely, the ML-Lib – targetting the

2P-Kt ecosystem [7], the JVM platform, and the Prolog language [8]. DeepLearning4J [9] is

the underlying library we leverage on in this paper. However, our design is general enough to

support other libraries and, possibly, different platforms—e.g. Tensorflow [10] over Python.

Arguably, our work represents the first step towards a wider degree of interoperability among

symbolic- and sub-symbolic AI. In fact, one the long run, we aim to enable the design and

construction of hybrid systems, fruitfully and dynamically combining the major advantages

of both approaches to artificial intelligence by mixing inferential (via LP) and intuitive (via

NN) reasoning capabilities. Along this path, the proposed API is a key enabling factor, as it

supports the creation of logic-based inferential engines which are capable of learning from data

via state-of-the-art mechanisms. Dually, by supporting the training of neural networks from

logic data, our API can also be considered a tool for endowing sub-symbolic predictors with

prior, high-level knowledge.

2. Logic library for ML: goals

To properly design a logic library for dealing with hybrid reasoning, some basic goals to achieve

should be taken into account: namely, (i) enable hybrid reasoning, (ii) full support of declarative

ML, (iii) enable the exploitation of symbolic data sources (in addition to the others), (iv) make

it possible to select a model via resolution. It is worth mentioning that, each one of these

goals comes along with some of the benefits of hybridization, discussed in detail in [2]. In the

following details about these goals are discussed.

Hybrid reasoning. Automatic reasoning may greatly benefit from sub-symbolic AI to over-

come its inherent crispness. Fuzzy data could then be suitably and coherently processed by a

sub-symbolic predictor as part of a wider symbolic resolution process. To make this possible,

sub-symbolic predictors should be representable, trainable, and queryable as any other logic

predicate, without requiring the semantics of logic resolution to be affected. Consequently,

logic programs should be endowed with ad-hoc predicates and syntactical categories, aimed at

representing and manipulating sub-symbolic predictors and data.

Declarative ML. Declarative ML is a paradigm by which data scientists’ code should only

specify what an ML workflow should do, by leaving the underlying platform in charge to

understand how. This is partially supported by the current practice of data science which

relies on high-level languages (e.g. Python) and libraries of elementary components to be



composed (e.g. Scikit-Learn [11]). However, the solutions proposed so far do not leverage

inherently declarative frameworks like LP, but rather object-oriented languages—requiring

imperative statements. Hence, to support the declarative expression of an ML workflow in the

LP framework, a new logic API is required.

Symbolic data sources. Logic knowledge bases are a peculiar way of collecting knowledge.

Unlike datasets and DBMS, they represent information in symbolic form, via – possibly inten-

sional – logic formulæ. Hence, they can virtually represent any sort of datum – be it atomic,

compound or structured – via a concise (yet very expressive) language, while possibly saving

space. Accordingly, when combining LP with ML, knowledge bases should be exploitable as

data sources as well—other than ordinary CSV files or relational databases.

Model selection via resolution. Logic resolution essentially consists of a search procedure

aimed at finding solutions in a proof tree. This could be applied to a common step of any ML

workflow—namely model selection. There, data scientists must assess several predictor families,

to select the one which is better suited for the learning task at hand. Then, they must search for

the best hyper-parameters for the selected family of predictors. All such choices involve several

sorts of predictors, with possibly different hyper-parameters, to be trained and compared—either

in an orderly fashion or in parallel. LP naturally captures the non-deterministic exploration of a

space of possible choices. Hence it is well suited to both declaratively represent and implement

model selection.

3. ML: key aspects to be supported

To support the aforementioned goals, logic APIs must cover the full gamma of aspects involved

in any possible ML workflow, detailed and discussed in this section.

Briefly speaking, an ML workflow is the process of producing a suitable predictor for the

available data and the learning task at hand, following the purpose of later exploiting that

predictor to draw analyses or to drive decisions. Each ML workflow can be conceived as

composed of six major phases – elicited in section 3.1 –, each one involving a number of

activities—elicited in section 3.2. Enumerating and defining all possible phases and activities is

of paramount importance, as any API for ML should support them all.

3.1. ML phases

From a coarse-grained perspective, a machine learning workflow is composed of six major

phases, detailed in the following.

Dataset loading. The first step of anyMLworkflow consists of loading that dataset inmemory

for later processing. To support such a step, ML frameworks come with ad-hoc functionalities

aimed at loading the dataset by reading a file from the local file system, fetching it from the Web,

or querying a DBMS. These usually come in the form of either classes or functions, coherently

w.r.t. the object-oriented nature of mainstream ML frameworks. Accordingly, the logic API



for ML should expose ad-hoc predicates to serve the same purposes. Furthermore, however, it

should also support the loading of datasets out of logic theories of facts and rules.

Data pre-processing. Raw datasets are often inadequate to favour predictors’ training.

Hence, dataset pre-processing is commonly practised to increase the effectiveness of any sub-

sequent training phase. Most common bulk operations of pre-processing are: (i) homogenize

the variation ranges of the many features sampled by the dataset, (ii) detect irrelevant features

and remove them, (iii) construct relevant features by combining the existing ones, (iv) en-

coding non-numeric features into numeric form, and (v) horizontal (by row) or vertical (by

column) partitioning of the dataset. In particular, the purpose (v) is of paramount importance,

as it supports the test set separation as well as splitting input-related columns from output-

related ones—fundamental operation to enable validation and testing and to support training

respectively.

Predictor selection and definition. Many sorts of predictors could be used in principle to

perform supervised learning—e.g. neural networks, decision trees, support vector machines,

etc. A preliminary phase to select the best predictor is a common phase in virtually any ML

workflow. Once a particular sort of predictor has been chosen, a way to specify the shape the

to-be-trained predictor should have is required. Of course, such specification should take into

account the schema of the input data, as well as the schema of the expected outcomes to be

produced by the predictor. Finally, hyper-parameters of the selected algorithm need to be tuned.

Accordingly, the logic API for ML should support the specification of as many sorts of

predictors as possible, as well as their parametrisation. Once again, predicates should be defined

to serve this purpose. In particular, at least one ad-hoc predicate should be defined for each sort

of predictor to be supported, carrying as many arguments as the possible hyper-parameters that

could be specified for that sort of predictor. In case hyper-parameters cannot be conveniently

represented as raw logic types (numbers or strings), ad-hoc predicates should be provided as

well for constructing structured hyper-parameters values.

Training. Predictors’ training plays a pivotal role in ML workflows. This is the phase where

predictors are fit on the available data or, in other words, automated learning actually occurs.

Generally speaking, training can be modelled in LP as a single predicate, mapping untrained

predictors into trained ones, possibly via a number of learning parameters (e.g. learning rate or

momentum for NN, or maximum depth for DT), or stopping criteria (e.g. max epochs for NN, or

max depth for DT), other than, of course, the data to be used for training. Once again, several

ad-hoc predicates should be defined to support structured parameters or stopping criteria in the

logic API for ML. Furthermore, regardless of its shape, the training predicate should accept some

arguments aimed at specifying whether the columns of the training set should be considered as

inputs or outputs.

Inference. Inference is commonly the last phase of any ML workflow. Here, trained predictors

are used to draw predictions on new data—i.e. different data w.r.t. the training set. In most

common cases, predictions attempt to solve classification or regression problems. In any case, yet



another general predicate should be added to our logic API forML to support drawing predictions

out of a trained predictor and a set of raw data (or a single datum). Ad-hoc predicates may be

provided as well to explicitly model higher-level tasks, such as classification and regression.

Finally, it should be possible to store, retrieve, and re-apply any pre-processing procedure

possibly defined before training, to the raw data for which predictions should be drawn—in

order to make it acceptable for the predictor as an input.

Validation. Validation is the penultimate step of any ML workflow: it follows the training

and precedes the exploitation. It is here discussed as last because it technically relies on the

capability of drawing predictions via trained predictors—which is treated in the paragraph

above.

Generally speaking, validation attempts to measure the predictive performance of a trained

predictor, with the purpose of assessing if and to what extent it will generalise to new, unseen

data. To this end, the predictor is tested against the test set—that is, a collection of unseen

data, for each expected predictions exist. The discrepancy (or similarity) among the actual and

expected predictions is then measured via ad-hoc scoring functions (a.k.a. measures), resulting

in a performance assessment for the trained predictor. Many measures may be used to assess

classifiers (e.g. accuracy, F1-score, etc.) and as many to assess regressors (e.g. MAE, MSE, R2,

etc.). Hence, to support validation, the logic API for ML should provide predicates to compute

each possible measure.

3.2. ML activities, per phase

Here we elicit the many activities involved in each phase of any ML workflow, and we describe

them from a computational perspective—i.e. in terms of the sorts of entities (a.k.a. data types)

they accept as input or produce as output (manipulate, for short).

Entities. We start our discussion by identifying the five major sorts of entities each activity

may manipulate.

• Value: a scalar, vectorial, matrix, or tensorial datum from a given domain (e.g. integer or

real numbers, or vectors of integer or real numbers, as well as a string, a table, a time

series, etc.).

• Schema: a concise and formal description of a domain (i.e. a set of values). For scalar

values, schemas are essentially data types (e.g. integers, reals, strings, etc.), while for

non-scalar data they carry information about the name, index, and type of each single

scalar component.

• Dataset: a collection of values matching a particular schema (supposed to be known).

• Transformation: any operation aimed at transforming an entity dataset into another other—

commonly, a dataset into either another dataset (e.g. normalization, standardization, etc.)

or a value (e.g. max, min, average, etc.) From an algebraic perspective, it is a function.

From a computational perspective, it is an algorithm.



• Predictor: a stateful computational entity capable of (i) drawing predictions (i.e. outputting

values) out of (possibly unseen) input values, according to its internal state (ii) updating

its internal state according to a dataset (to improve future predictions)

Any logic-based API for ML should support the representation, combination, and manipulation

of entities of these kinds.

Activities. Each phase of the ML workflow is then characterised by a specific set of activities

possibly manipulating entities of any of these sorts. A logic-based API for ML should support

them as well. Accordingly, in the remainder of this section, we describe such activities along

with the entities they operate upon. In doing so, we partition activities w.r.t. the ML phase they

are most commonly exploited into.

Dataset loading. The main activities to support the loading of a dataset into a solver’s memory,

and its preparation for subsequent processing are

• Dataset loading: operation of loading a dataset from either a value – representing either a

local or remote file –, or from a Prolog theory

• Schema declaration: operation of constructing a representation for a given schema

• Target features declaration: operation of tagging a portion of the features of some schema

as either inputs or outputs (a.k.a. targets)

• Dataset splitting: operation of horizontally partitioning a dataset into two or more smaller

datasets.

Dataset pre-processing. Here, they may be willing to define transformations or cascades of

transformations (pipelines, henceforth) to be eventually applied to datasets:

• Transformation declaration: operation of declaratively encoding a transformation opera-

tion to be applied to all data in a dataset

• Pipeline composition: operation of declaratively constructing a composite transformation

as a cascade of simpler transformations

• Transformation application: operation of actually constructing a new dataset from a prior

dataset and a transformation

Predictor selection and definition. The next phase involves the definition of one or more

predictors via a unique meta-activity, namely:

• Predictor declaration: operation of constructing a representation for a particular predictor,

which implies choosing the predictor family and specifying actual values for its hyper

parameters

Training. Eventually, declared predictors may enter the training phase, meaning that their

learning from data should be triggered. This can be achieved via yet another activity, namely:



Figure 1: Layered view of the proposed ML-Lib. An OO library is assumed behind the scenes, providing

high-level abstraction to optimize ML predictors, possibly via HW acceleration.

• Predictor fitting w.r.t. a training set of data: operation of fitting a predictors’ internal

parameter on some provided training data

Inference. Once in their inference phase, trained predictors may eventually be exploited to

draw predictions. The corresponding activity is:

• Predictor querying: operation where (possibly unseen) values are provided to some trained

predictor as a query, and the resulting values are interpreted as predictions

Validation. Finally, in the validation phase, trained predictors should be assessed by measuring

their performance w.r.t. some test data This is yet another meta-activity, with several possible

variants depending on the particular measure being exploited:

• Predictor scoring: operation of computing a scoring value out of a trained predictor, a test

dataset, and a scoring function

4. ML-Lib Overview and Architecture

This section discusses the design of ML-Lib, the logic programming library reifying the logic API

for ML reifying the meta-model discussed above. The overall architecture is depicted in fig. 1.

The ML-Lib assumes a goal-oriented logic solver being in place, where ordinary logic programs

can be executed. Thanks to the ML-Lib, these logic programs may also exploit a number of

predicates for training and using ML predictors—other than any other entity involved in the

process.

In the backend, the library assumes an underlying object-oriented (OO) library providing

high-level ML abstractions, such as datasets, predictors, and so on. Examples of these libraries

may be for instance Keras [12] or DeepLearning4J [9]. The OO library may in turn be backed

by an optimizer taking care of making training and data management effective on the available

hardware—and possibly exploiting hardware acceleration. In practice, software such as Theano,

Caffe, or Tensorflow may serve this purpose. Actual technological choices may finally depend

on the particular runtime platforms being targeted. For instance, targeting the JVM may



Dataset

read_dataset(+Path: atom, +SourceType: atom, -Dataset: ref)
theory_to_dataset(+Functor: atom, -Dataset: ref)

Creation

fold(+Dataset: ref, +K: int, -Train: ref, -Test: ref)
write_dataset(+Dataset: ref, -Path: atom)
theory_from_dataset(+Schema: ref, +Dataset: ref)
row(+Dataset: ref, ?Index: integer, -Record: compound)
column(+Dataset: ref, ?Key: integer|atom, -Values: list)
cell(+Dataset: ref, ?Index: integer, ?Key: integer|atom, -Values: list)
random_split(+Dataset: ref, +Ratio: real, -Train: ref, -Test: ref)

Manipulation

〈functor〉(〈X11〉, ..., 〈X1j〉, ..., 〈X1n〉).
...〈functor〉(〈Xi1〉, ..., 〈Xij〉, ..., 〈Xin〉).
...〈functor〉(〈Xm1〉, ..., 〈Xmj〉, ..., 〈Xmn〉).

Representation

Source Type

source_type(〈T〉)〈T〉∈ {csv, rdbm, ...}

Creation

Schema

theory_to_schema(-Schema: ref)
Creation

schema(?Schema: ref, ?Name: atom, ?Attributes: list, ?Targets: list)
Manipulation

attribute(1, 〈N1〉, 〈T1〉).
...
attribute(i, 〈Ni〉, 〈Ti〉).
...
attribute(n, 〈Nn〉, 〈Tn〉).
schema_name(〈functor〉).
schema_target(〈Nj〉).

Representation

Transformation

schema_transformation(?Schema: ref, ?Transformation: ref)〈name〉(+Tin: ref, 〈Arg1〉, ...,〈ArgN〉, -Tout:: ref)

Creation

fit(+Tin: ref, +Dataset: ref, -Tout: ref)
transform(+Din: compound|ref, +Transformation: ref, -Dout: compound|ref)

Manipulation

Normalization

normalize(+Tin: ref, +Attributes: ref, -Tout: ref)

One Hot Encoding

one_hot_encode(+Tin: ref, +Attributes: ref, -Tout: ref)

Attributes Delete

delete_attributes(+Tin: ref, +Attributes: ref, -Tout: ref)

Predictor

〈predictor〉(〈H1〉, 〈H2〉, ..., -Predictor: ref)
Creation

train(+Pin: ref, +Dataset: ref, +Params: list, -Pout: ref)
predict(+Pin: ref, +Data: compund|ref, -Prediction: compund|ref)
classify(+Prediction: compund|ref, +Strategy: compound, +Classes: list, -Classification: compund|ref)

Manipulation

Classification Strategy

classification(〈S〉)〈S〉∈ {max, threshold(〈T〉), ...}

Creation

Neural Network

network(+Layer: ref, -Network: ref)
Creation

Layer

input_layer(+Size: int, -Layer: ref)
Creation

dense_layer(+Lin: ref, +Size: int, +Activatin: atom, -Lout: ref)
output_layer(+Lin: ref, +Size: int, +Activatin: atom, -Lout: ref)

Manipulation

Activation

activation(〈A〉)〈A〉∈ {identity, relu, sigmoid, tanh, ...}

Creation

Loss

loss(〈L〉)〈L〉∈ {mse, mae, cross_entropy, ...}

Creation

Parameter

〈param〉(〈Value〉)
Creation

Max Epochs

max_epochs(+N: int)
Creation

Batch Size

batch_size(+N: int)
Creation
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Figure 2: Overview of our ML-Lib design. The chart represents the many entities logic programmers

may exploit via our ML-Lib, and the many predicates supporting their creation, manipulation, or

representation. Predicates are depicted with either a yellow diamond in case they are non-deterministic

(a.k.a. backtrackable), or a green circle otherwise.

imply DeepLearning4J to be exploited, while targetting Python may exploit both Keras and

Tensorflow. However, while technological choices are contingent and subject to change, the

overall architecture is meant to support the implementation of the ML-Lib as a façade towards

the underlying OO library, regardless of what it is.

At the functional level, the design of the ML-Lib is provided in terms of logic predicates acting

on the above defined entities. Details about the predicates are provided in the supplementary

material. Figure 2 provides an overview of these predicates, grouped by entities.

5. ML-Lib Examples

Here we discuss the usage of the ML-Lib to serve the purposes described in section 2.

From an LP perspective, our examples assume the existence of a logic solver/language

exploiting some implementation of the ML-Lib. For the sake of simplicity, we assume a Prolog

solver is employed. Examples consist of Prolog scripts, possibly involving standard Prolog

predicates.

From anML perspective, our examples assume a very simple scenario where a neural-network

classifier is trained on the well known Iris dataset [13]. The resulting NN is then exploited to

write a simple hybrid predicate aimed at classifying unseen Iris instances.

Declarative ML. Declarativeness is a key benefit of our symbolic approach to ML. The

ML-Lib supports declarative ML in several ways, as exemplified by listings 1, 2, 3, and 5.

In particular, listing 1 shows how the schema and data entries of the Iris dataset can be

treated in logic. Notably, the Iris data set contains 150 rows describing as many individuals



✞
1 % schema declaration

2 attribute(0, sepal_length, real).

3 attribute(1, sepal_width, real).

4 attribute(2, petal_length, real).

5 attribute(3, petal_width, real).

6 attribute(4, species, categorical([setosa, versicolor, virginica])).

7 schema_target([species]).

8 schema_name(iris).

9

10 % reading schema from theory

11 iris_schema(S) :- theory_to_schema(S).

12

13 % dataset loading

14 iris_dataset(D) :-

15 read_dataset('/path/to/iris.csv', csv, D).

✡✝ ✆

Listing 1: Dataset loading from file

✞
1 % declaring & fitting the preprocessing pipeline

2 preprocessing_pipeline(Dataset, Schema, Pipeline) :-

3 schema_transformation(Schema, Step0),

4 normalize(Step0, [petal_width, petal_length, sepal_width, sepal_length], Step1),

5 one_hot_encode(Step1, [species], Step2),

6 fit(Step2, Dataset, Pipeline).

✡✝ ✆

Listing 2: Pre-processing pipeline

✞
1 % neural network declaration

2 multi_layer_perceptron(Nin, Nhidden, Nout, NN):-

3 input_layer(Nin, IL),

4 hidden_layer(IL, Nhidden, H),

5 output_layer(H, Nout, softmax, O),

6 neural_network(O, NN).

7

8 hidden_layer(L, [], L).

9 hidden_layer(L, [N | M], H) :-

10 dense_layer(L, N, relu, L1), hidden_layer(L1, M, H).

✡✝ ✆

Listing 3: Neural network structure declaration

of the Iris flower. For each exemplary, 4 continuous input attributes – petal and sepal width

and length – are recorded, other than a categorical target attribute—denoting the actual Iris

species. There are three particular species of Iris in this data set – namely, Setosa, Virginica,

and Versicolor –, and the 150 examples are evenly distributed among them—i.e., there are 50

instances for each class. The Prolog script describes the Iris dataset’s schema in clausal form,

as discussed in appendix A.1.1. It also declares two predicates – namely, iris_schema/1 and

iris_dataset/1 – aimed at letting the logic programmer retrieve either the schema or its



dataset in object form. More precisely, iris_schema/1 attempts to read the schema from the

local theory, while iris_dataset/1 attempts the load the dataset from a CSV file. Listing 4

(presented later in this section) reports a similar scenario where the dataset as well is loaded

from the local theory.

Listing 2 exemplifies the declaration of a pre-processing pipeline aimed at normalising the

input attributes of any Dataset having the same Schema of Iris, other than one-hot encoding

its output attributes. The resulting Pipeline is then fitted against the provided Dataset, and

bound to the corresponding output argument.

In turn, listing 3 presents a general purpose predicate aimed at defining multi-layered

perceptron predictors with an arbitrary amount of hidden layers. This is enabled by the

multi_layer_perceptron/4 predicate, which requires the caller to provide the number of

neurons to be instantiated for (i) the input layer (Nin), (ii) the output layer (Nout), and (iii) for

each hidden layer (Nhidden). Notably, Nhidden should consist of a list in integers, denoting

the number of neurons for each hidden layer – from the outermost to the innermost –, while

the total amount of integers corresponds to the number of hidden layers. The resulting neural

network predictor is then bound to the NN output argument. So, for instance, a NN having 4

input neurons, 2 hidden layers with 5 and 7 neurons respectively, and 3 output neurons can be

declared as follows:

multi_layer_perceptron(4,[5, 7],3,NN)

Finally, listing 5 declares an end-to-end ML workflow aimed at selecting and training the best

NN architecture to tackle Iris classification. It is worth noting that the declarative nature of the

script can be regarded as a formal – yet human-readable – specification of a classifier training

workflow.

Symbolic data sources. As highlighted above it may be useful to perform ML upon data

expressed in logic form. This requires logic theories to act as symbolic data sources. ML-Lib

supports such scenario, as exemplified in listing 4. The script is assumed to replace listing 4

in those situations where the Iris dataset is logically described in the clausal form. Here, the

iris_dataset/1 attempts to load the data from the local theory instead of a file.

Model selection via resolution. The automatic exploration of a search space subtended

by logic resolution could be exploited to perform model selection. Indeed, model selection

essentially consists of an exploration of the hyper and learning parameters space, looking for

the best possible values—i.e. those hyper and learning parameters assignments corresponding

to well-performing predictors on the available training set.

Accordingly, the ML-Lib supports expressing and performing model selection in logic (list-

ing 5). There hyper, learning, and workflow parameters are expressed as logic facts, and

the params/2 predicate is defined to enumerate all possible combinations of theirs—e.g. via

Prolog’s backtracking mechanism. The model_selection/5 predicate is in charge of step-

ping through all such parameters with the purpose of selecting, and training all correspond-

ing NN predictors which attain a sufficiently high predictive performance—denoted by the

target_performance/1 fact. For each trained predictor, the predicate outputs not only a



✞
1 /* attributes definition here */

2

3 % dataset definition

4 iris(5.1, 3.2, 1.4, 0.2, setosa).

5 iris(4.9, 3, 1.7, 1.2, versicolor).

6 iris(5.9, 3.4, 1.1, 0.9, virginica).

7 /*... other entries here...*/

8

9 % reading schema from theory

10 iris_schema(S) :- theory_to_schema(S).

11

12 % reading dataset from theory

13 iris_dataset(D) :- iris_schema(S), theory_to_dataset(S, D).

✡✝ ✆

Listing 4: Dataset loading from the local theory

reference to the Predictor itself, but also its Performance, and the affine Transformation

to be applied to each datum for which predictions should be drawn using that predictor. The

predicate model_selection/5 works by

1. splitting the provided Dataset into a TrainingSet and a TestSet, according to a split

ratio (R) declared by the test_percentage/1 fact

2. declaring and fitting a pre-processing Transformation aimed at normalising the

TrainingSet’s input attributes, and one-hot encoding its output attributes

3. applying such Transformation to the TrainingSet, hence producing a

ProcessedTrainingSet

4. stepping through all possible hyper (HyperParams) and learning (LearnParams) pa-

rameters combinations,

5. training each corresponding predictor, via 10-fold cross validation (CV), and computing

its average validation-test performance (P)

6. skipping each hyper and learning parameters combination such that the average perfor-

mance P is lower than the target performance T

7. re-training a full-fledged MLP on the whole TrainingSet, for each parameters combi-

nation such that P >= T

8. testing that MLP against the ProcessedTestSet – obtained by applying

Transformation to the TestSet –, thus computing the MLP actual Performance

In other words, the model_selection/5 represents a declarative, and pretty general, workflow

for model selection—which may be adapted to other supervised learning tasks with minimal

changes. Further details about the many predicates exploited in this example are provided in

the supplementary material.



✞
1 /* Hyper paramenters */

2 hidden_layers([10]). hidden_layers([20, 10]).

3 hidden_layers([30, 20, 10]).

4

5 /* Learning paramenters */

6 max_epochs(30). max_epochs(50).

7 batch_size(32). batch_size(16).

8 learning_rate(0.01). learning_rate(0.1).

9 loss(cross_entropy).

10

11 /* Workflow paramenters */

12 target_performance(0.90). test_percentage(0.2).

13

14 /* Generates all hyper & learning params combinations */

15 params(

16 [hidden_layers(H)],

17 [iterations(X), learning_rate(Y), batch_size(Z), loss(L)]

18 ) :- hidden_layers(H), max_epochs(X), learning_rate(Y),

19 batch_size(Z), loss(L).

20

21 /* Generates and trains all Predictors for the given Dataset and Schema,

22 whose Performance is at least target_performance. */

23 model_selection(Dataset, Schema, Predictor, Transform, Performance) :-

24 test_percentage(R), target_performance(T),

25 random_split(Dataset, R, TrainSet, TestSet),

26 preprocessing_pipeline(TrainSet, Schema, Transform),

27 transform(TrainSet, Transform, ProcessedTrainSet),

28 params(HyperParams, LearnParams),

29 train_cv(ProcessedTrainSet, HyperParams, LearnParams, P),

30 P >= T,

31 multi_layer_perceptron(4, HyperParams, NN),

32 train(NN, TrainingSet, LearnParams, Predictor),

33 transform(TrainSet, Transform, ProcessedTestSet),

34 test(NN, ProcessedTestSet, Performance).

35

36 /* Example of training query: */

37 ?- iris_dataset(D), iris_schema(S), model_selection(D, S, P, _, A).

✡✝ ✆

Listing 5: Declarative description of a ML workflow aimed at selecting the best hyper and learning
parameters for a NN classifier. Ancillary predicates invoked in this snippet are reported in
the supplementary material.

Under these hypotheses, a model selection workflow for the Iris dataset may be triggered via

a concise logic query such as the one from listing 5 (line 37). If all aspects of the model selection

workflow are correctly declared, the query provide multiple successful solutions corresponding

to all trained predictors (P) and their test-set accuracies (A).

Hybrid reasoning. Finally, listing 6 shows the exploitation of a trained NN predictor as a

predicate aimed at classifying (possibly) unseen instances of the Iris flower. The script serves a



✞
1 /* assumption: */

2 :- iris_dataset(D), iris_schema(S), model_selection(D, S, N, T, _), !,

3 assert(iris_nn(N, T)).

4

5 /* hybrid iris classifier */

6 iris(SL, SW, PL, PW, Species) :-

7 iris_nn(Network, Transformation),

8 transform([SL, SW, PL, PW] , Transformation, ActualX),

9 predict(Network, ActualX, Y),

10 classify(Y, argmax, [setosa, versicolor, virginica], Species).

✡✝ ✆

Listing 6: Exploitation of the NN classifier trained in listing 5 to create an hybrid predicate

✞
1 iris(SL, SW, PL, PW, setosa) :- PW =< 0.78.

2 iris(SL, SW, PL, PW, versicolor) :- PL >= 2.86, PL < 4.91.

3 iris(SL, SW, PL, PW, virginica).

✡✝ ✆

Listing 7: A purely symbolic classifier for Iris flowers, functionally equivalent to the hybrid one from
listing 6

twofold purpose: it exemplifies the ML-Lib functionalities aimed at drawing predictions out of

trained ML predictors, and, in particular, it provides an example of an hybrid reasoner—where

symbolic and sub-symbolic AI seamlessly interoperate.

The script assumes a fact of the form iris_nn(N, T) is available into the solver’s KB,

storing a reference to a trained NN predictor (N) and to the affine transformation (T) to be

applied to each datum the predictor should be fed with. Such assumption may be satisfied, in

Prolog, by a query such as the one from listing 6 (line 2) which selects and trains a single NN

and stores it into the solver’s dynamic KB.

Under such assumption, logic programmers may write an iris/5 predicate such as the one

shown in listing 6. The predicate allows the caller to classify Iris instances by triggering a

previously trained NN, and by letting it draw predictions on the data row attained by composing

the predicate’s arguments—via the predict/3 predicate. The prediction is then converted

into a class constant – via the classify/4 predicate –, which is in turn bound to the output

parameter of iris/5—namely Species.

It is worth to be highlighted that, from the caller perspective, the iris/5 described so

far is indistinguishable from a purely symbolic predicate serving the same purpose (i.e., Iris

classification) and having the same name and arity—such as the one described in listing 7.

6. Conclusions

In this paper, we propose a logic API supporting the seamless integration of logic solvers

with sub-symbolic AI, and, in particular neural-network-based supervised ML. Stemming

from a domain analysis aimed at identifying the major computational entities involved in

a supervised ML workflow, we design our API in terms of computational entities and the



operations/functionalities they should support. We then reify our API into a set of logic

predicates composing the ML-Lib—i.e., an abstract logic library that any goal-oriented solver

may support, there including Prolog ones. Both the syntax and the semantics of each predicate

are discussed, as well as architectural and technological requirements. Finally, we provide a

number of usage examples aimed at showing the potential of the ML-Lib. In particular, we

discuss examples where our logic API supports declarative ML (possibly from symbolic data

sources), model selection via resolution, and hybrid reasoning. Indeed, the ML-Lib enables the

user to formally define ML workflows in a way that is both human- and machine-interpretable,

focussing on what should be done, rather than how.

Hybrid reasoning, in particular, is the most relevant contribution of ours. It consists of the

seamless integration of logic and sub-symbolic AI at the functional level. In fact, thanks to our

ML-Lib, trained sub-symbolic predictors may be used in LP as ordinary predicates.

In the future, we expect contributions to stem from our ML-Lib along two different research

threads. The first thread concerns the exploitation of the ML-Lib to create hybrid systems,

where LP and ML are integrated into manifold ways. This is made possible by our logic API

for ML, which reduces the abstraction gap among LP and ML, as well as the ML-Lib, which

lowers the technological barriers preventing the integration of symbolic and sub-symbolic AI.

The second thread concerns the extensions of the ML-Lib, which should be eventually delivered

to cover currently unsupported functionalities—as well as other ML predictors than NN.
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A. Supplementary Material

A.1. Realising the API: ML-Lib Design

In the reminder of this section, we adopt the following notation to denote the interfaces of logic

predicates:

functor(⊙1 Name1: type1, . . . , ⊙N NameN: typeN)

where N denotes the arity of predicate functor/N , whose ith argument – named Namei –

must be of type typei, and it must be considered as an input or output parameter depending on

the mode indicator1⊙i. So, for instance, we denote input parameters by +, output parameters

by -, and input-output parameters by ?. Admissible arguments types include constant term

types (integer, real, atom), structured term types (compound, list), as well as references

(ref), and union types (T1|T2|. . .). References, in particular, are a special kind of constant

term, whose instances represent objects from the object-oriented realm. These are necessary to

make our ML-Lib able to operate with the non-logic entities exposed by the underlying OO

library supporting ML.

Accordingly, in the reminder of this section, we enumerate the predicates constituting our

ML-Lib, categorised w.r.t. the entities they act upon. In particular, the ML-Lib exposes predicates

covering 4 major sorts of entities – i.e. the ones elicited in section 3.2, namely: Schema, Dataset,

Transformation, and Predictor –, plus a number of ancillary entities aimed at supporting their

manipulation – such as Classification Strategy, Source Type, and Parameter – or specialising

their behaviour—such as Neural Network, and Layer.

A.1.1. Schemas

Schemas are concise metadata describing datasets’ columns. They define their indexes, names,

and admissible types, and they are assumed to be declared by the user.

The ML-Lib supports schemas represented as any of two forms: either as clauses or as

objects—to be represented in LP via reference terms. Ad-hoc predicates are provided to support

the conversion from one form to the other.

Schemas as clauses. In the general case, schema declarations are firstly provided by the user

in clausal form. This requires the user to fill the logic theory with clauses of the form:

attribute(1, N1, T1).

...

attribute(i, Ni, Ti).

...

attribute(n, Nn, Tn).

schema_name(N).

schema_targets([Nj, Nk, . . ., Nh]).

1cf.https://www.swi-prolog.org/pldoc/man?section=preddesc

cf. https://www.swi-prolog.org/pldoc/man?section=preddesc


where N is the name of the schema, and n is the total amount of attributes declared for that

schema, whileNi is the name of the ith attribute, and Ti is its type. Indexes j, k, h ∈ {1, . . . , n}
aim at selecting attributes names declared as targets—i.e. as outputs of the learning process.

While attribute (Ni) and schema (N ) names are simple atoms, attribute types (Ti) are compound

terms for which the attribute_type(Ti) holds true.

The attribute_type/1 predicate is defined as follows:

attribute_type(string).

attribute_type(integer).

attribute_type(real).

attribute_type(boolean).

attribute_type(categorical([_ | _])).

attribute_type(ordinal([_ | _])).

Hence, admissible attribute types involve infinite domains such as the numeric (either integer

or real numbers), and strings ones, as well as finite domains such as booleans, and categorical

(i.e. unordered) or ordinal sets of constant values.

Schemas as objects. To be exploitable by the underlying OO library, schemas must be

represented as objects. Schemas represented in clausal form can be converted into object form

via the following predicate:

theory_to_schema(-Schema: ref)

which (i) inspects the current KB looking for a schema description in clausal form, (ii) instantiates

a new schema object in the underlying OO library, (iii) creates a new reference term referencing

the newly created schema, (iv) unifies that term with the output parameter denoted by Schema.

References to schemas in object form may be then passed as arguments to many other

predicates from the ML-Lib in order to provide them the necessary metadata to manipulate

datasets.

Manipulating schemas. A part from schema declaration or creation, other relevant opera-

tions over schemas involve the inspection (i.e. reading) of their components—namely, names,

attribute names, attribute types, and targets. This can be achieved via the following predicate:

schema(?Schema: ref, ?Name: atom, ?Attributes: list, ?Targets: list)

Given a schema reference, the predicate retrieves (i) the schema’s name, which is unified with

Name, (ii) the list schema attributes – where each attribute has the form attribute(i, Ni,

Ti) –, which is unified with Attributes, and (iii) the list of schema targets – where each

target is an atom acting as attribute name –, which is unified with Targets. Notably, the

predicate is bi-directional and its arguments can act as either input or output parameters. In

case an unbound Schema variable is provided as output parameter, and assuming that the Name,

Attributes, and Targets parameters are fully instantiated, the schema/4 predicate acts as

yet another way to create a schema in object form—and the newly created schema is bound to

Schema.



A.1.2. Datasets

A dataset is a tabular representation of a bunch of homogenous data records. As such, a dataset

is characterised by a schema and a number of records matching that schema.

Similarly to what it does for schemas, the ML-Lib supports datasets represented as either

clauses or objects. Ad-hoc predicates are provided to support the conversion from one form to

the other, other than for loading datasets from some data source, such as a file or a DBMS.

Datasets as objects. In the general case, datasets objects are firstly loaded from a data source.

These may be local or remote files – commonly in “comma separated values” (CSV) format –,

as well as DBMS of any sort—provided that adequate connection support is provided by the

underlying OO library, or any other third-party module. The ML-Lib provides a unique entry

point to load a dataset from any data source, namely:

read_dataset(+Location: atom, +SourceType: atom, -Dataset: ref)

This predicate aims at loading the dataset from a given Location—be it a path on the local

filesystem, a URL referencing some remote resource, or a connection string for some DBMS. It

also requires the caller to specify the SourceType the dataset should be read from. Regardless

of the particular location and source type, the behaviour of the read_dataset/3 predicate is

such that: (i) raw data is retrieved from Location, and (ii) parsed according to the selected

source SourceType; finally (iii) a new dataset object is created along with a reference term for

it, (iv) which is then unified with Dataset.

Admissible values for the SourceType parameter are determined by the source_type/1

predicate, defined as follows:

source_type(csv).

meaning that currently the ML-Lib only supports data provisioning from CSV files. However,

further source types are going be supported in the future. That will imply extending the

source_type/1 predicate definition with further cases.

Datasets as clauses. Logic programmers may also be willing to describe the dataset via a

logic theory. When this is the case, the theory should contain not only the clauses describing the

schema (i.e. the dataset’s columns), but also a number of clauses describing the actual content

of the dataset (i.e. its rows). In particular, the ML-Lib expects data entries to be provided as

clauses of the form:

N(X1,1, . . . , X1,j, . . . , X1,n).

...

N(Xi,1, . . . , Xi,j, . . . , Xi,n).

...

N(Xm,1, . . . , Xm,j, . . . , Xm,n).



where N is the schema name declared via schema_name/1, and Xi,j is the value of the j
th

attribute of the ith data entry. Of course, the actual type of Xi,j must be coherent with the

formal type Ti declared in the schema definition.

Datasets in clausal formmust be converted into object form to be exploitable by the underlying

OO library. This can be achieved via the following predicate:

theory_to_dataset(+SchemaName: atom, -Dataset: ref)

which (i) inspects the current KB looking for one or clauses using SchemaName as the head

functor, (ii) instantiates a new dataset object in the underlying OO library, (iii) populates it with

as many rows as the aforementioned clauses, (iv) creates a new reference term referencing the

newly created dataset, (v) unifies that term with the output parameter denoted by Dataset. Of

course, this predicate also takes into account the schema-related metadata which are assumed

to be defined in clausal form as well.

Datasets manipulation. Datasets are amongst the basic bricks of predictors training in ML,

hence they must support several kinds of manipulations. Within the scope of the ML-Lib, we

support partitioning a dataset in several ways to support both cross validation and test set

separation, other than accessing a dataset by row, column, or cell. Conversions from and into

clausal form complete the picture.

Splitting. To support test set separation, the ML-Lib provides a predicate to randomly split a

dataset into a training and test set, given a ratio:

random_split(+Dataset: ref, +Ratio: real, -Train: ref, -Test: ref)

Given a reference to a Dataset in object form, and a Ratio – i.e. a real number in the range

]0, 1[ –, the predicate (i) randomly samples the given percentage of data entries from Dataset,

(ii) collects them into a new dataset, whose reference is bound to Test, and (iii) collects the

remaining data entries into yet another dataset, whose reference is bound to Train. So, for

instance, a ratio of 0.1 would randomly split the dataset into a training set containing 90% of

the original data, and a test set containing 10% of the original data.

To support cross validation, ML-Lib provides an ad-hoc predicate:

fold(+Dataset: ref, +K: integer, -Train: ref, -Validation: ref)

which splits the Dataset into 2 partitions, namely Train and Validation, the former contain-

ing k−1

k
% data entries – to be used as the training set –, and the latter containing the remaining

1

k
% data entries—to be used as the validation set. Both Train and Validation are bound to

reference terms, referencing datasets in object form. Notably, the fold/2 is non-deterministic

as it enumerates all possible folds of a K-fold cross validation process. Hence, provided that

K ≥ 2, the predicate computes K partitioning of the original dataset.

Data access. The ML-Lib supports accessing the information encapsulated into a dataset in

object form via three predicates, namely:

• row(+Dataset: ref, ?Index: integer, -Values: list).

• column(+Dataset: ref, ?Attribute: integer|atom, -Values: list).



• cell(+Dataset: ref, ?Index: integer, ?Attribute: integer|atom,

-Values: list).

They are all non-deterministic, and they both support the retrieval of a particular row / column

/ cell from the dataset as well as the enumeration of all possible rows / columns / cells from that

dataset.

In particular, predicate row/3 aims at retrieving rows. If the Index parameter is a positive

integer, then the predicate attempts to unify the Value parameter with the list of values

contained the Indexth row of the dataset. Otherwise, if Index is uninstantiated, the predicate

enumerates all rows in the dataset, and for each row it unifies the Index and Values parameters

accordingly.

The predicate column/3 is totally analogous to row/3, expect it aims at retrieving or enu-

merating columns. The only notable difference w.r.t. row/3 is that columns can be referenced

by either attribute names or indexes—thus both positive integers and atoms can be bound to

the Attribute parameter.

Finally, predicate cell/4 supports accessing or enumerating cells. In particular, it allows

the user to access the Value in position (Index, Attribute), where Index is a row index in

and Attribute is an attribute name or index. If one or both parameters are uninstantiated,

the predicate enumerates all possible assignments.

Object to clausal form conversion. The logic programmer may also be willing to convert a

dataset in object form into a dataset in clausal form. This can be attained via the following

predicate:

theory_from_dataset(+Schema: ref, +Dataset: ref)

Given the references to both a dataset and its schema in object form, the predicate populates

the solver’s dynamic KB with the a number of clauses representing the dataset and its schema

in the clausal form described above.

A.1.3. Transformations

A transformation is a function altering a dataset and, possibly, its schema. It may be parametric

and hence tuned according to the content of the dataset or its schema.

Consider for instance the case of the “Normalization” transformation. It applies an affine

transformation to each column of the dataset (independently) in such a way that it has a

predefined mean (e.g. 0) and standard deviation (e.g. 1). Hence, it alters the content of a dataset

leaving its schema unaffected. To work properly, it requires two major computational steps,

namely (i) computing (and storing) the mean and standard deviation of each column of the

original dataset, (ii) applying the affine transformation to normalize the dataset columns (i.e.

subtracting the mean and dividing by the standard deviation each cell of each column).

In the general case, transformations are modelled as stateful entities supporting at least 2

operations, namely fitting and transforming a dataset and its schema. The latter operation is also

known as “applying a transformation to a dataset”, and it should not only support the retrieval

of the transformed dataset, but the transformed schema as well. Furthermore, transformations



should be composable into pipelines, i.e. cascades of simpler transformations to be fitted or

applied in a row.

To support all such aspects, the ML-Lib provides predicates aiming to

1. create a transformation given a schema,

2. combine elementary transformations into composite transformations,

3. fit transformations over data (regardless of whether they are elementary or composite),

4. apply composite or elementary transformation to a dataset, thus attaining a new dataset,

5. retrieve the new schema resulting from a transformation application.

Differently from schemas and datasets, for which the ML-Lib supports both clausal and object

representations, transformations are only representable in object form, hence the following

predicates assume transformations to be manipulated via reference terms.

Transformations to/from schemas. To support aims 1 and 5, the ML-Lib provides the

following bi-directional predicate:

schema_transformation(?Schema: ref, ?Transformation: ref)

which changes its behaviour depending on which arguments are instantiated.

In particular, if Schema is bound to a schema object, then Transformation is unified with

an identity transformation – i.e. a transformation leaving the schema and the dataset unaffected

–, which can be used as the initial step of a composite pipeline. This is how aim 1 is served.

Conversely, if Transformation is bound to an actual transformation object, then Schema

is unified with the new schema object attained by applying that transformation to the schema

it was originally constructed from. This is how aim 5 is served.

Creating and combining elementary transformations. To support aim 2, the ML-Lib

provides a number of predicates sharing a similar syntax. Each predicate is in charge of

creating a composite transformation by appending a specific elementary transformation

to some previously created one—like, for instance, the identity transformation created via

schema_transformation/2.

In the general case, the combination and creation of transformations is attained via predicates

of the form:

⟨name⟩(+Pipelinein: ref, +A1, . . . , +An, -Pipelineout: ref)

where ⟨name⟩ is the name of the transformation being appended to Pipelinein, while

A1, . . . , An are transformation-specific parameters, and Pipelineout is the output param-

eter to which the newly created transformation is bound.

The ML-Lib currently supports 3 predicates of this sort, and further ones may be defined

following the same syntactical convention. These are normalize/3, one_hot_encoding/3,

and attributes_delete/3, and their details are described later in this paragraph. Here

we focus on the overall design which is aimed at supporting the declaration of pipelines of

transformations, via conjunctions of goals:



theory_to_schema(OriginalSchema),

schema_transformation(OriginalSchema,T0),

transformation1(T0, arg1, T1),

...

transformationm(Tm−1, argm, Tm),

schema_transformation(FinalSchema, Tm)

Following this convention, logic programmers may declaratively construct the pipeline of

transformations to be applied to OriginalSchema to produce FinalSchema, in such a way

that each variable Ti, for i ∈ {0, . . . ,m} is bound to an object summarising all transformation

steps from 0 to i.
Normalization. A dataset’s columns can be normalised in such a way that, for each column,

the mean is 0 and the standard deviation is 1. Such kind of transformations may alter the dataset

while leaving its schema unaffected. A normalization transformation can be created via the

following predicate:

normalize(+Pipelinein: ref, +Attributes: list|atom, -Pipelineout: ref)

There, parameter Attributes must be bound to either a list of attribute names or indexes –

denoting the columns to be normalized –, or the ‘all’ atom—denoting a situation where all

columns should be normalized.

One Hot Encoding. A dataset’s target attributes whose type are categorical with k-admissible

values can be replaced by k binary attributes, via one-hot encoding (OHE) transformations.

Such kind of transformations alter both the dataset and its schema. A OHE transformation can

be created via the following predicate:

one_hot_encode(+Pipelinein: ref, +Attributes: list|atom, -Pipelineout:

ref)

There, parameter Attributes must be bound to a list of attribute names or indexes denoting

the columns to be one-hot encoded.

Attributes Deletion. Columns may be dropped from a dataset and its schema via attribute

deletion transformations. Such kind of transformations alter both the dataset and its schema.

An attribute deletion transformation can be created via the following predicate:

one_hot_encode(+Pipelinein: ref, +Attributes: list|atom, -Pipelineout:

ref)

There, parameter Attributes must be bound to a list of attribute names or indexes denoting

the columns to be dropped.

Fitting transformations to data. To support aim 3, the ML-Lib provides the following

predicate:

fit(+Transformationin: ref, +Dataset: ref, -Transformationout: ref)



which works by tuning Transformationin over Dataset, producing a new transformation,

whose reference is unified with Transformationout.

The new transformation may be identical to the input one, in case the latter does not require

tuning—such as in the case of OHE. Conversely, in case it does need tuning – as in the case

of normalization –, the output transformation may actually be different than the original

one. Fitting a composite transformation of course has the effect of fitting all its components,

recursively.

Applying transformations to data. Finally, to support aim 4, the ML-Lib provides the

following bi-directional predicate:

transform(?Datain: ref|compound, +Transformation: ref, ?Dataout:

ref|compound)

which can either apply a transformation or its inverse depending on either entire datasets or

their rows, depending on how arguments are passed.

In particular, Datain and Dataout can be either dataset references, or compound terms,

denoting single rows. Of course, applying a (possibly inverse) transformation to a row (resp.

entire dataset) shall produce a row (resp. entire dataset) in return.

The predicate applies Transformation to Datain in case the latter parameter is instan-

tiated, unifying the transformed result with Dataout. Conversely, it applies the inverse of

Transformation to Dataout in case the Datain parameter is uninstantiated while the former

is not. When this is the case, the transformed result is unified with Datain.

A.1.4. Predictors

Predictors are stateful entities which can be trained over a dataset to later draw predictions on

new data matching the same schema. In the general case, all predictors may require a number

of hyper parameters to be specified upon creation, and a number or learning parameters to be

provided upon training. Both kinds of parameters aim at regulating the predictor behaviour,

either in general or during training, and their actual values must be decided by the user.

Given the large number of possible predictors from the data science literature, the ML-Lib just

fixes the syntactical convention to support predictors creation, other than the API to support

both training and drawing predictions. Notably, as for transformations, the ML-Lib assumes

predictors to be represented in object form, and therefore manipulated via reference terms.

Creating predictors. The ML-Lib constrains predictor-creating predicates to comply to the

following syntactical convention:

⟨name⟩(+H1, . . . , +Hn, -Predictor: ref)

where ⟨name⟩ is the name of the predictor type being instantiated, while H1, . . . , Hn are

predictor-type-specific hyper-parameters, and Predictor is the output parameter to which

the newly created predictor is bound.



The ML-Lib currently supports one predicate of this sort – namely, the neural_network/2

predicate, described later in this section –, yet further ones may be defined following the same

syntactical convention.

Training. Regardless of their nature, predictors can be trained on data via the following

predicate:

train(+Predictorin: ref, +Dataset: ref, +Params: list, -Predictorout:

ref)

The predicate accepts Predictorin as the predictor to be trained, the Dataset it should

be trained upon, and a list of predictor-specific Params. Behind the scenes, the predicate

exploits a predictor-specific learning algorithm to train Predictorin, possibly following the

suggestions/constraints carried by Params. Once the training has been completed, a reference

to the trained predictor is bound to Predictorout, and the execution of the predicate succeeds.

Learning Parameters. The Params argument of train/4 must be instantiated with a list of

learning parameters aimed at controlling and constraining the execution of a learning algorithm.

In the general case, each parameter is a term of the form:

⟨name⟩(⟨value⟩)

where ⟨name⟩ is a functor describing the purpose of the parameter, while ⟨value⟩ is an arbitrary

term acting as value for the parameter.

In the particular case of neural networks, theML-Lib admits the following learning parameters

• max_epochs(N: integer) limiting the amount of epochs2 to be performed while

training a NN;

• batch_size(N: integer) defining the amount of training samples to be taken into

account in each single step of the learning algorithm;

• learning_rate(R: real) defining the step size in a gradient descent learning process;

• loss(Function: atom) dictating which loss function should be optimised during

training (admissible values include: mse for mean squared error, mae for mean absolute

error, cross_entropy, etc.)

Other sorts of learning parameters may be added to the ML-Lib, targeting both NN or other

sorts of predictors.

Drawing predictions. Regardless of their nature, trained predictors can be exploited to draw

predictions from data – e.g. from a whole dataset or a single row –, via the following predicate:

predict(+Predictor: ref, +InputData: ref|compound, -Prediction:

ref|compound)

2i.e., the amount of times the learning algorithm works through the entire training dataset



The predicate accepts a Predictor (which must have been previously trained via train/4),

and some InputData – which may either be reference to a dataset object, or a compound term

denoting a single row –, and uses the Predictor to compute a prediction for each data entry

in InputData. Predictions may consist of either a single row or a whole dataset, depending on

how many data entries are contained in InputData. In both cases, the Prediction output

parameter is unified with the predicted row/dataset.

In case InputData is bound to a full dataset including one or more target columns, those

target columns are ignored while computing predictions. Conversely, when InputData is

bound to a list of values, the ML-Lib considers them all as input values.

Classification. Asmany predictors – there including NN – are technically tailored on regression

tasks (where predicted values are real numbers), it is a common practice for data scientists

to map classification tasks (where predicted values are categorical) onto regression tasks, to

make it possible to address them via regressors. The mapping commonly works as follows.

A classification task requiring input data to be classified according to k ∈ N≥0 classes, can

be conceived as a regression aimed at predicting continuos vectors y ∈ R
k from the same

input data. Given a particular input datum x, and the corresponding prediction y, the ith

component of y – namely, yi – could then be interpreted as the confidence of x being classified

as an example of the ith class. Depending on the nature of the classification task at hand, the

confidence values in y could be jointly interpreted following several strategies. In a situation

where classes are mutually exclusive, one may use function argmaxi(yi) to select the most

likely class of x. Otherwise, if classes can overlap, one choose a confidence threshold θ and

classify x according to all those classes i such that yi ≥ θ.
The ML-Lib supports classification out of regressors via the following predicate:

classify(+Prediction: ref|compound, +Strategy: compound, +Classes:

list, -Classification: ref|compound)

which accepts a Prediction computed via predict/3 – be it a single row or a whole dataset

–, a classification Strategy, a list of Classes, and an output parameter, Classification,

which is bound to a container for as many categorical predictions as in Prediction.

Notably, while the Classes parameter must consist of a list of (at least 2) class names,

admissible values for the Strategy parameter are determined by the classification/1

predicate, defined as follows:

classification(argmax).

classification(threshold(Th)) :- numeric(Th).

meaning that currently the ML-Lib only supports classification via the argmax or threshold-

based strategies—despite further strategies may be added following the same syntactical nota-

tion.

Assessing Predictions. Predictors can be assessed by comparing their actual predictions with

a test dataset containing expected predictions, having no overlap with the data used during

training. Several scoring functions can be used to serve this purpose, like, for instance mean

squared/absolute error (MSE/MAE) or R2 for regressors, as well as accuracy, recall, or F1-Score

for classifiers.



The ML-Lib supports assessing a predictor via a number of predicates following the same

syntactical convention:

⟨name⟩(+Actual: ref|list, +Expected: ref|list, -Score: real)

where ⟨name⟩ is the name of the scoring function of choice, Actual is either a dataset or a list

containing the actual predictions produced by the predictor under assessment, Actual is either

a dataset or a list containing the test data, and Score is the output parameter to be unified with

the score value computed whenever the predicate is executed.

Notable cases of scoring functions are, for instance: mse/3, mae/3, r2/3, accuracy/3,

recall/3, or f1_score/3, while further ones may be added following the same syntactical

convention.

A.1.5. Neural Networks

Neural networks are a particular sort of predictor. They consist of directed acyclic graphs

(a.k.a. DAG) where vertices are elementary computational units called neurons, and edges (a.k.a.

synapses) are weighted.

Topologically, neural networks are organised in layers, and data scientists design them by

specifying (i) how many layers compose the network, (ii) how many neurons compose each

layer, (iii) which activation function is used by each layer – and therefore by each neuron

therein contained –, and (iv) how are layers – and therefore their neurons – interconnected

with their predecessors and successors in the DAG. Hence, a NN’s hyper-parameters should

provide information about such aspects.

The ML-Lib provides the following predicate to construct NN-like predictors:

neural_network(+Topology: ref, -Predictor: ref)

There, Topology is a reference to an object describing the overall architecture of the network,

and, in particular its layers.

Layers. Layered architectures are commonly composed by at least one input layer – whose

neurons simply mirror the input data –, and one output layer—whose neurons’ output values

jointly represent the NN prediction. In the between an arbitrary amount of layers of different

sorts may be defined—e.g. dense, convolutional, pooling, etc. In all such cases, declaring a layer

implies specifying its sort, size (in terms of neurons), and activation function.

The ML-Lib supports the declaration of layered architectures similarly to how it supports

pipelines of transformations. There are two major sorts of predicates to serve this purpose:

• input_layer(+Size: integer, -Layer: ref).

• ⟨type⟩_layer(+Previous: ref, +Size: integer, +Activation: ref,

-Layer: ref).

The former predicate, input_layer/2, aims at creating a Layer of a given Size. The size

should match the amount of input attributes in the training dataset. This is the entry point of

any cascade of predicates aimed at creating a layered architecture.



Conversely, the latter predicate pattern, ⟨type⟩_layer/4 is matched by a number of actual

predicates aimed at creating intermediate or output layers. There ⟨type⟩ denotes the type of
the layer. Regardless of their type, these predicates accept a reference to some Previous layer,

whose output synapses are connected to the layer under construction, in a way which depends

by its type. They also accept the Size of the layer to be constructed, and the Activation

function its neurons should employ. Finally, they all accept an output parameter, Layer, to

which a reference to the newly created layer is bound, in case creation succeeds.

The dense_layer/4 predicate is a notable case matching the aforementioned pattern. It

aims at declaring a layer whose neurons are densely connected with its predecessor’s ones—in

the sense that, each neuron of the predecessor has an outgoing synapsis towards each neuron of

the dense layer. Layers of such a sort are commonly exploited as intermediate. Conversely, layers

declared via the output_layer/4 predicate – again matching the aforementioned pattern –

are commonly final in any well formed NN architecture.

So, for instance, an ordinary multi-layered perceptron (MLP) composed by 1 input layer with

4 neurons, 1 hidden layer with 7 neurons, and 1 output layer with 3 neurons, where all neurons

exploit the sigmoid activation function, can be declared as follows:

input_layer(4, I),

dense_layer(I, 7, sigmoid, H),

output_layer(H, 3, sigmoid, O),

neural_network(O, NN)

There variable I is bound to the input layer, variable H is bound to the hidden layer, and O

is bound to the output layer, whereas NN is bound to a MLP predictor whose architecture

comprehends I, H, and O.

Activation Functions. The behaviour of neurons should be finely tuned via their activation

function. Indeed, all layer-creating predicates of the form ⟨type⟩_layer/4 expect an activation

function to be provided by the user. Admissible activation functions are regulated by the

activation/1 predicate, defined below:

activation(identity). denoting f(x) = x
activation(sigmoid). denoting f(x) = 1/(1 + e−x)
activation(tanh). denoting f(x) = tanh(x)
activation(relu). denoting f(x) = max (0, x)

while others may be possibly added.

B. Model selection: further details

The model selection example discussed in section 5 and formally described in listing 5 re-

lies upon a number of ancillary predicates declaring some particular steps of the workflow

and exemplifying many ML-Lib functionalities. These are reported in listing 8. For instance,

train_cv/4 is in charge of performing 10-fold CV on a given Dataset, to assess a given

HyperParams–LearnParams combination, to then compute the AveragePerformance of

the 10 predictors constructed in this way. Every single fold of a K-fold CV process is managed



✞
1 /* Trains a NN multiple times, over Dataset, using the provided Params. */

2 /* Returns the AveragePerformance over a 10-fold CV. */

3 train_cv(Dataset, HyperParams, LearnParams, AveragePerformance) :-

4 findall(

5 Performance,

6 train_cv_fold(Dataset, 10, HyperParams, LearnParams, Performance),

7 AllPerformances

8 ),

9 mean(AllPerformances, AveragePerformance).

10

11 /* Trains a NN once, for the k-th round of CV. */

12 /* Returns the Performance over the k-th validation set. */

13 train_cv_fold(Dataset, K, HyperParams, LearnParams, Performance) :-

14 fold(Dataset, K, Train, Validation),

15 train_validate(Train, Validation, HyperParams, LearnParams, Performance).

16

17 /* Tranis a NN on the provided TrainingSet, using the provided Params, */

18 /* and computes its Performance over the provided ValidationSet. */

19 train_validate(TrainingSet, ValidationSet, HyperParams, LearnParams, Performance) :-

20 multi_layer_perceptron(4, HyperParams, 3, NN),

21 train(NN, TrainingSet, LearnParams, TrainedNN),

22 test(NN, ValidationSet, Performance).

23

24 % Computes the Performance of the provided NN against the provided ValidationSet

25 test(NN, ValidationSet, Performance) :-

26 predict(NN, ValidationSet, ActualPredictions),

27 accuracy(ActualPredictions, ValidationSet, Performance).

✡✝ ✆

Listing 8: Ancillary predicates used in listing 5. Each predicate denotes one particular step of a model
selection workflow

by the train_cv_fold/5 predicate, which in turn exploits train_validate/5 predicate

to train and validate every single predictor. Finally, the test/3 predicate can be exploited to

either test or validate a predictor depending on whether the test or validation set is provided as

an argument.
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Abstract
Agents and Multi-Agent Systems (MAS) are a technology that has many fields of application, which

extend also to human sciences and where Computational Logic has been widely applied. In this paper, we
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1. Introduction

Agents and Multi-Agent Systems are a technology that has many fields of application, which

extend also to human sciences (cf., e.g., the recent book [1]). The applications of Computational

Logic in the field of agents and MAS are several, as can be seen in the surveys [2, 3] (the latter

being very recent). Logic is, in fact, often used to model such kind of systems, as it (at least

potentially) provides verifiability and explainability. In this paper, we join together two of our

long-lasting lines of work in this field.

The first one [4, 5, 6] was aimed at introducing a treatment of time in agents, so that, upon

reception of new perceptions that led to acquire new beliefs, the agent would not have to override

old beliefs, but rather to update the time interval where they resulted to hold. In order not to

restrict the application of our approach only to certain agent-oriented frameworks, we defined

in [6] a “time module” suitable to add time in an easy way into many logic representations of

agents. This module is in practice a particular kind of function, that we called T , that assigns a

“timing" to atoms, in terms of either single instants or time intervals. We drew inspiration for this

work from methods to design agent memorization mechanisms inspired, in turn, by models of

human memory [7, 8], that have been developed in cognitive science.

The second line of work [9, 10, 11] has been aimed to formally model via epistemic logic

(aspects of) the group dynamics of cooperative agents. Our overall objective has been to devise
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agent-oriented logical frameworks that allows a designer to formalize and formally verify Multi-

Agent Systems, modelling the capability to construct and execute joint plans within a group of

agents. We devote a special attention on explainability, in the perspective of Trustworty AI: to

enable human-level explanations to be generated, the syntax of our logic is especially devised

to make it possible to transpose a proof into a natural language. All along, we have taken into

particular account the connection between theory and practice, so as to make our logic actually

usable by a system’s designers. So, we care about aspects related to enabling and performing

physical actions, and to agent’s memory of the action performed, where those aspects are often

neglected in related work. We have proposed in particular a framework called the Logic of

“Inferable” L-DINF, based on epistemic logic, where a group of cooperative agents can jointly

perform actions. I.e., at least one agent of the group can perform the action, either with the

approval of the group or on behalf of the group. We have taken into consideration actions’ cost

[10], and the preferences that each agent can have for what concerns performing each action [11].

We have recently introduced agents’ roles within a group, in terms of the actions that each agent

is enabled by its group to perform. L-DINF has a fully-defined semantics, and a proof of strong

completeness w.r.t. canonical models. In this paper we incorporated the T function into L-DINF,

so that actions, goals, plans, of groups of agents are now temporalized, and thus refer to time

instants or time intervals. We have joined the two semantic approaches, preserving the strong

completeness of the axiomatic framework.

The paper is organized as follows. In Section 2 we present syntax, an example of application to

a simple planning problem, namely, a group of researches co-authoring a paper to be submitted,

and semantics of the enhanced epistemic logic. Section 3 presents a revised definition of canonical

model to take into account the temporal aspect. Finally, in Section 4 we shortly conclude.

2. Logical Framework

L-DINF is a logic which consists of a static component and a dynamic one. The static component,

called L-INF, is a logic of explicit beliefs and background knowledge. The dynamic component,

called L-DINF, extends the static one with dynamic operators capturing the consequences of the

agents’ inferential actions on their explicit beliefs as well as a dynamic operator capturing what

an agent can conclude by performing some inferential action in its repertoire.

2.1. Syntax

Let be Atm = {p(t1, t2), q(t3, t4), ... , h(t𝑖, t𝑗), ... } where p, q, h are predicate symbols and

each tℓ ∈ N. Here an atomic proposition of the form p(t1, t2) stands for “p is true from the

time instant t1 to t2" with t1 ⩽ t2 (Temporal Representation of the external world); as a special

case we can have p(t1, t1) which stands for “p is true in the time instant t1". We also admit

predicate symbols of higher arity, but in that case we assume that the first two arguments are

those that identify the time duration of the belief (e.g., the atomic proposition open(1, 3, door)
means “the agent knows that the door is open from time 1 to time 3”). By Prop we denote

the set of all propositional formulas, i.e. the set of all Boolean formulas built out of the set

of atomic propositions Atm . The set Atm𝐴 represents the physical actions that an agent can



perform, including “active sensing” actions (e.g., “let’s check whether it rains”, “let’s measure

the temperature”). Let Agt be a set of agents. In what follows, I is a MTL “time-interval” [12]

which is a closed finite interval [t, l] or an infinite interval [t,∞) (considered open on the upper

bound), for any expressions/values t, l such that 0 ≤ t ≤ l.

The language of L-DINF, denoted by ℒL-DINF, is defined by the following grammar:

ϕ, ψ ::= p(t1, t2) | ¬ϕ | ϕ ∧ ψ | B𝑖 ϕ | K𝑖 ϕ | □𝐼 ϕ | do𝑖(φ𝐴, I) | can_do𝑖(φ𝐴, I) |
do𝐺(φ𝐴, I) | can_do𝐺(φ𝐴, I) | pref _do𝑖(φ𝐴, d, I) | pref _do𝐺(i, φ𝐴, I) |
exec𝑖(α) | exec𝐺(α) | [G : α]ϕ | intend 𝑖(φ𝐴, I) | intend𝐺(φ𝐴, I)

α ::= ⊢(ϕ,ψ) | ∩(ϕ,ψ) | ↓(ϕ, ψ) | ⊣(ϕ, ψ)

where p(t1, t2) ranges over Atm , d ∈ N, i ∈ Agt and G ⊆ Agt . (Other Boolean operators are

defined from ¬ and ∧ in the standard manner.) The language of inferential actions of type α is

denoted by ℒACT. The static part L-INF of L-DINF, includes only those formulas not having

sub-formulas of type α.

Notice the expression intend 𝑖(φ𝐴, I), where it is required that φ𝐴 ∈ Atm𝐴 and I is a time

interval. This expression indicates the intention of agent i to perform action φ𝐴 in the interval I

in the sense of the BDI agent model [13]. This intention can be part of an agent’s knowledge base

from the beginning, or it can be derived later. In this paper we do not cope with the formalization

of BDI, for which the reader may refer, e.g., to [14]. So, we will treat intentions rather informally,

assuming also that intend𝐺(φ𝐴, I) holds whenever all agents in groupG intend to perform action

φ𝐴 in the interval I .

The formula doi(φ𝐴, I), indicates actual execution of action φ𝐴 by agent i. By precise choice,

do (and similarly doG , that indicates the actual execution of φ𝐴 by the group of agents G) are not

axiomatized. In fact, they are realized by what has been called in [15] a semantic attachment, i.e.,

a procedure which connects an agent with its external environment in a way that is unknown at

the logical level. The axiomatization concerns only the relationship between doing and being

enabled to do.

The expressions can_doi(φ𝐴, I) and pref _do𝑖(φ𝐴, d, I) (where, as before, φ𝐴 ∈ Atm𝐴 and

I is a time interval) are closely related to doi(φ𝐴, I). In fact, can_doi(φ𝐴, I) is to be seen as an

enabling condition, indicating that agent i is enabled to execute action φ𝐴 in the interval I , while

instead pref _doi(φ𝐴, d, I) indicates the level d of preference/willingness of agent i to perform

that action in the time interval I . pref _doG(i, φ𝐴, I) indicates that agent i exhibits the maximum

level of preference on performing action φ𝐴 within all group members in the time interval I .

Notice that, if a group of agents intends to perform an action φ𝐴, this will entail that the entire

group intends to do φ𝐴, that will be enabled to be actually executed only if at least one agent

i ∈ G can do it, i.e., it can derive can_doi(φ𝐴, I).
Unlike explicit beliefs, i.e., facts and rules acquired via perceptions during an agent’s operation

and kept in the working memory, an agent’s background knowledge is assumed to satisfy omni-

science principles, such as closure under conjunction and known implication, and closure under

logical consequence, and introspection. In fact, K𝑖 is actually the well-known S5 modal operator

often used to model/represent knowledge. The fact that background knowledge is closed under

logical consequence is justified because we conceive it as a kind of stable reliable knowledge base,

or long-term memory. We assume the background knowledge to include: facts (formulas) known

by the agent from the beginning, and facts the agent has later decided to store in its long-term



memory (by means of some decision mechanism not treated here) after having processed them in

its working memory. We therefore assume background knowledge to be irrevocable, in the sense

of being stable over time.

In the formula □𝐼 φ the MTL Interval “always” operator is applied to a formula, which means

that φ is always true in the interval I . □[0,∞) will sometimes be written simply as □.

A formula of the form [G:α]ϕ, with G ⊆ Agt , and where α must be an inferential action,

states that “ϕ holds after action α has been performed by at least one of the agents in G, and all

agents in G have common knowledge about this fact”.

Borrowing from [11, 16], we distinguish four types of inferential actions α which allow us to

capture some of the dynamic properties of explicit beliefs and background knowledge: ↓(ϕ, ψ),
∩(ϕ,ψ), ⊣(ϕ, ψ), and ⊢(ϕ,ψ), These actions characterize the basic operations of forming explicit

beliefs via inference:

• ↓(ϕ, ψ): this action infers ψ from ϕ, where ψ is an atom, say p(t1, t2): an agent, believing

that ϕ is true and having in its long-term memory that ϕ implies ψ (in some suitable time

interval including [t1, t2]), starts believing that p(t1, t2) is true.

• ∩(ϕ,ψ): this action closes the explicit beliefs ϕ and ψ under conjunction. I.e., ∩(ϕ,ψ)
characterizes the inferential action of deducing ϕ ∧ ψ from the explicit belief ϕ and the

explicit belief ψ.

• ⊣(ϕ, ψ): this action performs a simple form of “belief revision”, where ϕ and ψ are atoms,

say p(t1, t2) and q(t3, t4) respectively: an agent, believing p(t1, t2) and having in the

long-term memory that p(t1, t2) implies ¬q(t3, t4), removes the timed belief q(t3, t4) if the

intervals match. Notice that, should q be believed in a wider interval I such that [t1, t2] ⊆ I ,

the belief q(., .) is removed concerning intervals [t1, t2] and [t3, t4], but it is left for the

remaining sub-intervals (so, its is “restructured”).

• ⊢(ϕ,ψ): let ψ be an atom, say p(t1, t2). An agent, believing ϕ and that ϕ implies p(t1, t2)
in the working memory (in some suitable time interval including [t1, t2]), starts believing

p(t1, t2). This last action operates directly on the working memory without retrieving

anything from the background knowledge.

Formulas of the forms execi(α) and exec𝐺(α) express executability of inferential actions

either by agent i, or by a group G of agents (which is a consequence of any of the group members

being able to execute the action). It has to be read as: “α is an inferential action that agent i (resp.

an agent in G) can perform”.

2.2. Problem Specification and Inference: An Example

In this section, we propose an example to explain the usefulness of this kind of logic and to

help the reader’s understanding. Consider a group G of three agents, who are the authors of a

paper that has to be submitted to a conference: the first author a deals with the drafting of the

introduction and finding the references, the second b deals with the experiments and the third c

deals with the formalization part. The second is the only one who can perform the experiments

because he has the required certifications; the others are enabled to perform different tasks, such

as, e.g., write the abstract, search references, check the correctness of the formal part, and so on.



The group receives notification of a deadline for a paper, so they decide to orga-

nize themselves for submitting it. The group will reason, and devise the intention/goal

K𝑖(□𝐼 intendG(submit_fullpaper(t0 , t2 ), I )): the group intends to submit their paper within

the indicated time I . Here t0 is the time instant when the group begins to organize to write the

paper, I = [t0, t1] where t1 is the deadline and t2 is the time instant when they really submit the

paper and t2 ≤ t1.

Among the physical actions that agents in the group can perform are for instance the

following: submit_abstract , do_experiment , write_introduction ,write_formal_part and

write_experiment_results.

The group will now be required to perform a planning activity. Assume that, as a result of the

planning phase, the knowledge base of each agent i contains the following rule, that specifies

how to reach the intended goal in terms of actions to perform and sub-goals to achieve (listed

after the “ → ”):

K𝑖

(︀

□𝐼 intendG(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendG(submit_abstract(t0 , t3 ), I1 )
∧□𝐼2intendG(do_experiment(t0 , t4 ), I2 )

∧□𝐼 intendG(write_formal_part(t0 , t5 ), I )
)︀

where I1, I2 ⊆ I , t3 is the time instant when the author submit the abstract and t3 ≤ t1, t4 is

the time instant when the author b has finished his experiment and he has written the results

at t4 ≤ t1, finally t5 is the time instant when the other agent has finished to write the formal

part. Thanks to the axiomatization, which we are going to explain in Section 2.5, we have that

intendG(φA, I ) ↔ ∀i ∈ G intendi(φA, I ), each agent has the specialized rule (for i ≤ 3):

K𝑖

(︀

□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendi(submit_abstract(t0 , t3 ), I1 )∧
□𝐼2intendi(do_experiment(t0 , t4 ), I2 )∧
□𝐼 intendi(write_formal_part(t0 , t5 ), I )

)︀

Therefore, the following is entailed for each of the agents:

K𝑖

(︀

□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendi(submit_abstract(t0 , t3 ), I1 )
)︀

K𝑖

(︀

□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼2intendi(do_experiment(t0 , t4 ), I2 )
)︀

K𝑖

(︀

□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼 intendi(write_formal_part(t0 , t5 ), I )
)︀

.

Assume now that the knowledge base of each agent i contains also the following general

rules, stating that the group is available to perform each of the necessary actions. Which agent

will in particular perform each action φ𝐴? According to items (t4) and (t7) in the definition

of truth values, listed in the next section, for L-DINF formulas, this agent will be chosen as

the one which best prefers to perform this action, among those that can do it. Formally, in

the present situation, pref _doG(i , φA, I ) identifies the agent i in the group with the highest

degree of preference on performing φ𝐴, and can_doG(φA, I ) is true if there is some agent i

in the group which is able and allowed to perform φ𝐴, i.e., φ𝐴 ∈ A(i, w) ∧ φ𝐴 ∈ H(i, w).



K𝑖

(︀

□𝐼1(intendG(submit_abstract(t0 , t3 ), I1 ) ∧ can_doG(submit_abstract(t0 , t3 ), I1 )∧
pref _doG(i , submit_abstract(t0 , t3 ), I1 )) → □𝐼1doG(submit_abstract(t0 , t3 ), I1 )

)︀

K𝑖

(︀

□𝐼2(intendG(do_experiment(t0 , t4 ), I2 ) ∧ can_doG(do_experiment(t0 , t4 ), I2 )∧
pref _doG(i , do_experiment(t0 , t4 ), I2 )) → □𝐼2doG(do_experiment(t0 , t4 ), I2 )

)︀

K𝑖

(︀

□𝐼(intendG(write_formal_part(t0 , t5 ), I ) ∧ can_doG(write_formal_part(t0 , t5 ), I )∧
pref _doG(i ,write_formal_part(t0 , t5 ), I )) → □𝐼doG(write_formal_part(t0 , t5 ), I )

)︀

As before, such rules can be specialized to each single agent.

K𝑖

(︀

□𝐼1(intendi(submit_abstract(t0 , t3 ), I1 ) ∧ can_doi(submit_abstract(t0 , t3 ), I1 )∧
pref _doi(i , submit_abstract(t0 , t3 ), I1 )) → □𝐼1doi(submit_abstract(t0 , t3 ), I1 )

)︀

K𝑖

(︀

□𝐼2(intendi(do_experiment(t0 , t4 ), I2 ) ∧ can_doi(do_experiment(t0 , t4 ), I2 )∧
pref _doi(i , do_experiment(t0 , t4 ), I2 )) → □𝐼2doi(do_experiment(t0 , t4 ), I2 )

)︀

K𝑖

(︀

□𝐼(intendi(write_formal_part(t0 , t5 ), I ) ∧ can_doi(write_formal_part(t0 , t5 ), I )∧
pref _doi(i ,write_formal_part(t0 , t5 ), I )) → □𝐼doi(write_formal_part(t0 , t5 ), I )

)︀

So, for each action φ𝐴 required by the plan, there will be some agent (let us assume for sim-

plicity only one), for which doi(φA, I ) will be concluded. In our case, the agent a will conclude

doa(submit_abstract(t0 , t3 ), I1 ); the agent b will conclude dob(do_experiment(t0 , t4 ), I2 )
and the agent c will conclude doc(write_formal_part(t0 , t5 ), I ).

2.3. Semantics

Now we can go into the details of semantics, definition 2.1 introduces the notion of L-INF model,

which is then used to introduce semantics of the static fragment of the logic. Before that we define

the “time” function T that associates to each formula the time interval in which this formula is

true and operates as follows:

• T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]" where

t1, t2 ∈ N; as a special case we have T (p(t1, t1)) = t1, which stands for “p is true in the

time instant t1" where t1 ∈ N (time instant);

• T (¬p(t1, t2)) = T (p(t1, t2)), which stands for “p is not true in the time interval [t1, t2]"
where t1, t2 ∈ N;

• T (ϕ op ψ) = T (ϕ)
⨄︀

T (ψ) with op ∈ {∨,∧,→}, which is the unique smallest interval

including both T (ϕ) and T (ψ);

• T (B𝑖ϕ) = T (ϕ);

• T (K𝑖ϕ) = T (ϕ);

• T (□𝐼ϕ) = I where I is a time interval;

• T ([(G : α)]ϕ) there are different cases depending on the inferential action α:

1. T ([G : ↓(ϕ, ψ)]ψ) = T (ψ);

2. T ([G : ∩(ϕ,ψ)] (ϕ ∧ ψ)) = T (ϕ)
⨄︀

T (ψ), the smallest interval including T (ϕ) and

T (ψ);

3. T ([G : ⊣(ϕ, ψ)]ψ) returns the “restructured" interval where ψ is true;

4. T ([G : ⊢(ϕ,ψ)]ψ) = T (ψ);



• T (do𝑖(φ𝐴, I)) = T (do𝐺(φ𝐴, I)) = I;

• T (can_do𝑖(φ𝐴, I)) = T (can_do𝐺(φ𝐴, I)) = I;

• T (intend 𝑖(φ𝐴, I)) = T (intend𝐺(φ𝐴, I)) = I;

• T (pref _do𝑖(φ𝐴, d, I)) = T (pref _do𝐺(i, φ𝐴, I)) = I;

• T (exec𝑖(α)) = T (exec𝐺(α)) = T ([(G : α)]ϕ).

Definition 2.1, below, depends on a given set of world W and a valuation function, namely

a mapping V : W −→ 2Atm . For each world w ∈ W , let t1 the minimum time instant of

T (p(t1, t)) where p(t1, t) ∈ V (w) and let t2 be the supremum time instant (we can have t2 = ∞)

w.r.t. the atoms p(t, t2) in V (w). Whenever useful, we denote w as w𝐼 where I = [t1, t2], which

identifies the world in a given interval.

Notice that many relevant aspects of an agent’s behaviour are specified in the definition of

L-INF model, including which mental and physical actions an agent can perform, which is the cost

of an action and which is the budget that the agent has available, which is the preference degree

of the agent to perform each action. This choice has the advantages of keeping the complexity of

the logic under control, and of making these aspects modularly modifiable. As before let Agt be

the set of agents.

Definition 2.1. A model is a tuple M = (W,N,ℛ, E,B,C, A,H, P, V, T ) where:

• W is a set of worlds (or situations);

• ℛ = {R𝑖}𝑖∈Agt is a collection of equivalence relations on W : R𝑖 ⊆ W ×W for each

i ∈ Agt;

• N : Agt ×W −→ 22
W

is a neighborhood function such that, for each i ∈ Agt , each

w𝐼 , v𝐼 ∈W , and each X ⊆W these conditions hold:

(C1) if X ∈ N(i, w𝐼) then X ⊆ {v𝐼 ∈W | w𝐼R𝑖v𝐼},

(C2) if w𝐼R𝑖v𝐼 then N(i, w𝐼) = N(i, v𝐼);

• E : Agt ×W −→ 2ℒACT is an executability function of mental actions such that, for each

i ∈ Agt and w𝐼 , v𝐼 ∈W , it holds that:

(D1) if w𝐼R𝑖v𝐼 then E(i, w𝐼) = E(i, v𝐼);

• B : Agt ×W −→ N is a budget function such that, for each i ∈ Agt and w𝐼 , v𝐼 ∈W , the

following holds

(E1) if w𝐼R𝑖v𝐼 then B(i, w𝐼) = B(i, v𝐼);

• C : Agt × ℒACT ×W −→ N is a cost function such that, for each i ∈ Agt , α ∈ ℒACT,

and w𝐼 , v𝐼 ∈W , it holds that:

(F1) if w𝐼R𝑖v𝐼 then C(i, α, w𝐼) = C(i, α, v𝐼);

• A : Agt ×W −→ 2𝐴𝑡𝑚A is an executability function for physical actions such that, for

each i ∈ Agt and w𝐼 , v𝐼 ∈W , it holds that:

(G1) if w𝐼R𝑖v𝐼 then A(i, w𝐼) = A(i, v𝐼);

• H : Agt ×W −→ 2𝐴𝑡𝑚A is an enabling function for physical actions such that, for each

i ∈ Agt and w𝐼 , v𝐼 ∈W , it holds that:



(G2) if w𝐼R𝑖v𝐼 then H(i, w𝐼) = H(i, v𝐼);

• P : Agt ×W ×Atm𝐴 −→ N is a preference function for physical actions φ𝐴 such that,

for each i ∈ Agt and w𝐼 , v𝐼 ∈W , it holds that:

(H1) if w𝐼R𝑖v𝐼 then P (i, w𝐼 , φ𝐴) = P (i, v𝐼 , φ𝐴);

• V :W −→ 2Atm is a valuation function;

• T is the “Time Function", defined before.

To simplify the notation, let R𝑖(w𝐼) = {v𝐼 ∈ W | w𝐼R𝑖v𝐼}, for w𝐼∈W . The set R𝑖(w𝐼)
identifies the situations that agent i considers possible at world w𝐼 . It is the epistemic state of

agent i at w𝐼 . In cognitive terms, R𝑖(w𝐼) can be conceived as the set of all situations that agent i

can retrieve from its long-term memory and reason about.

While R𝑖(w𝐼) concerns background knowledge, N(i, w𝐼) is the set of all facts that agent i

explicitly believes at worldw𝐼 , a fact being identified with a set of worlds. Hence, ifX ∈ N(i, w𝐼)
then, the agent i has the fact X under the focus of its attention and believes it. We say that

N(i, w𝐼) is the explicit belief set of agent i at world w𝐼 .

The executability of inferential actions is determined by the function E. For an agent i,

E(i, w𝐼) is the set of inferential actions that agent i can execute at world w𝐼 in time interval

I . The value B(i, w𝐼) is the budget the agent has available to perform inferential actions in

time interval I . Similarly, the value C(i, α, w𝐼) is the cost to be paid by agent i to execute the

inferential action α in the world w𝐼 in time interval I . The executability of physical actions is

determined by the function A. For an agent i, A(i, w𝐼) is the set of physical actions that agent i

can execute at world w𝐼 in time interval I . H(i, w𝐼) instead is the set of physical actions that

agent i is enabled by its group to perform always in I . Which means, H defines the role of an

agent in its group, via the actions that it is allowed to execute.

Agent’s preference on executability of physical actions is determined by the function P . For

an agent i, and a physical action φ𝐴, P (i, w𝐼 , φ𝐴) is an integer value d indicating the degree of

willingness of i to execute φ𝐴 at world w𝐼 .

Constraint (C1) imposes that agent i can have explicit in its mind only facts which are

compatible with its current epistemic state. Moreover, according to constraint (C2), if a world

v𝐼 is compatible with the epistemic state of agent i at world w𝐼 , then agent i should have the

same explicit beliefs at w𝐼 and v𝐼 . In other words, if two situations are equivalent as concerns

background knowledge, then they cannot be distinguished through the explicit belief set. This

aspect of the semantics can be extended in future work to allow agents make plausible assumptions.

Analogous properties are imposed by constraints (D1), (E1), and (F1). Namely, (D1) imposes

that agent i always knows which inferential actions it can perform and those it cannot. (E1) states

that agent i always knows the available budget in a world (potentially needed to perform actions).

(F1) determines that agent i always knows how much it costs to perform an inferential action.

(G1) and (H1) determine that an agent i always knows which physical actions it can perform and

those it cannot, and with which degree of willingness, where (G2) specifies that an agent also

knows whether its group gives it the permission to execute a certain action or not, i.e., if that

action pertains to its role in the group.

Given a model M = (W,N,ℛ, E,B,C,A,H, P, V, T ), i ∈ Agt , G ⊆ Agt , w𝐼 ∈ W , and a



formula ϕ ∈ ℒL-INF, we introduce the following shorthand notation:

‖ϕ‖𝑀𝑖,𝑤I
= {v𝐼 ∈W : w𝐼R𝑖v𝐼 and M, v𝐼 |= ϕ}

whenever M, v𝐼 |= ϕ is well-defined (see below). Then, truth values of L-DINF formulas are

inductively defined as follows:

(t1) M,w𝐼 |= p(t1, t2) iff p(t1, t2) ∈ V (w𝐼) and T (p(t1, t2)) ⊆ I

(t2) M,w𝐼 |= execi(α) iff α ∈ E(i, w𝐼) and T (execi(α)) ⊆ I

(t3) M,w𝐼 |= exec𝐺(α) iff ∃i∈G with α ∈ E(i, w𝐼) and T (execG(α)) ⊆ I

(t4) M,w𝐼 |= can_do𝑖(φ𝐴, J) iff φ𝐴 ∈ A(i, w𝐼) ∩H(i, w𝐼) and J ⊆ I

(t5) M,w𝐼 |= can_do𝐺(φ𝐴, J) iff ∃i∈G with φ𝐴 ∈ A(i, w𝐼) ∩H(i, w𝐼) and J ⊆ I

(t6) M,w𝐼 |= pref _do𝑖(φ𝐴, d, J) iff φ𝐴 ∈ A(i, w𝐼), P (i, w𝐼 , φ𝐴) = d and J ⊆ I

(t7) M,w𝐼 |= pref _do𝐺(i, φ𝐴, J) iff M,w|=pref _do𝑖(φ𝐴, d, J) for d=max{P (j, w, φ𝐴) |
j ∈ G ∧ φ𝐴∈A(j, w)∩H(j, w)} and J ⊆ I

(t8) M,w𝐼 |= ¬ϕ iff M,w ̸|= ϕ and T (¬ϕ) ⊆ I

(t9) M,w𝐼 |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ with T (ϕ), T (ψ) ⊆ I

(t10) M,w𝐼 |= B𝑖 ϕ iff ||ϕ||𝑀𝑖,𝑤 ∈ N(i, w) with T (ϕ) ⊆ I

(t11) M,w𝐼 |= K𝑖 ϕ iff M, v |= ϕ for all v ∈ R𝑖(w) with T (ϕ) ⊆ I

(t12) M,w𝐼 |= □𝐽 ϕ iff T (ϕ) ⊆ J ⊆ I and for all v𝐼 ∈ R𝑖(w𝐼) it holds M,w𝐼 |= ϕ

As seen above, a physical action can be performed by a group of agents if at least one agent of

the group can do it, and the level of preference for performing this action is set to the maximum

among those of the agents enabled to do this action. For any inferential action α performed by

any agent i, we set:

M,w |= [G : α]ϕ iff M [𝐺:𝛼], w |= ϕ

where M [𝐺:𝛼] = ⟨W,N [𝐺:𝛼],ℛ, E,B[𝐺:𝛼], C,A,H, P, V, T ⟩, is the model representing the fact

that the execution of an inferential action α affects the sets of beliefs of agent i and modifies

the available budget in a certain time interval I . Such operation can add new beliefs by direct

perception, by means of one inference step, or as a conjunction of previous beliefs. Hence, when

introducing new beliefs (i.e., performing mental actions), the neighborhood must be extended

accordingly.

The following condition characterizes the circumstances in which an action may be performed,

and by which agent(s):

enabled𝑤I
(G,α) : ∃j ∈ G (α ∈ E(j, w) ∧ 𝐶(𝑗,𝛼,𝑤I)

|𝐺| ≤ minℎ∈𝐺B(h,w𝐼))

with T ([G:α]ϕ) ⊆ I . This condition states when an inferential action is enabled. In the above

particular formulation (that is not fixed, but can be customized to the specific application domain)

if at least an agent can perform it and if the “payment” due by each agent (obtained by dividing

the action’s cost equally among all agents of the group) is within each agent’s available budget.

In case more than one agent in G can execute an action, we implicitly assume the agent j

performing the action to be the one corresponding to the lowest possible cost. Namely, j is such

that C(j, α, w𝐼)=minℎ∈𝐺C(h, α,w𝐼). Other choices might be viable, so variations of this logic



can be easily defined simply by devising some other enabling condition and, possibly, introducing

differences in neighborhood update. Notice that the definition of the enabling function basically

specifies the “concrete responsibility” that agents take while concurring with their own resources

to actions’ execution. Also, in case of specification of various resources, different corresponding

enabling functions might be defined.

2.4. Belief Update

In this kind of logic, updating an agent’s beliefs accounts to modify the neighborhood of the

present world. The updated neighborhood N [𝐺:𝛼] resulting from execution of a mental action α

by a group G of agents is as follows.

N [𝐺:↓(𝜓,𝜒)](i, w𝐼) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

N(i, w𝐼) ∪ {||χ||𝑀𝑖,𝑤I
} if i ∈ G and T ([G : ↓(ψ, χ)]χ) ⊆ I and

enabled𝑤I
(G, ↓(ψ, χ)) and

M,w𝐼 |= B𝑖ψ ∧K𝑖(ψ → χ)

N(i, w𝐼) otherwise

N [𝐺:∩(𝜓,𝜒)](i, w𝐼) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N(i, w𝐼) ∪ {||ψ ∧ χ||𝑀𝑖,𝑤I
} if i ∈ G and

T ([G : ∩(ψ,χ)](ψ ∧ χ)) ⊆ I and

enabled𝑤I
(G,∩(ψ,χ)) and

M,w𝐼 |= B𝑖ψ ∧B𝑖χ

N(i, w𝐼) otherwise

N [𝐺:⊢(𝜓,𝜒)](i, w𝐼) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

N(i, w𝐼) ∪ {||χ||𝑀𝑖,𝑤I
} if i ∈ G and T ([G :⊣ (ψ, χ)]χ) ⊆ I and

enabled𝑤I
(G,⊢(ψ,χ)) and

M,w𝐼 |= B𝑖ψ ∧B𝑖(ψ → χ)

N(i, w𝐼) otherwise

Notice that, after an inferential action α has been performed by an agent j ∈ G, all agents i ∈ G

see the same update in the neighborhood. Conversely, for any agent h ̸∈ G the neighborhood

remains unchanged (i.e., N [𝐺:𝛼](h,w) = N(h,w𝐼)). However, even for agents in G, the

neighborhood remains unchanged if the required preconditions, on explicit beliefs, knowledge,

and budget, do not hold (and hence the action is not executed). Notice also that we might devise

variations of the logic by making different decisions about neighborhood update to implement,

for instance, partial visibility within a group.

For formulas of the form [G : ⊣(ψ, χ)]χ, we take in account the following ground case:

given Q = q(j, k) such that T (q(j, k)) = T (q(t1, t2)) ∩ T (q(t3, t4)) with j, k ∈ N and

P ≡
(︁

(︀

M,w𝐼 |= B𝑖(p(t1, t2)) ∧ B𝑖(q(t3, t4)) ∧ K𝑖(p(t1, t2) → ¬q(t3, t4))
)︀

and
(︀

T ([G :⊣

(p(t1, t2), q(t3, t4))]q(t5, t6)) ⊆ I
)︀

and there is no interval J ⊋ T (p(t1, t2)) s.t. B𝑖(q(t5, t6))



where T (q(t5, t6))=J
)︁

:

N [𝐺:⊣(𝑝(𝑡1,𝑡2),𝑞(𝑡3,𝑡4))](i, w𝐼) =

{︂

N(i, w𝐼) ∖ {||Q||𝑀𝑖,𝑤I
} if P holds

N(i, w𝐼) otherwise

The following update of the budget function determines how each agent in G contributes to

cover the costs of execution of an action, by consuming part of its available budget. We assume,

however, that only inferential actions that add new beliefs have a cost. I.e., forming conjunction

and performing belief revision are actions with no cost. As before, for an action α, we require

enabled𝑤I
(G,α) to hold and assume that j ∈ G executes α. Then, depending on α, we have:

B[𝐺:↓(𝜓,𝜒)](i, w𝐼) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B(i, w𝐼)−
𝐶(𝑗,↓(𝜓,𝜒),𝑤I)

|𝐺| if i ∈ G and T ([G : ↓(ψ, χ)]χ) ⊆ I and

enabled𝑤I
(G, ↓(ψ, χ)) and

M,w𝐼 |= BI𝑖ψ ∧K𝑖(ψ → χ)

B(i, w𝐼) otherwise

B[𝐺:⊢(𝜓,𝜒)](i, w𝐼) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B(i, w𝐼)−
𝐶(𝑗,⊢(𝜓,𝜒),𝑤I)

|𝐺| if i ∈ G and T ([G : ⊢(ψ,χ)]χ) ⊆ I and

enabled𝑤I
(G,⊢(ψ,χ)) and

M,w𝐼 |= B𝑖ψ ∧B𝑖(ψ → χ)

B(i, w𝐼) otherwise

We write |=L-DINF ϕ to denote that M,w𝐼 |= ϕ holds for all worlds w𝐼 of every model M .

We introduce below relevant consequences of our formalization. For lack of space we omit

the proof, that can be developed analogously to what done in previous work [10]. For any set of

agents G and each i ∈ G, we have the following:

∙ |=L-INF (K𝑖(ϕ→ ψ)) ∧B𝑖 ϕ) → [G : ↓(ϕ, ψ)]B𝑖 ψ.

Namely, if an agent has ϕ among beliefs and K𝑖(ϕ → ψ) in its background knowledge,

then as a consequence of the action ↓(ϕ, ψ) the agent and any group G to which it belongs

start believing ψ.

∙ |=L-INF (K(p(t1, t2) → ¬q(t3, t4)) ∧B𝑖p(t1, t2) ∧B𝑖q(t3, t4)) →
[(G : ⊣(p(t1, t2), q(t3, t4)))]B𝑖q(t5, t6),

where T (q(t5, t6)) = T (q(t3, t4)) ∖ T (q(t1, t2)).
Namely, if agent i has q(t3, t4) as one of its beliefs, q is not believed outside

T (q(t3, t4)), the agent perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)), and has

K𝑖(p(t1, t2) → ¬q(t3, t4)) in its background knowledge. Then after the mental op-

eration ⊣(p(t1, t2), q(t3, t4)) the agent starts believing q(t5, t6)) where T (q(t5, t6)) =
T (q(t3, t4)) ∖ T (q(t1, t2)).

∙ |=L-INF (B𝑖ϕ ∧B𝑖ψ) → [G : ∩(ϕ, ψ)]B𝑖(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action ∩(ϕ, ψ)
the agent and any group G to which it belongs start believing ϕ ∧ ψ.



∙ |=L-INF (B𝑖(ϕ→ ψ)) ∧B𝑖 ϕ) → [G : ⊢(ϕ, ψ)]B𝑖, ψ.

Namely, if an agent has ϕ among its beliefs and B𝑖(ϕ→ ψ) in its working memory, then

as a consequence of the action ⊢(ϕ, ψ) the agent and any group G to which it belongs start

believing ψ.

2.5. Axiomatization

Below we introduce the axiomatization of our logic. The L-INF and L-DINF axioms and inference

rules are the following:

1. (K𝑖 ϕ ∧K𝑖(ϕ→ ψ)) → K𝑖 ψ;

2. K𝑖 ϕ→ ϕ;

3. ¬K𝑖(ϕ ∧ ¬ϕ);

4. K𝑖 ϕ→ K𝑖K𝑖 ϕ;

5. ¬K𝑖 ϕ→ K𝑖 ¬K𝑖 ϕ;

6. B𝑖 ϕ ∧K𝑖 (ϕ↔ ψ) → B𝑖 ψ;

7. B𝑖 ϕ→ K𝑖B𝑖 ϕ;

8. □𝐼ϕ ∧□𝐼(ϕ→ ψ) → □𝐼(ψ);

9. □𝐼ϕ→ □𝐽ϕ with J ⊆ I;

10.
𝜙

Ki 𝜙
;

11. [G : α]p↔ p;

12. [G : α]¬ϕ↔ ¬[G : α]ϕ;

13. exec𝐺(α) → K𝑖 (exec𝐺(α));

14. [G : α](ϕ ∧ ψ) ↔ [G : α]ϕ ∧ [G : α]ψ;

15. [G : α]K𝑖 ϕ↔ K𝑖 ([G : α]ϕ);

16. [G : ↓(ϕ, ψ)]B𝑖 χ ↔ B𝑖 ([G : ↓(ϕ, ψ)]χ) ∨ [G : ↓(ϕ, ψ)]B𝑖 χ ↔
(︀

(B𝑖 ϕ ∧ K𝑖 (ϕ →
ψ)) ∧ [G : ↓(ϕ, ψ)]B𝑖 χ↔ K𝑖 ([G : ↓(ϕ, ψ)]χ↔ ψ)

)︀

;

17. [G : ∩(ϕ, ψ)]B𝑖 χ↔ B𝑖 ([G : ∩(ϕ, ψ)]χ)∨ [G : ∩(ϕ, ψ)]B𝑖 χ↔
(︀

(B𝑖 ϕ∧B𝑖 ψ)∧ [G :
∩(ϕ, ψ)]B𝑖 χ↔ K𝑖 [G : ∩(ϕ, ψ)]χ↔ (ϕ ∧ ψ)

)︀

;

18. [G : ⊢(ϕ, ψ)]B𝑖 χ ↔ B𝑖 ([G : ⊢(ϕ, ψ)]χ) ∨ [G : ⊢(ϕ, ψ)]B𝑖 χ ↔
(︀

(B𝑖 ϕ ∧ B𝑖 (ϕ →
ψ)) ∧ [G : ⊢(ϕ, ψ)]B𝑖 χ↔ K𝑖 ([G : ⊢(ϕ, ψ)]χ↔ ψ)

)︀

;

19. [G : ⊣(ϕ, ψ)]¬B𝑖 χ↔ B𝑖 ([G : ⊣(ϕ, ψ)]χ) ∨ [G : ⊣(ϕ, ψ)]¬B𝑖 χ↔
(︀

(B𝑖 ϕ ∧K𝑖 (ϕ→
¬ψ)) ∧ [G : ⊣(ϕ, ψ)]¬B𝑖 χ↔ K𝑖 ([G : ⊣(ϕ, ψ)]χ↔ ψ)

)︀

;

20. intendG(φA, I ) ↔ ∀i ∈ G intendi(φA; I );

21. do𝐺(φ𝐴, I) → can_do𝐺(φ𝐴, I);

22. do𝑖(φ𝐴, I) → can_do𝑖(φ𝐴, I) ∧ pref _doG(i , φA, I );

23.
𝜓↔𝜒

𝜙↔𝜙[𝜓/𝜒]
.

We write L-DINF ⊢ϕ to denote that ϕ is a theorem of L-DINF. It can be verified that the

above axiomatization is sound for the class of L-INF models, namely, all axioms are valid and

inference rules preserve validity. In particular, soundness of axioms 16–19 follows from the

semantics of [G:α]ϕ, for each inferential action α, as previously defined. Notice that, by abuse of



notation, we have axiomatized the special predicates concerning intention and action enabling.

Axioms 20–22 concern in fact physical actions, stating that: what is intended by a group of agents

is intended by them all; and, neither an agent nor a group of agents can do what it is not enabled

to do. Such axioms are not enforced by the semantics, but are supposed to be enforced by a

designer’s/programmer’s encoding of parts of an agent’s behaviour. In fact, axiom 20 enforces

agents in a group to be cooperative. Axioms 21 and 22 ensure that agents will attempt to perform

actions only if their preconditions are satisfied, i.e., if they can do them. We do not handle such

properties in the semantics as done, e.g., in dynamic logic, because we want agents’ definition

to be independent of the practical aspect, so we explicitly intend to introduce flexibility in the

definition of such parts.

3. Canonical Model and Strong Completeness

In this section we adapt the notion of canonical model for L-INF introduced in [10] to deal with

the time component. The proof of strong completeness of the framework directly exploits the

notion of canonical model by applying a standard argument. Time is handled in the semantics

by means of the time function T and the definition of canonical L-INF model is immediately

obtained from the one in [10], as follows:

Definition 3.1. Let Agt be a set of agents. The canonical L-INF model is a tuple M𝑐 =
⟨W𝑐, N𝑐,ℛ𝑐, E𝑐, B𝑐, C𝑐, A𝑐, H𝑐, P𝑐, V𝑐, T𝑐⟩ where:

• W𝑐 is the set of all maximal consistent subsets of ℒL-INF;

• ℛ𝑐 = {R𝑐,𝑖}𝑖∈Agt is a collection of equivalence relations on W𝑐 such that, for every

i ∈ Agt and w𝐼 , v𝐼 ∈W𝑐, w𝐼R𝑐,𝑖v𝐼 if and only if (for all ϕ, K𝑖 ϕ ∈ w𝐼 implies ϕ ∈ v𝐼 );

• For w ∈ W𝑐, ϕ ∈ ℒL-INF let A𝜙(i, w𝐼) = {v ∈ R𝑐,𝑖(w𝐼) | ϕ ∈ v}. Then, we put

N𝑐(i, w𝐼)={A𝜙(i, w𝐼) | B𝑖 ϕ ∈ w𝐼};

• E𝑐 : Agt ×W𝑐 −→ 2ℒACT is such that, for each i∈Agt and w𝐼 , v𝐼∈W𝑐, if w𝐼R𝑐,𝑖v𝐼 then

E𝑐(i, w𝐼) = E𝑐(i, v𝐼);

• B𝑐 : Agt ×W𝑐 −→ N is such that, for each i ∈ Agt and w𝐼 , v𝐼 ∈ W𝑐, if w𝐼R𝑐,𝑖v𝐼 then

B𝑐(i, w𝐼) = B𝑐(i, v𝐼);

• C𝑐 : Agt×ℒACT×W𝑐 −→ N is such that, for each i ∈ Agt , α ∈ ℒACT, and w𝐼 , v𝐼 ∈W𝑐,

if w𝐼R𝑐,𝑖v𝐼 then C𝑐(i, α, w𝐼) = C𝑐(i, α, v𝐼);

• A𝑐 : Agt ×W𝑐 −→ 2𝐴𝑡𝑚A is such that, for each i ∈ Agt and w𝐼 , v𝐼 ∈ W𝑐, if w𝐼R𝑐,𝑖v𝐼
then A𝑐(i, w𝐼) = A𝑐(i, v𝐼);

• H𝑐 : Agt ×W𝑐 −→ 2𝐴𝑡𝑚A is such that, for each i ∈ Agt and w𝐼 , v𝐼 ∈ W𝑐, if w𝐼R𝑐,𝑖v𝐼
then H𝑐(i, w𝐼) = H𝑐(i, v𝐼);

• P𝑐 : Agt×W𝑐×Atm𝐴 −→ N is such that, for each i ∈ Agt and w𝐼 , v𝐼 ∈W , if w𝐼R𝑐,𝑖v𝐼
then P𝑐(i, w𝐼 , φ𝐴) = P𝑐(i, v𝐼 , φ𝐴);

• V𝑐 :W𝑐 −→ 2Atm is such that V𝑐(w𝐼) = Atm ∩ w𝐼 ;

• T𝑐 : the time function defined as before.

Analogously to what done before, let R𝑐,𝑖(w𝐼) denote the set {v𝐼 ∈ W𝑐 | w𝐼R𝑐,𝑖v𝐼}, for each

i ∈ Agt . M𝑐 is an L-INF model as defined in Definition 2.1, since, it satisfies conditions



(C1),(C2),(D1),(E1),(F1),(G1),(G2),(H1). Hence, it models the axioms and the inference rules

1–19 and 23 introduced before (while, as mentioned in Section 2.5, axioms 20–22 are assumed to

be enforced by the specification of agents behaviour). Consequently, the following properties

hold too. Let w𝐼 ∈W𝑐, then:

• given ϕ ∈ ℒL-INF, it holds that K𝑖 ϕ ∈ w𝐼 if and only if ∀v𝐼 ∈W𝑐 such that w𝐼R𝑐,𝑖v𝐼 we

have ϕ ∈ v;

• for ϕ ∈ ℒL-INF, if B𝑖 ϕ ∈ w𝐼 and w𝐼R𝑐,𝑖v then B𝑖 ϕ ∈ v𝐼 ;

Thus, R𝑐,𝑖-related worlds have the same knowledge and N𝑐-related worlds have the same

beliefs, i.e. there can be R𝑐,𝑖-related worlds with different beliefs.

By proceeding similarly to what done in [16], we obtain the proof of strong completeness.

For lack of space, we list the main theorems but omit lemmas and proofs, that we have however

developed analogously to what done in previous work [10].

Theorem 3.1. L-INF is strongly complete for the class of L-INF models.

Theorem 3.2. L-DINF is strongly complete for the class of L-INF models.

4. Conclusions

In this paper we proposed a possible way to enrich the epistemic logic introduced in [9, 10, 11],

originally designed to express group dynamics of cooperative agents, with the possibility of

specifying time intervals to express the time periods in which agents’ acting takes place. Hence,

by adapting the treatment introduced in [6], an enriched semantics for formulas, as well as a

new belief update mechanism, has been suitably designed for the new temporalized logic. The

approach appears promising and its usefulness has been shown by outlining a not trivial example.
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Abstract
Procedural content generation eases and accelerates the development of video games by creating data

algorithmically through a combination of human-generated assets and algorithms usually coupled with

computer-generated randomness. This paper presents a use case of Answer Set Programming (ASP) for

procedural content generation of levels in a rougelike video game powered by the Godot Engine. The

main elements of a set of human-generated rooms are represented byASP facts, among them positions of

doors, presence of treasures and power-ups. Within this knowledge, ASP is asked to generate dungeons

satisfying a few conditions, among them the correct positioning of rooms, the absence of unreachable

rooms and constraints on the occurrences of rooms. Scalability of ASP in this context is evaluated

empirically, showing that it can generate in few seconds levels that comprise thousands of rooms.

1. Introduction

Video game industry, i.e. the industry involved in the development, marketing and monetization

of video games, has grown sensibly in the recent years, and its annually generated sales are

in the order of hundreds of billions of dollars. The development of a video game is the first

step to enter such an industry, and several frameworks are nowadays available to start with

a set of common primitives that can be combined to achieve appealing results in relatively

short time. Among them there is the Godot Engine (https://godotengine.org/), a completely free

and open-source game engine under MIT license, providing a huge set of common tools that,

especially for 2D-games, significantly accelerate all the development phase.

Further acceleration in the development of video games can be provided by techniques that

go under the name of procedural content generation (PCG), and essentially consist of algorithms

that automatically create levels, maps, weapons, background scenery, and music for video

games [1, 2]. The idea is not new, and actually exploited already in the ’70s in historical

titles such as pedit5 (https://en.wikipedia.org/wiki/Pedit5) to circumvent the limited amount

of computational resources [3]. Many video games followed the idea of pedit5 and took

advantage of PCG. Later, those video games were classified as rougelike, a term originated from

’90s USENET newsgroups. Even if the exact definition of a rougelike game remains a point of

debate in the video game community, some characteristics are clearly identified. Specifically,

rougelike is a subgenre of role-playing video games characterized by a dungeon crawl through

PCG levels, turn-based gameplay, grid-based movement, and permanent death of the player

character.
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In this work the term rougelike is slightly abused and used to refer to video games that have all

the aforementioned characteristics but turn-based gameplay and grid-based movement. Stated

differently, in the following we consider a video game characterized by a dungeon crawl through

PCG levels, real-time gameplay, grid-based positioning but free movements, and permanent death

of the player character. The presented game is entitledWizardSet, is powered by the Godot

Engine and takes advantage of Answer Set Programming (ASP; [4, 5, 6]) for PCG of levels. In a

nutshell, the idea underlyingWizardSet is to design some elements of the video game with the

Godot Engine, represent such elements in a format understandable by ASP systems, and then

combine such a representation with an ASP encoding to delegate the generation of a complete

level to an ASP reasoner. This way, levels are generated when needed, providing a unique

experience to the player for each game. After introducing the required background knowledge

(Section 2), we will detail on the PCG implemented inWizardSet (Section 3), and report on the

result of an experiment aimed at assessing the scalability of the proposed procedure (Section 4).

2. Background

The Godot Engine provides an Integrated Development Environment to design scenes, where a

scene represents an element of the video game and is characterized by a tree and possibly a

script. The tree of a scene is made of nodes of different nature that can be used to associate

sprites and physical properties to the element of the video game. Scripts are usually written

in GDScript, a high-level, dynamically typed programming language with a syntax similar to

Python (but a few other languages are supported as well).

ASP is a rule-based language supporting object variables and negation under stable model

semantics. Object variables are removed by means of intelligent grounding, and stable models

are searched by conflict-driven clause learning algorithms. ASP systems extend the basic

language of ASP with several constructs for representing common knowledge, among them

integer arithmetic and aggregates. The reader is referred to the ASP Core 2 [7] format for

details.

3. Procedural Content Generation within ASP

WizardSet represents a few key features of its rooms in terms of ASP facts:

• room(r), for each available room, where r is a positive integer identifying the room (the

current release of WizardSet provides 17 rooms with different layout and features);

• room_door(r,l), if room r has a door in the wall l, where l is one of north, south, west,

and east;

• room_flag(r,f), if room r has feature f , where f is among initial, boss, and treasure;

• flag_bounds(f,min,max), for each represented feature, where min and max are in-

tegers to bound the number of rooms with feature f in a level; in particular, we fix

flag_bounds(initial,1,1), flag_bounds(boss,1,1), and

flag_bounds(treasure,0,1), i.e. there must be exactly one initial room and boss room,

and at most one treasure room in each generated level.



Figure 1: Design view of room 4 of WizardSet, having a door in the east wall and containing a

treasure. The room is represented by the following ASP facts: room(4), room_door(4,east), and

room_flag(4,treasure).

An example room and the associated ASP facts are reported in Figure 1. Additionally, the

ASP encoding is enriched with the following facts to represent movements in the four cardinal

directions:

delta(north,-1, 0). opposite(north,south).

delta(south, 1, 0). opposite(south,north).

delta(west, 0,-1). opposite(west, east).

delta(east, 0, 1). opposite(east, west).

The reasoning core of the ASP encoding empoweringWizardSet is parameterized by the

size of the grid to generate (constants rows and cols), the number of rooms to deploy (constant

required_rooms), and the health points of the player (constant hp). The ASP encoding non-

deterministically assigns rooms to cells of the grid, ensuring that a few constraints are satisfied.

The following ASP rules are used (and described below):

r1 : {assign(X,Y,nil); assign(X,Y,R) : room(R)} = 1 :-

X = 1..rows, Y = 1..cols.

r2 : assign(0, Y, nil) :- Y = 0..cols+1.

r3 : assign(rows+1,Y, nil) :- Y = 0..cols+1.

r4 : assign(X, 0, nil) :- X = 0..rows+1.

r5 : assign(X, cols+1,nil) :- X = 0..rows+1.

r6 : :- #count{X,Y : assign(X,Y,R), R != nil} != required_rooms.

r7 : :- assign(X,Y,R), room_door(R,L), delta(L,DX,DY),
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Figure 2: clingo performance on n× n level generation

assign(X+DX,Y+DY,R'), opposite(L,L'), not room_door(R',L').

r8 : :- flag_bounds(F,MIN,MAX),

not MIN <= #count{X,Y : assign(X,Y,R), room_flag(R,F)} <= MAX.

r9 : reachable(X,Y) :- room_flag(R,initial), assign(X,Y,R).

r10 : reachable(X+DX,Y+DY) :- reachable(X,Y), assign(X,Y,R),

room_door(R,L), delta(L,DX,DY).

r11 : :- assign(X,Y,R), R != nil, not reachable(X,Y).

r12 : spawn_hp_potion(R) :- room_flag(R,initial), hp <= 2.

The assignment itself is generated by rule r1, which associates each cell with a room or with

the nil value (to denote a non-playable cell of the grid, i.e. a cell not containing any room).

Rules r2śr5 introduce a border of non-playable cells, so to clearly delimit the playable boundary

of the generated level. Rule r6 enforces that the number of assigned rooms is the required

one, and rule r7 ensures the correct placement of doors. Rule r8 ensures that the presence of

represented features in the required amount. Rules r9śr11 impose that all playable cells are

actually connected. Finally, rule r12 provides an example of power-up that can be placed in

some rooms of the generated dungeon; in this case, the power-up is a health potion to be placed

in the initial room if the player starts with few health points.

4. Implementation and Experiment

WizardSet is open-source (https://github.com/Tatanka4/WizardSet). The

ASP system adopted for PCG is clingo 5.5.0 [8], and communication between the Godot

https://github.com/Tatanka4/WizardSet
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Engine and clingo is achieved by synchronous system calls and file sharing. Parameters for

the generation of levels are adjusted to increase the size of the grid and the number of playable

cells, and therefore the expected difficulty. On ordinary playing sessions the time required

for PCG is negligible, and usually below a second. Therefore, in order to empirically evaluate

the scalability of the proposed ASP encoding, we designed a first experiment to measure the

execution time required by clingo to generate squared grids of increasing size n× n, with the

number of requested rooms set to n×n

2
. All tests are run on an Intel Xeon 2.4 GHz with 16 GiB

of memory. Time and memory were limited to 20 seconds and 4 GiB (WizardSet is expected

to be run on laptops and low-end PCs, and level generation must stay in the order of a few

seconds).

Results are shown in Figure 2 for different settings of the number of models asked to clingo;

in fact, to increase randomness in the generation of levels,WizardSet selects one model among

several that are produced by clingo. Additionally, we observed that the generation of levels

is unfeasible without limiting the number of models; the reason is to be attributed to the

high number of possible models, which is already 2,064 for grids of size 4× 4 (0.1 seconds of

computation) and 1,360,822 for grids of size 5× 5 (89 seconds of computation). We therefore

ran all test cases by limiting the number of models to 10, 100 and 1,000. Within these limits,

levels can be generated in less than 20 seconds up to grids of size 89 × 89. Figure 3 reports

the memory consumption for producing 10, 100 and 1,000 models, and it can be observed that

almost the same consumption was measured. Given the results of our experiment, in the release

of WizardSet we fixed the number of models to ask to clingo to 1,000 models, as there is no

significant performance gain in asking for less models.



5. Conclusion

Previous works in the literature have already shown applications of ASP to video games. For

example, ASP is used in Angry-HEX [9], an AI that can play Angry Birds, and in ThinkEngine

[10, 11], an integration of ASP in Unity. ASP can be used profitably for PCG in video games as

well, and the idea was already used in the literature [12, 13, 14]. This work provides another

concrete example of ASP-powered PCG by presenting the first combination of the Godot Engine

with an ASP system to generate levels of a rougelike video game. In our experience, the main

advantage of adopting ASP for this task relies in the declarative power of the language, thanks

to which constraints and desiderata for PCG can be specified succinctly in a few lines of code. A

similar observation is reported in [14], whose approach to generate dungeons is to partition the

space in rectangular areas, and then generate a random room in each area; in this case, the ASP

encoding models desiderata on the generation of rooms. In our approach, rooms are defined

by the programmer, their features represented in ASP, and such a knowledge base is used to

generate a dungeon. Moreover, our ASP representation is suitable for future extensions of the

approach, as for example by enriching the knowledge base with other features of the rooms so

to control the number of enemies and power-ups in the generated levels.
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Abstract
Our work describes a smart-ecosystem able to monitor patients’ health condition, even at home or at

work, by exploiting a creative blend of Medical Wearables, Intelligent Agents, Complex Event Processing

and Image Processing. With the help of a smart application, that links together the Wearables and the

power of Artificial Intelligence, patients will be continuously and actively supervised during their daily

activities. This can even save their lives, in case sudden or gradual issues should occur. Thanks to our

system, patients with non-severe though potentially unstable chronic diseases will no longer overburden

first aid services. This is also useful for containing the spread of COVID-19. Specifically, in this paper we

focus on automated vitals monitoring, electrocardiogram (ECG) analysis, and Psoriasis detection.

Keywords
Artificial Intelligence, Wearables, Intelligent Agents, Complex Event Processing, Image Processing

1. Introduction

The Coronavirus pandemic has highlighted telehealth as a crucial component of modern and

sustainable treatment. In fact, telemedicine’s primary purpose is to virtually erase the distance

between patient and physician, as well as to reduce time and expense involved in healthcare

access. Furthermore, during the COVID-19 pandemic, the growing usage of telehealth has often

reduced the danger of providers and patients being exposed to the virus [1]. However, despite

recent efforts, telemedicine is still in its early stages for a variety of reasons; as a result, one of

the most significant consequences is that First Aid departments are frequently overburdened by

people who do not require immediate assistance; this could be avoided by allowing patients to

use telehealth applications to monitor their vitals either at home or even at work. Thus, in order

to cope with these issues, in our approach we joined together Wearables (such as portable ECG

devices and Pulsoximeters), Intelligent Agents, Complex Event Processing (CEP), and Image

Processing algorithms in an integrated framework able to follow the patient wherever (s)he

CILC 2022: 37th Italian Conference on Computational Logic, June 29 – July 1, 2022, Bologna, Italy
⋆

Research partially supported by project INDAM GNCS-2022 InSANE (CUP_E55F22000270001).
∗Corresponding author.

$ stefania.costantini@univaq.it (S. Costantini); fabio.persia@univaq.it (F. Persia);

lorenzo.delauretis@graduate.univaq.it (L. D. Lauretis)

� 0000-0002-5686-6124 (S. Costantini)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:stefania.costantini@univaq.it
mailto:fabio.persia@univaq.it
mailto:lorenzo.delauretis@graduate.univaq.it
https://orcid.org/0000-0002-5686-6124
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


is. This paper improves our previous work in the E-Health field [2, 3], by adding new features,

algorithms and devices, in order to create a complete ecosystem.

Specifically, our ecosystem is composed by a number of devices (both hardware and software)

allowing users to monitor their health status constantly. We have sensors measuring oxygen sat-

uration, hearth rate, and all the heart parameters (by performing an ECG); sensors communicate

with the developed Android application, that forwards the acquired data to a server. Such data

will be immediately analyzed by the main components of our system, that, through sophisticated

algorithms, are able to assess the patient’s health status. The assessment is provided to him/her,

and, in case of severe detected problems, a doctor is immediately informed, and, if necessary,

first aid services are alerted.

In the literature, in [4] and [5] specific systems are described that can be used to detect Atrial

Fibrillation and hearth anomalies in patients, via wearable devices, such as an Arduino linked

to a Bitalino Board or smart sensors embedded in dresses.

In our work, instead, we exploit medical-grade more precise ECG sensors, allowing the user

to autonomously perform a professional ECG with very accurate outcomes; additionally, these

are ready-to-use devices that the user does not need to assemble.

In [6], the authors describe a Multi-Agent system for E-Health that can be used to read and

analyze sensor values, and alert an administrator if health issues are detected. Our system

improves their work by adding wearable technology, thus providing the patient with the

possibility to monitor his/her health status in every situation, not only at home.

Moreover, in [7] the authors describe a method that can be adopted in order to detect the

Psoriasis on the patient’s skin, using k-means clustering, segmentation and bounding box

strategies. In our work, differently from them, we detected Psoriasis using AVG color detection,

image segmentation and clustering, obtaining, in addition, even the severity value of the psoriasis

detected on the hand.

In the majority of these works, even if they may appear similar to ours, they implement

stand-alone solutions with a single “brain", monitoring a limited number of situations; in

our work, instead, we created a smart-ecosystem, with more “brain-sectors" linked together,

each one specifically needed for some kind of calculations, that, together, have a very strong

computational power.

In summary, our contributions are listed in the following:

• We present a wearable smart-ecosystem, that can follow users wherever they go, even to

their job;

• We integrate Intelligent Agents, Complex Event Processing and Wearables in a joint

mobile application, leaving the computational power to the Server-side;

• We define a specific Image Processing algorithm, able to detect whether the user has

Psoriasis or not, which will be also extended to other pathologies in the near future.

2. System Architecture

Our system consists of six main components: User and Doctor Interfaces - Android App,

Database andWeb interface, Hardware, Intelligent agents, Complex Event Processing and Image

Processing.



Figure 1: Whole system workflow

The user and doctor interfaces consist in a mobile application, which is currently released

only for android devices, but that we are planning to customize for Apple devices too. Our

system’s “core" is the database, that, in our case, is a MySQL one. A web interface that runs

the main algorithm which acts as an effective “hub" linking together the Android Applications,

Intelligent agents, CEP, Image processing and the Database.

Our ecosystem encompasses a number of hardware devices (medical wearables), with the

advantage of being modular. In fact, being also equipped an Arduino, we can attach a number

of sensors that are very effective for our goals; we have already used Arduino with other

medical-related and wearable-related projects [8, 9], obtaining interesting results that improved

our awareness to use wearables in the medical field. We currently have one sensor attached to



Arduino (the pulse oximeter), and one sensor that is a single block (the ECG device), but we are

going to expand this collection in the near future. They both communicate to the mobile app

via Bluetooth.

Additionally, after an accurate search for an appropriate ECG device, supported by qualified

medical advice, we selected D-Heart1. Specifically, D-Heart is the first ECG device for smart-

phone that is simple to use, clinically reliable, portable and affordable. To sum up, Fig. 1 depicts

the entire workflow of our system.

2.1. Intelligent Agents

In our work, we use DALI in order to implement a system composed by intelligent agents. DALI

is an agent-oriented logical language derived from Prolog, and, similarly to it, is based on the

logic programming paradigm. DALI has been fully implemented, on the basis of a fully logical

semantics [10]. By analyzing data, our intelligent system is able to recognize the patient’s

state of well-being or discomfort in both short and long term; therefore, the system is able to

assess the seriousness of the situation and, if necessary, alert a human doctor or even call the

Emergency Service. Using DALI, we created two intelligent agents: the Patient_agent and the

Doctor_agent. The Patient_agent analyses the patient’s vital parameters (heart rate, saturation,

minimum and maximum pressure, temperature, weight) taken by wearable devices or by the

patient, and returns immediate feedback on each of them.

It also acts as an Ehealth-companion, reminding the user to take pills at the correct time, send-

ing a reminder for temperature, blood pressure and weight measurements. The Doctor_agent

receives messages from the Patient_agent, analyzes the communicated problem, e.g., fever or

tachycardia, and responds by suggesting a medication to take or, in case of serious danger, it

suggests going to the Emergency Room. Events currently detected by our DALI intelligent

agents are Angina Pectoris, Tachicardia, Bradhicardia, Hypoxia, Hypertension and Fever.

2.2. Complex Event Processing

The specific language that we use in order to carry out Complex Event Processing tasks extends

relational algebra [11] and the well-known Allen’s interval relationships [12]; specifically it is

named ISEQL [13], standing for Interval-based Surveillance Event Query Language. We exploit

this language so as to easily define the medical events we are interested in. Using ISEQL, we

are able to detect short-term and long-term events in patient’s ECGs.

2.2.1. Short-term event detection

A Short-term Event is an event to be detected within the context of a single ECG measurement.

To detect such events, we must analyze the ECG signal in depth using specific criteria stored

in the knowledge base and complying with the guidelines found in the literature [14]. As a

result, the events automatically discovered in this stage thanks to the D-Heart device2 are the

QT interval, the QTC interval, the RR interval, the QRS interval and the PR interval.

1https://www.d-heartcare.com/it/
2https://www.d-heartcare.com



Moreover, on top of such events, we define specific additional event models in ISEQL, aimed

at identifying possible anomalies in ECGs, thus extending the literature in the context of their

automatic analysis. More specifically, the events are modeled in ISEQL and associated with their

severities on a scale from 0 (lowest severity) to 3 (highest severity - in such a case, a medical

doctor is automatically alerted).

2.2.2. Long-term event detection

Working on aggregated data at a different resolution, such as examining the results of several

ECG measurements taken in specified wider temporal windows, allows a detailed long-term

analysis of the patient’s clinical history. In this paper, we focus on the detection of different

categories of long-term events; in fact, on the one hand we identify some possible long-term

anomalies exploiting ISEQL, and on the other hand we implement specific algorithms for

detecting the Atrial Fibrillation (AF) and theWolff-Parkinson-White (WPW) syndromes.

As regards the Atrial Fibrillation detection, we use the data that have been previously stored

in our ECG measurements, such as RR intervals and heart-rate.

To sum up, we obtain the HR values and the standard deviation of the RR intervals in 5

ECGs, and, after applying our specific algorithm, we detect an AF disorder in case the obtained

parameters are greater than a Threshold value3. The defined algorithm extends the one in [4],

that encodes useful information on how to diagnose early Atrial Fibrillation (AF) using ECG

measurements, with custom improvements and adaptations, via exploiting the full power of

ISEQL on interval data.

As regards the Wolff-Parkinson-White syndrome detection, we exploit the information

previously inferred from the ECG measurements, such as PR intervals and QRS complexes.

For this kind of study, we have partially used and adjusted the algorithm obtained from [15],

that contains useful information on how to diagnose Wolff-Parkinson-White syndrome (WPW)

using ECG measurements. To sum up, we extract the PR intervals and the QRS complexes of 5

ECGs, then we apply an interval detection strategy on these events, and, if the conditions are

met, we detect a WPW syndrome.

Additionally, exploiting the right cardinality constraint of ISEQL [16], the system is also able

to alert patient and medical doctors in case anomalies are identified in several measurements in

a relatively short temporal interval.

2.3. Image Processing

We also define an Image Processing algorithm in order to elaborate and extract features from

images. We used image processing in order to evaluate the condition of the patient’s hand,

and possibly diagnose the presence of Psoriasis. In order to correctly elaborate the image of a

person’s hand, and make it “visible" to the computer, we exploit one of the most used software

for Image elaboration, that is named ImageMagick4.

3Both the number of measurements and threshold values were suggested by medical doctors; clearly, we can easily

update them in case requirements will change.
4https://imagemagick.org



Our computer vision algorithm consists of three main steps. In the first one, we are going

to detect the presence of the AVG colour of the Psoriasis on the hand of the patient, with a

percentage of fuzzyness. In the second step, we fill the whole image with Black and White

colours, through the technique of image segmentation, depending on the presence of the

Psoriasis or not. In the third step, we cluster all the detected Psoriasis spots with a particular

area threshold, using the technique of Clustering. After applying this algorithm, we obtain a

certain number of psoriasis clusters detected; then, we are going to count their number and

their size, and provide a response to the user according to the resulting data.

3. Experimental Results

After developing the prototype, we made a set of tests to validate its correctness and validity.

So, we asked a doctor for assistance, asking for four patients with the following characteristics,

that should be doing our tests:

1. The first patient should be a person who suffered from none of the below pathologies, nor

other special or particular ones, being a “healthy" one. He should be a 45 years old male.

2. The second patient should be a person who suffered from Atrial Fibrillation, without other

special or particular pathologies, in order to allow us to correctly detect his pathology,

without being influenced by other factors. He should be a 45 years old male.

3. The third patient should be a person who suffered fromWolff-Parkinson-White syndrome,

without other special or particular pathologies, in order to allow us to correctly detect his

pathology, without being influenced by other factors. He should be a 45 years old male.

4. The fourth patient should be a female patient aged over 80, suffering from severe heart

failures and occasional angina, with comorbidities.

We also asked the doctor for pictures of a hand with Psoriasis and a hand without Psoriasis,

in order to test our image processing algorithm.

In order to get more precise results, we decided that a “blind" test would be more appropriate,

in order to really understand the potentialities of our newborn system. So, we performed the

first three tests like blind tests, the fourth one as a regular test, and the fifth one (the Psoriasis

test) as a regular image test. In our blind tests, the operator of the device does not know the

pathology of the person (s)he is examining, thus avoiding results contamination. In the regular

test, the operator of the device knows the pathologies of the person (s)he is examining because

those results are less “scientifically related" but more “development-related", so we decided to

have a regular test instead. In the Psoriasis test, 10 hand pictures are given to the machine,

some with psoriasis, some with no psoriasis, thus validating the capability of our machine to

correctly discover the disease.

3.1. Healty Patient Case Study

In the first case, the patient that the operator examined was the healthy one, without any

particular pathologies. He gave the patient the D-Heart device, the Arduino device, a pressure

measurement device, a thermometer, and the Android smartphone used for testing.



In this test the patient did five ECGs, one every 45 minutes; the collected data related to all

the ECGs were stored in the database. After running all the tests, the system was queried for

results. The tests resulted as expected, being the patient the healthy one, and in fact the system

did not discover any dangerous short-term or long-term events.

3.2. Atrial Fibrillation Case Study

In the second case, the patient that the operator examined was the one who suffers from Atrial

Fibrillation, without any other particular pathologies. He gave the patient the same testing

tools as the first patient. Also in this test the patient did five ECGs, one every 45 minutes.

Also in this case, the system confirmed that the patient suffers from Atrial Fibrillation, since

it detected the related short-term and long-term events. The detected short-term events are

listed in Table 1; as a result, there are a lot of “warnings", whose severity is 1, some dangerous

situations, indicated with severity 2, and only one very severe situation, indicated with severity

3, with the id 233. Since an event of high severity is detected, immediately after the ECG data

processing, the doctor is alerted. The long-term event detected, in this case, is the following:

“An Atrial Fibrillation was discovered. The AVG BPM is 118.2 and the STD RR is 300.66". The

system correctly detected all the short-term events, and, using ISEQL, it understood that the

patient suffers from Atrial Fibrillation.

3.3. Wolff-Parkinson-White syndrome Case Study

In the third case study, the patient that the operator examined was the one who suffers from

Wolff-Parkinson-White syndrome, without any other particular pathologies. He gave the patient

the same testing tools as the other patients. Also within this test, the patient did five ECGs, one

every 45 minutes.

In this case, the system, instead of detecting the WPW syndrome, discovered a “possible"

WPW syndrome. The short-term events detected are listed in Table 2; as a result, there are a

lot of “warnings", whose severity is 1, but no more severe situations detected; in this case, the

doctor is not alerted, being the situation not “urgent". The long-term event detected, in this

case, is the following: “A Potential Wolff-Parkinson-White syndrome was discovered. The AVG

PR is 108.4, the AVG QRS is 125.8 and the STD QRS is 2.31". The system correctly detected all

the short-term events, and, using ISEQL, it understood that the patient suffers from a possible

Wolff-Parkinson-White syndrome, not fully understanding the problem, but going very close to

detecting it.

3.4. Intelligent Agent Case Study

In the fourth case study, the patient that the operator examined was a female patient aged 85,

suffering from severe heart failures and occasional angina, with comorbidities. In this case,

differently from the previous ones, we are not going to do a precise diagnosis, but we are

just testing the system, with particular interest to DALI and the related Intelligent Agent. In

particular, we covered:

• The therapies (which medications at which time of the day).



Table 1

Atrial Fibrillation Case Study - short-term events detected

Ecg ID Name Type Value Description Severity

Ecg 1 212 Y hr 105 low tachycardia 1

213 Y qt 435 slightly long 1

214 Y qtc 450 long 2

215 Y rr 850 regular 0

216 Y qrs 123 slightly long 1

217 Y pr 201 slightly long 1

Ecg 2 218 Y hr 120 severe tachycardia 2

219 Y qt 350 regular 0

220 Y qtc 360 regular 0

221 Y rr 1450 slightly long 1

222 Y qrs 112 regular 0

223 Y pr 194 regular 0

Ecg 3 224 Y hr 122 severe tachycardia 2

225 Y qt 340 regular 0

226 Y qtc 350 regular 0

227 Y rr 1150 regular 0

228 Y qrs 114 regular 0

229 Y pr 195 regular 0

Ecg 4 230 Y hr 126 severe tachycardia 2

231 Y qt 346 regular 0

232 Y qtc 355 regular 0

233 Y rr 1650 too long 3

234 Y qrs 110 regular 0

235 Y pr 190 regular 0

Ecg 5 236 Y hr 118 low tachycardia 1

237 Y qt 345 regular 0

238 Y qtc 356 regular 0

239 Y rr 950 regular 0

240 Y qrs 111 regular 0

241 Y pr 180 regular 0

• The symptoms that can be treated by readjusting the therapies.

• The situations of danger/alarm that require immediate intervention of a doctor, or urgent

transportation to the hospital.

As a first step, the patient, aided by an assistant, since she is impractical with the use of

smartphones, inserted all the data into the system, using the Android application.

The data the patients inserted, are listed in Table 3.

As a result, the patient has two parameters that can indicate health problems, i.e., the QT

and the QTC intervals, which are slightly longer than normal ones. Then, the Intelligent Agent

started doing its elaborations and reminding features. As first reasoning, the intelligent agent

understood that the minimum pressure is too high, sending a notification to the patient’s

smartphone. After that, it continued with its reasonings, since it did not find anything else

relevant.

At the beginning of the next day, the system began sending notifications to the patient’s

smartphone. The first notification, which arrived at 7, had the following text: “You should

take Eutirox 50, quantity 1 capsule"; it means that the patient should take 1 pill of Eutirox

50, at 7:00. Later, it continued sending notifications to the patient, to remind her of the other



Table 2

Wolff-Parkinson-White syndrome Case Study - short-term events detected

Ecg ID Name Type Value Description Severity

Ecg 1 242 Z hr 70 regular 0

243 Z qt 345 regular 0

244 Z qtc 355 regular 0

245 Z rr 650 regular 0

246 Z qrs 123 slightly long 1

247 Z pr 110 slightly short 1

Ecg 2 248 Z hr 70 regular 0

249 Z qt 349 regular 0

250 Z qtc 350 regular 0

251 Z rr 654 regular 0

252 Z qrs 125 slightly long 1

253 Z pr 114 slightly short 1

Ecg 3 254 Z hr 70 regular 0

255 Z qt 349 regular 0

256 Z qtc 350 regular 0

257 Z rr 654 regular 0

258 Z qrs 129 slightly long 1

259 Z pr 110 slightly short 1

Ecg 4 260 Z hr 80 regular 0

261 Z qt 329 regular 0

262 Z qtc 350 regular 0

263 Z rr 640 regular 0

264 Z qrs 124 slightly long 1

265 Z pr 108 slightly short 1

Ecg 5 266 Z hr 80 regular 0

267 Z qt 345 regular 0

268 Z qtc 355 regular 0

269 Z rr 620 regular 0

270 Z qrs 128 slightly long 1

271 Z pr 100 slightly short 1

medicines that she should take. At 14:00, the system reminded the patient that she should take

the weight measurement, pressure measurement and temperature measurement. This time, the

measurements were “perfect", and the system did not detect any event. At 17:45, the patient did

not feel very well, and took the related measurements, registering a lowminimum pressure, with

a value of 55, and low maximum pressure, with a value of 89. At this point, the intelligent agent,

following its rules, noticed that the patient suffers from Hypertension, and, when both min and

max pressures are low, a dangerous situation may happen, so, after displaying a warning to the

patient, the system also alerted the doctor. The doctor briefly read the alert on the application,

and called the patient, telling her that an ECG is required. The patient, at this point, with the

help of an assistant, attached D-Heart and did an ECG, sending the values to the system. At

this point, the doctor read the ECG values, noting that were normal, with no particular issues,

and called the patient to reassure him, because it was just a low-pressure situation. As we can

detect from this last example, the intelligent agent acted as previsioned, helping the patient into

the home monitoring, with minimum effort needed by both patient and doctor.



Table 3

Elderly patient case study

Parameter Value

Name W

Weight 67

Age 85

Temperature 37

Max Pressure 130

Min Pressure 91

Saturation 97

Pathology Hypertension

Pathology Angina

BPM 87

QT 435

QTC 445

QRS 112

PR 192

RR 720

3.5. Hand Psoriasis Case Study

In the fifth case study, differently from the others, we examined ten pictures of the back of the

hands, given to us by the doctor. In 8 out of 10 cases, the pictures represented a hand with

Psoriasis, the other 2 pictures represented a hand with no psoriasis. In these test cases, we are

giving a diagnosis, thus detecting the hands in which psoriasis is present.

As a first step, we entered our Android application and began inserting the pictures of the

hand given by the doctor, one per time, in order to let the system do its elaborations. Later, we

exported and elaborated the database, in order to have a human-readable result, in the form

of a table; in this table, we can see the picture identifier, the number of clusters detected, the

diagnosis made by our system and the real diagnosis made from the doctor. The data are visible

in Table 4.

As we can see from Table 4, our system correctly detected 8 out of 8 cases of psoriasis. In

one of these, it detected possible psoriasis, since there were fewer clusters because the disease

was in an initial state, and, in another case, it detected Severe Psoriasis, being the disease in

a Severe situation. In the other 2 cases, the system correctly recognized that the hand is in a

regular stage, detecting 0 and 1 clusters for such cases.

3.6. Precision and Recall

In order to calculate precision for our experiments, we used the well-known Precision and Recall

formulas.

In the Healthy Patient test, reasoning with short-term events, we have 30 TruePositives results

(considering as TruePositive all the “regular" values), and 0 FalsePositives (irregular values,

because a healthy patient should not have those values far from normal ranges). Since we do not



Table 4

Psioriasis hand test

ID Clusters Machine Diagnosis Severity Real Diagnosis

1 29 Psoriasis 2 Psoriasis

2 45 Psoriasis 2 Psoriasis

3 33 Psoriasis 2 Psoriasis

4 19 Possible Psoriasis 1 Psoriasis

5 0 Regular 0 Regular

6 55 Severe Psoriasis 3 Psoriasis

7 39 Psoriasis 2 Psoriasis

8 1 Regular 0 Regular

9 23 Psoriasis 2 Psoriasis

10 43 Psoriasis 2 Psoriasis

have short-term events detected, we obtained a precision of 1, which is the maximum precision

possible. We also have a recall of 1, having also 0 FalseNegatives, which is the maximum recall

possible.

In the Atrial Fibrillation Patient test, reasoning with short-term events, following the algo-

rithm for the atrial fibrillation discovery previously mentioned, we should consider as True-

Positives results all the BPM values that are greater than 100. We cannot consider RR values

as TruePositives, FalsePositives or FalseNegatives, because we use the Standard Deviation in

order to detect AF. We should consider FalseNegatives all the BPM values that are smaller than

100. We do not have FalsePositives values at all. To sum up, also referring to Table 1, we have 5

TruePositives results, 0 FalseNegatives and 0 FalsePositives, thus obtaining a precision of 1, that

is the maximum precision possible. We also get a recall of 1, having also 0 FalseNegatives.

In the Wolff-Parkinson-White Patient test, reasoning with short-term events, following the

algorithm for the WPW discovery previously mentioned, we should consider as TruePositives

results all the PR values that are smaller than 120 and all the QRS complexes that are greater than

120. We cannot consider QRS values as TruePositives, FalsePositives or FalseNegatives, because

we use the Standard Deviation in order to detect WPW. We should consider FalseNegatives all

the PR values that are greater than 120 and all the QRS complexes that are smaller than 120.

We do not have FalsePositives values at all. To sum up, also referring to Table 2, we have 10

TruePositives results, 0 FalseNegatives and 0 FalsePositives, thus obtaining a precision of 1. We

also get a recall of 1, having also 0 FalseNegatives.

In the Psoriasis test, reasoning with short-term events, following the algorithm for the

Psoriasis discovery previously exposed, we should consider as TruePositives results all the

events that have a machine-diagnosis of Psoriasis (Psoriasis, Severe Psoriasis) and the patient

is currently affected by psoriasis. We should consider FalsePositives all the cases detected by

the machine as Psoriasis (Psoriasis, Severe Psoriasis), but the patient has not psoriasis. We

should consider FalseNegatives all the cases detected by the machine as Regular or Possible

Psoriasis, but the patient does have Psoriasis. To sum up, also referring to Table 4, we have 7

TruePositives results, 1 FalseNegatives and 0 FalsePositives, thus obtaining a precision of 1. We



Table 5

All tests summary

Healthy Atrial WPW Psoriasis

True Positives 30 5 10 7

False Positives 0 0 0 0

False Negatives 0 0 0 1

Precision 1 1 1 1

Recall 1 1 1 0.875

have a recall of 0.875, having 1 FalseNegatives element, that is the row with ID 4 on the Table 4.

Eventually, In Table 5, we can see a brief summary of all our experiments, summarizing all

the results of our tests, showing True Positives, False Positives, False Negatives, Precision and

Recall for each test. All the tests obtained a precision of 1, indicating the maximum proportion

of positive identifications is actually correct. Three out of four tests obtained a recall of 1,

indicating that, for these three tests the maximum proportion of actual positives was identified

correctly. For the other test, the Psoriasis detection one, we have a recall of 0.875, that, even

being a high value, it is not the maximum value available, thus, we can improve our algorithm

to obtain a higher recall value in the future.

4. Conclusion

In this paper, we have proposed an integrated framework aimed at actively supporting patient

monitoring by exploiting an innovative combination of wearables, DALI intelligent agents

and Complex Event Processing. Additionally, we also defined an effective image processing

algorithm for psoriasis detection. Experiments conducted on real patients confirm the validity

of the proposed approach.

The reader should notice that the health conditions and the case studies that we have discussed

(all of them discussed with medical doctors) have been selected only to the aim to develop and

test the system on solid ground. In the future, the system will be, again in concert with the

doctors, extended in many ways. The intelligent agent will become able to cope with many

other health issues; additional work will be also carried out to broaden the set of short-term

and long-term events detectable via ISEQL. Addtionally, our Psoriasis detection algorithm will

be able to automatically detect other skin diseases.
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Exploiting Probabilistic Trace Expressions for

Decentralized Runtime Verification with Gaps
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Abstract
Multiagent Systems (MASs) are distributed systems composed by autonomous, reactive,
proactive, heterogeneous communicating entities. In order to dynamically verify the behavior
of such complex systems, a decentralized solution able to scale with the number of agents is
necessary. When, for physical, infrastructural, or legal reasons, the monitor is not able to
observe all the events emitted by the MAS, gaps are generated. In this paper we present a
runtime verification decentralized approach to handle observation gaps in a MAS.

Keywords
Decentralized Runtime Verification, Probabilistic Trace Expressions, Observation Gaps, Multi-
agent Systems, Agent Interaction Protocols

1. Introduction and Motivations

Distributed Runtime Verification (DRV) is a relatively new research sub-field aimed at
designing fault-tolerant distributed algorithms that monitor other distributed algorithms,
with the end goal of developing lightweight software systems that are more efficient
that traditional verification techniques [1, 2]. The literature on DRV is almost limited
[3, 4, 5, 6, 7, 8] and becomes even more limited when we consider DRV of a special kind
of systems: multiagent systems (MASs [9]). In the MAS area, in fact, we are only aware
of our own previous works [10, 11, 12].

Another sub-field which is raising more and more attention in the RV area concerns
partial observability of the monitored events which can cause gaps in the event traces
[13, 14, 15, 16]. Also in this case, when we consider MASs as the target system of the
verification activity, we find very few works, all related with norm monitoring [17, 18].

This paper addresses the two issues above, decentralized runtime verification of partially
observable systems, in a MAS context. The findings presented in this work can be
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generalized and applied to other kinds of systems, but – for presentation purposes – we
concentrate our investigation on MASs.

The main source of inspiration for our work is the paper by Stoller et al. [14], where
the authors introduce runtime verification with state estimation. With respect to a
more standard RV approach, they are interested in checking system executions (traces)
containing gaps. A gap represents the absence of information in the trace of observed
events and corresponds to an execution point where the monitor knows that the system
emitted some event, but does not know which one. In offline RV gaps in the trace logs
are due to the process of sampling observed events in order to reduce the monitoring
overhead. Gaps can also be met in online RV, where the system behavior is analyzed
while the system is running and problems with the infrastructure, privacy and legal issues
that prevent the monitor to observe some kind of events, faults in the monitor observation
capabilities, may generate gaps. Although the problems raised by online and offline RV
with gaps share many similarities, the online setting is much more challenging. Each
time a gap is perceived, the monitor must make guesses on the possible actual events
that the gap represents and save all the states generated by these guesses. A possibly
huge logical tree-like structure with states as nodes, and moves from states to states as
edges, represents the open possibilities1. In offline RV, this logical tree-like structure can
be explored following a depth-first search, requiring a limited amount of memory. If the
RV takes place online, its exploration must follow a breadth-first strategy, with much
more space needed to save the states, as the final trace of events is unknown and the
levels of the structure are generated and explored at the same time. In order to cope
with the state space explosion due to guesses in the online RV scenario, we propose to
decentralize the monitoring activity.

RV decentralization is a very natural choice when the system under monitoring is a
MAS, which is distributed by definition, and may improve efficiency, as the verification
process can be spread on different machines improving performance; scalability, as under
some conditions depending on the protocol [12, 10] it is possible to associate one monitor
with each agent in the MAS, keeping under control the RV complexity even when the
number of agents grows; feasibility, as for physical/logical/legal reasons one single monitor
might not be able to observe all the events generated by the MAS.

The feature that is usually subject to verification (both static and dynamic) in a MAS
is its communicative behavior [19, 20, 21, 22, 23, 24, 25, 26, 27]. With respect to [14],
in this work we do not aim at verifying temporal properties. Rather, we want to check
the conformance of the MAS actual communicative behavior to an Agent Interaction
Protocol (AIP) that models the allowed interactions among agents, under the hypotesis
that some interactions could not be observed. The research question we address is thus
how to evaluate the probability that a MAS satisfies an AIP, in the presence of gaps.

In a recent paper [28] we introduced Probabilistic Trace Expressions (PTEs) and the
theory behind them. In this work we take a more pragmatical perspective and we show

1In the remainder we will use the term “branch” to denote paths in this logical structure, and we will
sometime use “states” meaning “the final states of all the possible branches”, when this does not generate
confusion.



how to use PTEs for decentralized RV of AIPs within MASs with gaps.

2. Background

Probabilistic Trace Expressions. Trace expressions [29, 30, 31, 32, 33, 34, 35, 36, 37]
are based on the notions of event and event type. We denote by E the fixed universe of
events subject to monitoring. An event trace over E is a possibly infinite sequence of
events in E, and a trace expression over E denotes a set of event traces over E. Trace
expressions are built on top of event types (chosen from a set ET), each specifying a
subset of events in E. A trace expression á ∈ T represents a set of possibly infinite event
traces, and is defined on top of the following operators:
∙ 𝜖 (empty trace), denoting the singleton set ¶𝜖♢ containing the empty event trace 𝜖.
∙ 𝜗:á (prefix), denoting the set of all traces whose first event 𝑒 matches the event type 𝜗,
and the remaining part is a trace of á .
∙ á1≤á2 (concatenation), denoting the set of all traces obtained by concatenating the
traces of á1 with those of á2.
∙ á1∧á2 (intersection), denoting the intersection of the traces of á1 and á2.
∙ á1∨á2 (union), denoting the union of the traces of á1 and á2.
∙ á1♣á2 (shuffle), denoting the set obtained by shuffling the traces of á1 with the traces of
á2.

Trace expressions support recursion through cyclic terms expressed by finite sets of
recursive syntactic equations, as supported by modern Prolog systems.

A probabilistic trace expression is a trace expression where event types have a proba-
bility associated with them [28], and its modeling and semantics are also implemented
in Prolog (SWI-Prolog, see the code available here, https://vivianamascardi.github.io/
Software/PTE.pl). PTEs are suitable to manage guesses in the presence of observation
gaps; in order for this management to work, we assume that each gap represents one

single unobserved event.
As an example, the probabilistic trace expression

á = 𝑒1[0.2]:á1∨𝑒2[0.8]:(á2♣á3)

represents the protocol where we can accept the event 𝑒1 with probability 0.2, or, the
event 𝑒2 with probability 0.8. If we consume the event 𝑒1, we go to the new state á1,
while, if we consume 𝑒2, we go to a state where we can have all possible interleaving of
á2 and á3. If there is a gap in the monitoring activity and the monitor is not able to
observe which event took place, it can nevertheless make its guesses which involve 𝑒1 and
𝑒2, associate a probability with each of them, and keep both possibilities.

Like a “normal” trace expression, a probabilistic trace expression á can be seen as the
current state of a protocol that started in some initial state áinit and reached á after 𝑛

events 𝑂1...𝑂n took place. These events moved áinit to á through intermediate states áq1,

áq2, ... , áqn = á . If we denote with á
O
⊃ á ′ the transition from state á to state á ′ due to

the event 𝑂 taking place and being observed, we may write
áinit

O1⊃ áq1

O2⊃ áq2

O3⊃ áq3...
On⊃ áqn, where áqn = á .

https://vivianamascardi.github.io/Software/PTE.pl
https://vivianamascardi.github.io/Software/PTE.pl


In order to properly manage probabilities, it is convenient to associate with á – in an
explicit and easily computable way – the probability of the protocol to have reached á

starting from áinit and having observed 𝑂1...𝑂n.
We define a “probabilistic trace expression state” the triple consisting of a trace

expression á , a sequence of events 𝑂1...𝑂n observed before reaching á , and the probability
Þτ that the protocol reached á . We represent the state with the notation ⟨á, Þtr, 𝑂1...𝑂n⟩.

Decentralized MAS Monitoring with DecAMon. In [10] we presented the DecAMon
algorithm to decentralize agent interaction protocols modeled using trace expressions.
There, we defined the notion of “monitoring safe” partition. A partition can be used to
drive the distribution process. To decentralize the monitoring activity, we project the
global AIP onto each subset of agents belonging to the partition, where by “projection”
we mean that we maintain only the interactions involving agents in the chosen subset.
In general, not all the partitions can be used for the RV decentralization. A partition
that can be used to decentralize the RV of a protocol is called “monitoring safe” and the
algorithm presented in [10] generates all the monitoring safe partitions for a given AIP.

Since under the conditions considered in this paper we may observe gaps, we could
not have only one single state representing the current situation of the protocol, like it
happens in our previous works; instead, we have to maintain all the states that may be
possibly reached “via the gaps”. As already anticipated, each state can be represented as
a tuple ⟨á, Þ, 𝑒𝑣𝑠⟩, where á is the PTE representing the current state of the protocol and
Þ is the joint probability that the sequence of events 𝑒𝑣𝑠 is compliant with á [28].

Let us name 𝑀0 the set of possible initial states of the monitor (as there may be more
than one). The number 0 stands for the 0𝑡ℎ iteration, since at the beginning we have not
consumed any event yet. We can first run DecAMon on the global AIP to find a good set
of monitoring safe partitions and, after that, we can use one of them to project the ás in
𝑀0 onto the subsets of the agents. Once we have obtained the distributed versions of the
initial ás via projection, we can generate one monitor for each partition, and decentralize
the RV.

The combination of decentralization and lack of information calls for a synchronized
management of gaps. Since each monitor has a different state representing its current
protocol evolution, when there is an observation gap, each monitor can have different
opinions about which are the correct events that might suitably “fill the gap”. The
local perspectives can be compared and used by the monitors to cut wrong guesses, and
hence wrong states, on the basis of distributed knowledge. Despite the overhead due to
synchronization, this approach may dramatically improve performance, as discussed in
the next sections.

3. Handling Gaps in Decentralized RV

Gaps represent lack of information, thus a point (or points) in the event trace where the
monitor does not know what event had been actually generated by the system under
monitoring. In the remainder we will write that “gaps can be observed”, in the sense that



a monitor can realize that something went wrong and that an event was generated by
the system, and not correctly observed. We also assume that, in a decentralized setting,
when one monitor “observes a gap”, all the monitors “observe a gap” as well. If this gap
does not involve the sub-system monitored by a monitor 𝑀 , the trace observed by 𝑀

will contain gap(𝑛𝑜𝑛𝑒): this notation means – from 𝑀 ’s point of view – “I am aware
that some event was generated by some component of the system that I am not in charge
of, and that the event was not correctly observed”. From a technical viewpoint, this
could be obtained by forcing one monitor to inform the others when it observes a gap.
This would require some shared clock among the monitors as, in order for our algorithm
to work, the gap must take place at the same time for all the monitors hence raising
clock synchronization issues. Given that these issues are well known and well studied
in distributed systems [38], we leave them out of our investigation. Being well studied
does not mean to be easy to face. Indeed, we are aware that the need of observing all
the gaps at the same time in a decentralized setting, represents a serious limitation of
our framework and we are working towards alternative, and more feasible, solutions.

When a centralized monitor observes a gap, since it is the only monitor checking the
event trace w.r.t. the AIP specification, it can make guesses on what the gap is and
reason on its own guesses, eventually tagging some of them as wrong due to successive
observations. When there are many monitors, each one monitoring a subset of the agents,
and hence a sub-protocol of the global AIP, each monitor can still suppose what the
observed gap is, but the reasoning on its suppositions must be shared with the others.
This sharing phase among the monitors is crucial, because it allows them to cut wrong
branches on the basis of what other monitors suppose, or what they are fully sure of.

Let us consider two monitors 𝑚1 and 𝑚2 that observe a gap. Given that the protocols
driving the two monitors are different, although being derived via projection from the
same global protocol, 𝑚1 might suppose that the events admissible for filling the observed
gap are 𝑒1 and 𝑒2, while 𝑚2 could instead suppose that admissible events are 𝑒2 and 𝑒3.
Both 𝑚1 and 𝑚2 must keep track of these possibilities in their local knowledge bases,
and – so far – they do not need to share they guesses.

Let us now suppose that in the current state of 𝑚1, in the branch where 𝑒1 was
supposed to have taken place, the only successive possible event is 𝑒4, while in the branch
for 𝑒2 the only possible event is 𝑒5. If, after the gap, 𝑚1 observes 𝑒5, it can cut the branch
where the gap was associated with 𝑒1, because 𝑒5 would not be allowed after 𝑒1. The gap
before 𝑒5, that could be filled in principle by 𝑒1 and 𝑒2, becomes bound - “without any
doubt”2 - to 𝑒2. After having found the right value for the gap and cut one branch, 𝑚1

informs 𝑚2 allowing it to cut the branch where the value for that gap was guessed to be

2Modulo the assumption that observed events are compliant with the foreseen protocol. Gaps may
inevitably generate false negatives. In this case, m1 assumes that the gap was e2 because this would
be consistent with the successive observation of e5 and with the protocol to be respected. If the gap
were any other event, a protocol violation would have taken place and m1 should have raised a protocol
monitoring exception. Depending on the protocol, the violation could be recognized later on, or never.
Suppose for example an infinite protocol where only as are allowed. A gap will be necessarily filled with
a even if the actual event was b, and if the successive observed events are all as, the violation will never
be discovered.



𝑒3. In this way, both 𝑚1 and 𝑚2 can continue the verification process supposing that the
unobserved event represented by the gap was 𝑒2, with some given probability due to the
probability associated with 𝑒2 in the PTE modelling the protocol.

Before presenting the decentralized monitoring algorithm, we make some considerations
on the kind of gaps a monitor can observe. So far, we considered generic events. This is
correct and consistent with the general approach presented in [28], but in a MAS scenario
where PTEs model agent interaction protocols we can be more specific. In this scenario,
in fact, the universe of events is 𝑀𝑠𝑔𝑠, namely the universe of the possible messages
among agents. Such special events can be represented as 𝑎1

c
=⇒ 𝑎2, meaning that agent

𝑎1 sends a message to 𝑎2 with content 𝑐. Since messages are composed by (at least)
three mandatory components, sender, receiver and content, there can be many partially
instantiated gaps such as:

• gap(𝑎1

_
=⇒ 𝑎2), where the content of the message is unknown;

• gap(_ m
=⇒ 𝑎2), where the sender is unknown;

• gap(𝑎1

m
=⇒ _), where the receiver is unknown.

Although, for sake of clarity, in the sequel we consider gaps where neither the sender,
nor the receiver, nor the content are known (total absence of information), all the
combinations of “information holes” are possible, and partially instantiated gaps may be
exploited to reduce branches due to guesses. The algorithm presented in the next section
can be easily adjusted to take partially instantiated gaps into account.

Synchronizing Decentralized Gaps Management. We present the algorithm used by
the decentralized monitors to synchronize the gaps management, in order to cut useless
branches and check the compliance of interactions with the protocol. When an event is
generated by the system, two different situations can take place.

Case 1: The event is not a gap

If the event is not a gap, each monitor that observed it can use the event for updating its
local state(s). If some branches have been removed as in the previous example involving
𝑚1 and 𝑚2, the monitor has to inform the other monitors of the associations between
gaps and events that are not admissible any longer. This phase can be reiterated until
all the monitors have cut all the possible wrong brnches, and have nothing more to say.
After this synchronizations stage, the monitoring process continues in the normal way.

Case 2: The event is a gap

To keep the presentation simple, we assume that gaps are observed by all the monitors
at the same time. Each monitor guesses the events admissible to fill the gap, according
to its local states. If the gap is partially instantiated (some of its components were
correctly observed, like the sender, or the content, or both), the monitor can use this
information to reduce the set of possible candidate events.

The two cases can be seen as a reduce and extend stages, respectively. When the
monitor observes a fully instantiated event it can invalidate zero, one or more branches.
If the invalid branches contain gaps, the monitor can also invalidate the associations



between these gaps and the guessed events, and can allow the other monitors to invalidate
these associations as well via communication. On the other hand, observation of gaps
generates as many branches as the events that, according to the AIP, could fill the gap.
We can formalize this intuition in the following way.

Given 𝑀0 as the set of global states ¶⟨á1, Þ1, []⟩, ..., ⟨án, Þn, []⟩♢.

1. Distribute 𝑀0 with respect to a given partition 𝑃 = ¶¶𝑎𝑔𝑠1♢, ..., ¶𝑎𝑔𝑠np♢♢, project-
ing the states onto subsets of the agents involved (the function Π projects an AIP
á onto a set of agents 𝑎𝑔𝑠 removing all the events whose sender and receiver do not
belong to 𝑎𝑔𝑠), obtaining

𝑀0,{𝑎𝑔𝑠1} = ¶⟨Π(á1, ¶𝑎𝑔𝑠1♢), Þ1, []⟩, ..., ⟨Π(á𝑛, ¶𝑎𝑔𝑠1♢), Þ𝑛, []⟩♢

...

𝑀0,{𝑎𝑔𝑠np} = ¶⟨Π(á1, ¶𝑎𝑔𝑠𝑛𝑝♢), Þ1, []⟩, ..., ⟨Π(á𝑛, ¶𝑎𝑔𝑠𝑛𝑝♢), Þ𝑛, []⟩♢

2. Each monitor observes only the event messages involving the agents belonging to
its set 𝑎𝑔𝑠i:

a) if the event message is a gap, the monitor guesses what it could be and
generates as many states as the possible events (extend);

b) if the event message is ground, the monitor can cut branches, and in this
case it communicates with other monitors the gap values that are no longer
admissible (reduce).

3. If, after observation of an event or because of information received from other
monitors, the set of possible current states for a monitor 𝑚 becomes empty, 𝑚

stops the monitoring process, informs all the other monitors, and they also stop
monitoring. The absence of possible current states for a monitor is due to a protocol
violation that took place, preventing at least one monitor to move a further step.
So, the system checked does not satisfy the agent interaction protocol and the
associated probability is 0.

4. Else,
a) if there are no events left to analyze, the monitoring process ends and the

resulting probability is evaluated (see after how);
b) else, repeat from step 2.

To be clearer, in step 2, given the current event message, each monitor queries its
current state following the PTE operational semantics presented in [28] in order to check
if the event message is admissible or not. In the updating phase, the monitors inform the
others trying to cut not admissible branches.

If the monitoring process ends without violations detected and there are no more
events left to analyze, each monitor stops with at least one admissible branch. Each
monitor states its own evaluation of the probability that the system’s behavior satisfies
the agent interaction protocol. This probability can be computed summing up all the
joint probabilities contained in all the final states, corresponding to the last nodes of
the admissible branches. This leads to having one estimated value for each monitor: we



can adopt different strategies to summarize the final, and global, one, such as taking the
smallest (largest) value among all those estimated by all the monitors, or a weighted
means where weights model each monitor’s trustability, or other domain-dependent
strategies.

4. Example

We present a simple example helping us to show how the extend and reduce steps work.
We consider a MAS involving four agents: ¶𝑎𝑙𝑖𝑐𝑒, 𝑏𝑜𝑏, 𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 𝑑𝑎𝑣𝑒♢. The set of events
of our interest is the set of messages that these agents can use to communicate with each
other.

Given the PTE

á = á1∨á2

á1 = 𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏[0.7]:(𝑏𝑜𝑏
𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:á1♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖)

á2 = 𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔4

=⇒ 𝑑𝑎𝑣𝑒[0.3]:(𝑐ℎ𝑎𝑟𝑙𝑖𝑒
𝑚𝑠𝑔5

=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.7]:á2)

We decentralize á on each single agent, obtaining3:

𝑀0,{𝑎𝑙𝑖𝑐𝑒} = ¶⟨Π(á, ¶𝑎𝑙𝑖𝑐𝑒♢), 1, []⟩♢ = ¶⟨á𝑎𝑙𝑖𝑐𝑒, 1, []⟩♢

𝑀0,{𝑏𝑜𝑏} = ¶⟨Π(á, ¶𝑏𝑜𝑏♢), 1, []⟩♢ = ¶⟨á𝑏𝑜𝑏, 1, []⟩♢

𝑀0,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒} = ¶⟨Π(á, ¶𝑐ℎ𝑎𝑟𝑙𝑖𝑒♢), 1, []⟩♢ = ¶⟨á𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 1, []⟩♢

𝑀0,{𝑑𝑎𝑣𝑒} = ¶⟨Π(á, ¶𝑑𝑎𝑣𝑒♢), 1, []⟩♢ = ¶⟨á𝑑𝑎𝑣𝑒, 1, []⟩♢

where

á𝑎𝑙𝑖𝑐𝑒 = á1alice
∨á2alice

á1alice
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏[0.7]:á1alice

á2alice
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4

=⇒ 𝑑𝑎𝑣𝑒[0.3]:á2alice

á𝑏𝑜𝑏 = á1bob
∨á2bob

á1bob
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏[0.7]:(𝑏𝑜𝑏
𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:á1♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖)

á2bob
= 𝑏𝑜𝑏

𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.7]:á2bob

á𝑐ℎ𝑎𝑟𝑙𝑖𝑒 = á1charlie
∨á2charlie

á1charlie
= 𝑏𝑜𝑏

𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:á1charlie

á2charlie
= 𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝑚𝑠𝑔5

=⇒ 𝑑𝑎𝑣𝑒[0.3]:á2charlie

á𝑑𝑎𝑣𝑒 = á1dave
∨á2dave

3The initial probability of each state is 1, since we do not want to influence the probability evaluation
process (multiplication of probabilities).



á1dave
= 𝑏𝑜𝑏

𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖

á2dave
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4

=⇒ 𝑑𝑎𝑣𝑒[0.3]:(𝑐ℎ𝑎𝑟𝑙𝑖𝑒
𝑚𝑠𝑔5

=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.7]:á2dave
)

Let us suppose that the monitors observe a 𝑔𝑎𝑝 now. Each monitor moves to a new
set of states corresponding to the possible values for the 𝑔𝑎𝑝.

𝑀0,{𝑎𝑙𝑖𝑐𝑒}
𝑔𝑎𝑝
⊃ ¶⟨á1alice

, 0.7, [gap(𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏)]⟩,

⟨á2alice
, 0.3, [gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4

=⇒ 𝑑𝑎𝑣𝑒)]⟩,

⟨á𝑎𝑙𝑖𝑐𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩♢ = 𝑀1,{𝑎𝑙𝑖𝑐𝑒}

𝑀0,{𝑏𝑜𝑏}
𝑔𝑎𝑝
⊃ ¶

⟨(𝑏𝑜𝑏
𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:á1♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖), 0.7, [gap(𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏)]⟩,

⟨á2bob
, 0.7, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒)]⟩,

⟨á𝑏𝑜𝑏, 1, [gap(𝑛𝑜𝑛𝑒)]⟩♢ = 𝑀1,{𝑏𝑜𝑏}

𝑀0,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}
𝑔𝑎𝑝
⊃ ¶

⟨á1charlie
, 0.6, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒)]⟩,

⟨á2charlie
, 0.3, gap(𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝑚𝑠𝑔5

=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨á𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩♢ = 𝑀1,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒},

𝑀0,{𝑑𝑎𝑣𝑒}
𝑔𝑎𝑝
⊃ ¶

⟨𝜖, 0.4, gap(𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨(𝑐ℎ𝑎𝑟𝑙𝑖𝑒
𝑚𝑠𝑔5

=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.7]:á2dave
), 0.3, gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4

=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨á𝑑𝑎𝑣𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩♢ = 𝑀1,{𝑑𝑎𝑣𝑒}

Since they observed a 𝑔𝑎𝑝, the monitors do not know what the actual event was.
Because of this, they have to generate more branches, where each branch represents a
possible value for the gap. This is the extend step.

Let us now suppose that the monitors observe event 𝑚𝑠𝑔2. Since 𝑚𝑠𝑔2 is a ground
event, everything is known about it, in particular the monitors know that its sender is
𝑏𝑜𝑏 and its receiver is 𝑐ℎ𝑎𝑟𝑙𝑖𝑒. Since the monitors observe only the gaps and the events
that involve the agents in the partition they are in charge for, the only monitors that
observe 𝑚𝑠𝑔2 are 𝑀1,¶bob♢ and 𝑀1,¶charlie♢.

By consuming 𝑚𝑠𝑔2, the first iteration of the algorithm leads to:

𝑀1,{𝑏𝑜𝑏}
𝑏𝑜𝑏

msg2
=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒

⊃ ¶

⟨á1♣𝑏𝑜𝑏
𝑚𝑠𝑔3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖, 0.42, [gap(𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏), 𝑏𝑜𝑏
𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩

♢ = 𝑀2,{𝑏𝑜𝑏}



𝑀1,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}
𝑏𝑜𝑏

msg2
=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒

⊃ ¶

⟨á1charlie
, 0.36, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒), 𝑏𝑜𝑏
𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩,

⟨á1charlie
, 0.6, [gap(𝑛𝑜𝑛𝑒), 𝑏𝑜𝑏

𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩

♢ = 𝑀2,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}

It is interesting to analyze what happened in 𝑀2,¶bob♢, where the reduce step took place.
In fact, the ground event 𝑚𝑠𝑔2 makes the other two branches not valid anymore. More in
detail, the second branch was ⟨á2bob

, 0.7, [gap(𝑚𝑠𝑔3)]⟩, and á2bob
does not accept the event

𝑚𝑠𝑔2 and cannot move to a new state. In the same way, the PTE in the third branch
⟨ábob, 1, gap(𝑛𝑜𝑛𝑒)⟩ is ábob, and ábob cannot accept the event 𝑚𝑠𝑔2 either. Even though
this information seems important for monitor 𝑀2,¶bob♢ only, it is actually of interest also
for the other monitors. In fact, it allows all of them to know “without any doubt” that
the only event that can be associated with the first gap is 𝑚𝑠𝑔1, since it is the gap value
associated with the only possible branch of 𝑀2,¶bob♢. The monitor 𝑀2,¶bob♢ can inform
the other monitors that the only admissible value for the gap is 𝑚𝑠𝑔1. The monitors’
new states become:

𝑀2,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒} = ¶⟨á1charlie
, 0.6, [gap(𝑛𝑜𝑛𝑒), 𝑏𝑜𝑏

𝑚𝑠𝑔2

=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩♢

𝑀1,{𝑎𝑙𝑖𝑐𝑒} = ¶⟨á1alice
, 0.7, [gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1

=⇒ 𝑏𝑜𝑏)]⟩♢

𝑀1,{𝑑𝑎𝑣𝑒} = ¶⟨á𝑑𝑎𝑣𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩♢

This example shows how the knowledge of a monitor can have a positive impact on
the knowledge of the other monitors. In general, this positive impact can be obtained
any time one monitor discovers that one branch is no longer valid and can hence
invalidate the associations of events with gaps therein. This information may trigger
many communication iterations among the monitors, because, when one monitor is
updated it can also “invalidate one branch” and the related gap-events associations, and
may need to inform the others of some association which is no longer possible. In the
previous example, one single iteration was enough.

As we already anticipated, the proposed approach may lead to false negatives, due to
an optimistic approach of the monitors that stubbornly assume that observed events
are compliant with the protocol, if there is just one possibility left to make such an
assumption. Also in this example, the monitors gave the correctness of the ground event
𝑚𝑠𝑔2 (the second event observed) for granted. But let us suppose that the actual event
masked by the 𝑔𝑎𝑝 was not 𝑚𝑠𝑔1, but 𝑚𝑠𝑔4, and that the successive message 𝑚𝑠𝑔2 was
sent from 𝑏𝑜𝑏 to 𝑐ℎ𝑎𝑟𝑙𝑖𝑒 by mistake and did not comply with the protocol. In this scenario,
since the monitors do not know for sure what the first 𝑔𝑎𝑝 was, it is reasonable to consider
𝑚𝑠𝑔2 a valid message and hence cut the branch where the gap has been supposed to be
𝑚𝑠𝑔4. This is a problem intrinsically related to the state estimation approach, since until
it is acceptable to observe an event in a state, the monitors keep track of the related
branch. Only when a monitor, observing an event, loses all its branches it can conclude



Table 1
Average time of the centralized and decentralized algorithms; “sh. PTE” stands for “shuffled sub-PTE”.

# sh. PTEs # agents for sh. PTE # operations for sh. PTE Centralized [sec] Decentralized [sec]

10 10 20 6.64 1.26

10 10 15 8.26 1.04

10 5 20 9.85 1.49

10 5 15 9.92 1.28

10 15 15 14.86 1.23

10 5 10 18.35 1.08

10 15 10 20.25 1.61

10 10 10 29.59 1.98

15 5 15 93.34 2.73

15 15 10 116.61 3.56

10 15 20 126.31 25.32

15 10 10 283.70 4.14

15 5 10 349.30 2.23

20 10 10 355.90 3.99

15 5 20 363.67 5.83

20 5 15 558.59 9.28

20 5 20 801.37 7.82

15 20 10 952.43 12.36

20 5 10 1223.85 10.64

20 15 10 1340.29 9.57

20 20 10 1727.26 2.89

that a protocol violation took place because some wrong assumption on gaps – confirmed
by successive observations – had been made in the past. This delay in the error detection,
which could also be infinite, can be reduced introducing a threshold on the probability
that a branch must have to be considered valid. In this way, if after observing an event
the probability associated with a branch becomes lower than a chosen threshold, the
monitor can cut that branch and make error detection possibly quicker.

5. Experimental results

In our experiments we have considered the four following features:

1. the number of agents involved in the MAS we want to verify at runtime;
2. the number of shuffled sub-PTEs due to shuffle operators ♣ in the AIP: we name

shuffled sub-PTE each portion of the PTE composed via a ♣, so for example
á3 = 𝑎𝑙𝑖𝑐𝑒

msg1

=⇒ 𝑏𝑜𝑏[0.7]:𝜖 ♣ 𝑏𝑜𝑏
msg3

=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖 consists of 2 shuffled sub-PTEs; we
point out that when decentralizing the monitoring, we can associate one different
monitor with each shuffled sub-PTE, as shuffled sub-PTE are independent one from
the other and can be monitored in a fully decentralized way;

3. the number of operators for each shuffled sub-PTE in the AIP;
4. the number of gaps contained in the analyzed traces.

In Table 1, we report the results of our experiments. For each row, we keep the number
of shuffled sub-PTE, agents and operators fixed, while we change the length of the traces
and the percentage of gaps inside each trace. For each row we executed many different
runs and we have measured the total time required for recognizing the set of 300 randomly
generated traces. We changed the number of gaps contained inside the traces and we
tested both the centralized [28] and the decentralized algorithms. In the following, we
reported the graphics obtained from such executions.



Concerning the figures, the traces used in our experiments contain only gaps (namely, we
run experiments in the worst possible scenario), so the algorithm makes only expansions
and never reductions. We chose traces with only gaps to stress the algorithms as much
as possible. In real scenarios gaps should be the exceptions, and perfectly observable
events the norm.

In Figures 1 and 2, both the centralized and the decentralized algorithms seem to show
linear complexity with respect the number of the agents involved, even if the decentralized
algorithm has better performances.
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Figure 1: Centralized algorithm:

changing number of agents.
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Figure 2: Decentralized algorithm:

changing number of agents.

In Figures 3 and 4, we can observe that the complexity of the centralized algorithm
seems to grow in a quadratic way, while the decentralized one seems to grows linearly.
This can be explained by the decentralization of the monitoring of shuffled sub-PTEs, as
if we add one operator to each shuffled sub-PTE, the monitor in charge for that shuffled
sub-PTE will need to manage one more operator only, whereas the centralized monitor
will cope with as many new operators as the shuffled sub-PTEs in the trace expression.
We point out that we use “seems to” to reflect that the complexities emerging from the
figures have not been computed on the basis of the algorithm, but have been estimated on
the basis of the experiments, and the behaviour in situations involving a limited number
of agents, operators, shuffled sub-PTEs, might not be the actual asymptotic behaviour of
the algorithm.

In Figures 5 and 6, we can appreciate the real advantages of decentralization, as –
from the figures – it seems that we have an exponential complexity for the centralized
algorithm and a pseudo-quadratic complexity for the decentralized one. We emphasise
that in the decentralized case (Figure 6) we were able to run experiments with 40 shuffled
sub-PTEs, while in the centralized case we had to stop with half shuffled sub-PTEs,
and with an execution time hundred times higher. The number of shuffled sub-PTEs
is indeed the feature which most impacts the algorithms performance, and this in not
a surprise; intuitively, when we add a new shuffled sub-PTE we have to interleave it
with all the already existent shuffled sub-PTEs. In the centralized case, this brings to a
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changing number of operators.

state explosion, while in the decentralized one, since we can decentralize the monitoring
of each shuffled sub-PTEs, we simply have to add a new monitor. In this way, we can
avoid the state explosion, even if the presence of a new monitor increases the exchange
of messages among the monitors needed to synchronize information about gaps.
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So far, our experiments are simulated: although trace expressions and the RML
language4 that spun from them [37] have been adopted to model and dynamically verify
behavioural patterns involving interaction among Jason and JADE agents [39], robotic
systems [40], IoT systems [41] and programs developed in Node.js and Node-RED [37],
their probabilistic extension, PTEs, was not tested on real setting yet.

The code for running our experiments can be found in the PTE repository on GitHub,
https://vivianamascardi.github.io/Software/PTE.pl.

4https://rmlatdibris.github.io/, accessed on June 2022.
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By calling the generate_mas goal, we can generate one simulated PTE with some
features, for example generate_mas(5, 3, 4, Partition, T) unifies T with a PTE
with 5 branches, 3 randomly generated agents involved in each branch, and 4 randomly
selected operators (such as shuffle, union, etc) for each branch, and Partition with
a partition of T into sub-PTEs to be monitored in a decentralized way. Then, the T

and Partition variables unified with ground temrs can be used as arguments of the
create_output_file goal that generates a csv file containing all the data needed for
making the experiments presented in this section.

In create_output_file(ID, T, MaxLength, NTests, MinProbNoise, MaxProbNoise,
MinProbMsgNoise, MaxProbMsgNoise, Partition), ID is the csv file name to be gener-
ated, T and Partition must be unified with a ground PTE and with a partition into
sub-PTEs, respectively, by calling generate_mas, MaxLength is the maximum length of
the trace to analyze, NTests is the number of tests to be repeated, to have more robust
and reliable results, MinProbNoise and MaxProbNoise define the probability range to
have gaps in the generated and analyzed trace, MinProbMsgNoise and MaxProbMsgNoise

define the probability range to have gaps in the observed message.

6. Conclusions and Future Work

In this paper we presented a distributed approach to runtime verification where we may
lack some pieces of information about observed events. With respect to standard runtime
verification, the state estimation approach allows us to be more reliable, especially in
scenarios where partial or total absence of information is frequent.

For the sake of clarity, we considered only totally uninstantiated gaps. This choice has
been made to make the development of monitors easier. Naturally, the presence of part
of information about the event could be used by the monitors in order to cut useless
branches. We will extend our implementation to cope with partially instantiated gaps.

Another future work will be to consider a threshold in order to cut branches that are
unreasonable to maintain, as the probability to be correct is too low. Fixed a threshold,
a monitor will be able to remove all the branches with a joint probability associated with
them lower than the chosen threshold. This will bring the advantage of anticipating the
error detection and to prune useless branches related to unreasonable possibilities.
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Abstract
We propose a refutation calculus to check the unprovability of a formula in Gödel-Dummett logics. From

refutations we can directly extract countermodels for unprovable formulas, moreover the calculus is

designed so to support a forward proof-search strategy that can be understood as a top-down construction

of a model.

1. Introduction

With the term Gödel-Dummett logics we refer to the family of intermediate logics GDk seman-

tically characterised by linear Kripke models of height at most k and the logicGD characterised

by linear Kripke models. The logics GDk were originally introduced by Gödel [1] to study

the logics with k-valued matrices semantics, while GD was introduced by Dummett [2] to

characterize the logic with infinite valued matrix. Gödel-Dummett logics have been extensively

studied for their relations with fuzzy logics [3] and for their computational interpretations [4, 5].

This led to the development of an articulate family of calculi and proof-search strategies for

these logics [6, 5, 7, 8, 9, 10].

In this paper we address the problem of defining a logical calculus oriented to generate

countermodels for invalid formulas for Gödel-Dummett logics; we exploit the approach based

on inverse methods we have developed for Intuitionistic Propositional Logic and the modal

logics K and S4 [11, 12, 8, 13]. The inverse method, introduced by Maslov [14], is a saturation

based theorem proving technique closely related to (hyper)resolution [15]; it relies on a forward

proof-search strategy and can be applied to cut-free calculi enjoying the subformula property.

Given a goal, a set of instances of the rules of the calculus at hand is selected; such specialized

rules are repeatedly applied in the forward direction, starting from the axioms (i.e., the rules

without premises). Proof-search terminates if either the goal is obtained or the set collecting

the proved facts saturates (nothing new can be added). The inverse method has been originally

applied to Classical Logic and successively extended to some non-classical logics [16, 15, 17, 18].

In all of the mentioned papers, the inverse method has been exploited to prove the validity of a

formula in a specific logic. In [12] we launched a new perspective designing a forward calculus

to derive the unprovability of a goal formula in Intuitionistic Propositional Logic and to generate

countermodels for unprovable formulas. Differently from other approaches to countermodel
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construction for non-classical logics [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], where countermodels

are obtained as a byproduct of a failed proof-search in a direct or refutation calculus, we define

refutation calculi directly supporting model extraction and oriented to forward reasoning. Our

approach focuses on countermodel construction; indeed, the rules of the refutation calculus

are inspired by the Kripke semantics of the logic at hand and the forward refutation-search

procedure can be understood as a top-down method to build a countermodel for the given goal

formula. Differently from backward proof-search procedures, forward methods re-use sequents

and do not replicate them, accordingly the generated models contain few duplications and are

in general very concise.

In this paper we present the refutation calculus for Gödel-Dummett logics, we prove its

soundness and completeness and we show how to extract countermodels from its derivations.

2. Preliminaries

Formulas, denoted by uppercase Latin letters, are built from an infinite set of propositional

variables 𝒱 = {p, q, p1, p2, . . . }, the constant ⊥ and the connectives ∧, ∨, ⊃; moreover, ¬A
stands for A ⊃ ⊥. Let G be a formula; Sf(G) is the set of all subformulas of G (including

G itself). By Sl(G) and Sr(G) we denote the subsets of left and right subformulas of G

(a.k.a. negative/positive subformulas of G [30]). Formally, Sl(G) and Sr(G) are the smallest

subsets of Sf(G) such that:

• G ∈ Sr(G);

• A⊙B ∈ Sx(G) implies {A,B} ⊆ Sx(G), where ⊙ ∈ {∧,∨} and Sx ∈ {Sl, Sr};

• A ⊃ B ∈ Sl(G) implies B ∈ Sl(G) and A ∈ Sr(G);

• A ⊃ B ∈ Sr(G) implies B ∈ Sr(G) and A ∈ Sl(G).

For Sx ∈ {Sl, Sr} we set (ℒ⊃ denotes the set of formulas of the kind A ⊃ B):

Sx
At(G) = Sx(G) ∩ 𝒱 Sx

⊃(G) = Sx(G) ∩ ℒ⊃

Sx
At,⊃(G) = Sx

At(G) ∪ Sx
⊃(G) SfAt(G) = Sl

At(G) ∪ Sr
At(G)

A (rooted) Kripke model𝒦 is a quadruple ⟨W,≤, ρ, V ⟩whereW is a finite and non-empty set

(the set of worlds),≤ is a reflexive and transitive binary relation overW , the world ρ (the root of

𝒦) is the minimum ofW w.r.t. ≤, and V : W ↦→ 2𝒱 (the valuation function) is a map obeying

the persistence condition: for every pair of worlds α and β of 𝒦, α ≤ β implies V (α) ⊆ V (β);
the triple ⟨W,≤, ρ⟩ is called (Kripke) frame. We write α < β if α ≤ β and α ̸= β; moreover,

we write β ≥ α (β > α resp.) to mean that α ≤ β (α < β resp.). A world β is an immediate

successor of α in 𝒦 if α < β and there is no world γ such that α < γ < β.

The valuation V is extended into a forcing relation, denoted by ⊩, between worlds of 𝒦 and

formulas as follows:

𝒦, α ⊩ p iff p ∈ V (α), ∀p ∈ 𝒱 𝒦, α ⊮ ⊥

𝒦, α ⊩ A ∧B iff 𝒦, α ⊩ A and 𝒦, α ⊩ B 𝒦, α ⊩ A ∨B iff 𝒦, α ⊩ A or 𝒦, α ⊩ B

𝒦, α ⊩ A ⊃ B iff ∀β ≥ α, 𝒦, β ⊩ A implies 𝒦, β ⊩ B.



We sometimes write α ⊩ A instead of 𝒦, α ⊩ A, leaving understood the model 𝒦 at hand

when it is clear from the context. By α ⊩ Γ we mean that α ⊩ A for every A ∈ Γ. A formula

A is valid in the frame ⟨W,≤, ρ⟩ iff for every valuation V , ρ ⊩ A in the model ⟨W,≤, ρ, V ⟩.
Propositional Intuitionistic Logic (IPL) is the set of formulas valid in all frames. Accordingly,

if there is a model 𝒦 such that ρ ⊮ A (here and below ρ designates the root of 𝒦), then A is

not IPL-valid; we call 𝒦 a countermodel for A. We write Γ ⊩ A iff, for every model 𝒦, ρ ⊩ Γ
implies ρ ⊩ A; thus, A is IPL-valid iff ∅ ⊩ A.

Given a frame ⟨W,≤, ρ⟩, the height h(α) of α ∈ W , is defined as follows:

h(α) =

{︃

0 if α is a maximal world ofW w.r.t. ≤

1 + max{ h(β) | α < β } otherwise

The height of 𝒦, denoted by h(𝒦), is the height of its root.
We say that a Kripke frame ⟨W,≤, ρ⟩ is linear iff ≤ is a linear order over W ; i.e., for every

pair of worlds α and β, either α ≤ β or β ≤ α.

Given a formula G we say that a Kripke model 𝒦 = ⟨W,≤, ρ, V ⟩ is G-separable iff, for every

pair of worlds α and β inW , the following separation property holds:

• if α < β, then there is p ∈ Sl
At(G) ∩ Sr

At(G) such that 𝒦, α ⊮ p and 𝒦, β ⊩ p.

Let Θ be a set of formulas and let us consider the formulas P andN defined by the following

grammar, where A ∈ Θ and F is any formula

P ::= A | P ∧ P | F ∨ P |P ∨ F | F ⊃ P

N ::= A | N ∨N | F ∧N | N ∧ F

The positive closure of Θ, denoted by 𝒞l+(Θ), is the smallest set containing the formulas P ; the

negative closure of Θ, denoted by 𝒞l−(Θ), is the smallest set containing the formulas N . The

following properties can be easily proved:

(𝒞l1) If Θ1 ⊆ Θ2, then 𝒞l+(Θ1) ⊆ 𝒞l+(Θ2) and 𝒞l−(Θ1) ⊆ 𝒞l−(Θ2).

(𝒞l2) If 𝒦, α ⊩ A, for every A ∈ Θ, and P ∈ 𝒞l+(Θ), then 𝒦, α ⊩ P .

(𝒞l3) If 𝒦, α ⊮ A, for every A ∈ Θ, and N ∈ 𝒞l−(Θ), then 𝒦, α ⊮ N .

The logics GDk and GD

In this paper we consider the Gödel-Dummett logics GDk (k ≥ 0) and GD defined as follows

(see [31]):

• GDk is the set of formulas valid in linear models 𝒦 such that h(𝒦) ≤ k;

• GD =
⋂︀

k≥0GDk.

We remark that IPL ⊂ GD ⊂ · · · ⊂ GD2 ⊂ GD1 ⊂ GD0 = CPL, where CPL is the set of

classically valid formulas.



3. The GD-refutation calculus

The forward refutation calculusRGD(G) is a calculus to infer the unprovability of a formula

G (the goal formula) in GDk and it is designed to support forward refutation-search (for a

presentation of forward calculi we refer to [15]). The calculus acts onRGD(G)-sequents1 having
the form Γ ⇏k Λ ; ∆ where:

• k ≥ 0, Γ ⊆ Sl
At,⊃(G), Λ ⊆ Sl

At(G) ∩ Sr
At(G), and ∆ ⊆ Sr

At,⊃(G);

• if k = 0, then Λ = ∅.

The rank of σ = Γ ⇏k Λ ; ∆, denoted by Rn(σ), is k. We will see that, whenever there exists

a refutation 𝒟 of σ in the calculus RGD(G), from 𝒟 we can extract a model containing a world

α such that h(α) = k and:

• 𝒦, α ⊩
⋀︀

Γ and 𝒦, α ⊮
⋁︀

∆; moreover, for every A ⊃ B ∈ Γ, 𝒦, α ⊮ A;

• if k > 0, then Λ is the set of propositional variables forced in the immediate successor of α

and not in α.

The rules ofRGD(G) are displayed in Fig. 1. We point out that the formulas introduced in the

conclusion of the rules in the left (side of the sequents) must belong to Sl(G) and the formulas

introduced in the right must belong to Sr(G). AnRGD(G)-sequent σ is saturated if none of the

rules L ⊃ and R ⊃ can be applied to σ. As a consequence of the side condition, the application

of the rule Succ is delayed until a saturated sequent is get. The successor rule Succ moves the

propositional variables in Λ′ from the left side of sequent to the right side; in countermodel

construction, an application of the Succ rule corresponds to a downward expansion of a model,

obtained by adding a new root ρ′ below the current root ρ; the propositional variables in Λ′ are

forced in ρ and not in ρ′. Note that, given a rule and the sequent in the premise, we can build

different instances of the rule according with the non-deterministic choices described in the

side-condition of the rule. E.g., we can generate a different instance of L ⊃ having Γ ⇏0 · ; ∆
in the premise, for every A ⊃ B ∈ Sl(G) such that A ⊃ B ̸∈ Γ and A ∈ 𝒞l−(∆). This also
holds for the axiom-rule; we get a different axiom for every possible partition (ΓAt,∆At) of
SfAt(G). A proof tree of the calculusRGD(G) is a tree havingRGD(G)-sequents as nodes and
built according to the rules ofRGD(G) (see e.g. [30] for a formal definition). Note that all the

proof trees of RGD(G) are linear. We introduce some definitions:

• 𝒟 is an RGD(G)-refutation of σ iff 𝒟 is a proof tree of RGD(G) having σ as root sequent; the

rank of 𝒟 is the rank of σ (Rn(𝒟) = Rn(σ)).

• 𝒟 is an RGD(G)-refutation of G iff 𝒟 is an RGD(G)-refutation of Γ ⇏k Λ ; ∆ and G ∈
𝒞l−(∆ ∪ Λ).

• ⊢k
G G iff there is an FRJ(G)-refutation 𝒟 of G such that Rn(𝒟) ≤ k.

1In refutation calculi sequents are sometimes called anti-sequents (see,e.g., [27]).



Ax
ΓAt ⇏0 · ; ∆At,⊥

ΓAt ∪∆At = SfAt(G)

ΓAt ∩∆At = ∅

Γ ⇏0 · ; ∆
L ⊃

A ⊃ B,Γ ⇏0 · ; ∆

A ⊃ B ̸∈ Γ ∪∆

A ∈ 𝒞l−(∆)

Γ ⇏k Λ ; ∆
L ⊃

A ⊃ B,Γ ⇏k Λ ; ∆

A ⊃ B ̸∈ Γ ∪∆

A ∈ 𝒞l−(∆ ∪ Λ)

B ∈ 𝒞l+(Γ ∪ Λ)

Γ ⇏k Λ ; ∆
R ⊃

Γ ⇏k Λ ; ∆, A ⊃ B

A ⊃ B ̸∈ ∆ ∪∆

A ∈ 𝒞l+(Γ)

B ∈ 𝒞l−(∆ ∪ Λ)

Γ ⇏k Λ ; ∆
Succ

Γ ∖ Λ′ ⇏k+1 Λ′ ; ∆,Λ

Γ ⇏k Λ ; ∆ is saturated

∅ ⊂ Λ′ ⊆ Γ ∩ 𝒱

Figure 1: The refutation calculusRGD(G).

Example 1 Let us consider the following formula G:

G = A ∨ (p ⊃ r) ∨B ∨ (C ⊃ (p ∨ ¬p))

A = ¬(q ∧ r) B = (¬¬p ∧ (p ⊃ q)) ⊃ q C = B ⊃ (¬¬p ∧ q)

We search for anRGD(G)-derivation building a database of proved sequents according with the

naive recipe of [15]: we start by inserting all the axioms; then we enter a loop where, at each

iteration, we apply all the possible rules to the sequents collected in previous steps. The loop

ends if either a sequent Γ ⇏k Λ ; ∆ with G ∈ 𝒞l−(∆ ∪ Λ) is generated or no new sequent can

be added to the database (the database is saturated). Fig. 2 shows the fragment of the database

containing the sequents needed to get the RGD(G)-derivation of G. In the example, we denote

with σ(j) the sequent at line (j) of Fig. 2. As an example, the sequent σ(2) is obtained by applying

the rule R ⊃ to the sequent σ(1), i.e,:

p, q, r ⇏0 · ; ⊥
R ⊃

p, q, r ⇏0 · ; ⊥, ¬p

recalling that ¬p = p ⊃ ⊥; note that, p ∈ 𝒞l+({p, q, r}) and ⊥ ∈ 𝒞l−({⊥}). As for sequent
σ(3) it is obtained by applying the L ⊃ rule to σ(2):

p, q, r ⇏0 · ; ⊥, ¬p
L ⊃

p, q, r ⇏0 · ; ⊥, ¬p, A

where A = ¬(q ∧ r) = (q ∧ r) ⊃ ⊥ , note that ⊥ ∈ 𝒞l−({⊥}) and q ∧ r ∈ 𝒞l+({p, q, r}).
Sequent σ(5) is obtained applying Succ to σ(4) by moving r from left to right; similarly, σ(7)



G = A ∨ (p ⊃ r) ∨B ∨ (C ⊃ (p ∨ ¬p))

A = ¬(q ∧ r) B = (¬¬p ∧ (p ⊃ q)) ⊃ q C = B ⊃ (¬¬p ∧ q)

Sl
At(G) = { p, q, r } Sl

⊃(G) = { C, ¬¬p, p ⊃ q }

Sr
At(G) = { p, q, r } Sr

⊃(G) = {A, p ⊃ r, B, C ⊃ (p ∨ ¬p), ¬p }

p, q, r ⇏0 · ; ⊥ Ax(1)

p, q, r ⇏0 · ; ⊥, ¬p R ⊃ (1)(2)

p, q, r ⇏0 · ; ⊥, ¬p, A R ⊃ (2)(3)

¬¬p, p, q, r ⇏0 · ; ⊥, ¬p, A (*) L ⊃ (3)(4)

¬¬p, p, q ⇏1 r ; ⊥, ¬p, A Succ (4)(5)

¬¬p, p, q ⇏1 r ; ⊥, ¬p, A, p ⊃ r (*) R ⊃ (5)(6)

¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r Succ (6)(7)

p ⊃ q, ¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r L ⊃ (7)(8)

p ⊃ q, ¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r, B R ⊃ (8)(9)

C, p ⊃ q, ¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r, B L ⊃ (9)(10)

C, p ⊃ q, ¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r, B, C ⊃ (p ∨ ¬p) (*) R ⊃ (10)(11)

Figure 2: Building the RGD(G)-refutation of G; p-sequents are marked by (*).

is obtained applying Succ to σ(6) by moving p and q from left to right and moving r to the

rightmost zone. We have marked with * the premises of Succ that, as we discuss later, play
a role in the construction of the countermodel. Note that sequent σ(11) meets the property

G ∈ 𝒞l−(∆ ∪ Λ). The tree-like structure of the RGD(G)-refutation of G is displayed in the left

of Fig. 3. ♢

We introduce the following relations between RGD(G)-sequents:

• σ1
ℛ
↦→0 σ2 iff ℛ is a rule of RGD(G) having premise σ1 and conclusion σ2;

• σ1 ↦→0 σ2 iff there exists a ruleℛ such that σ1
ℛ
↦→0 σ2;

• σ1
−
↦→0 σ2 iff there exists a ruleℛ ≠ Succ such that σ1

ℛ
↦→0 σ2;

• ↦→* (resp.
−
↦→*) is the reflexive and transitive closure of ↦→ (resp.

−
↦→*).

The following properties can be easily proved (||Θ|| denotes the cardinality of the set Θ)



Lemma 1 Let σ1 = Γ1 ⇏k1 Λ1 ; ∆1 and σ2 = Γ2 ⇏k2 Λ2 ; ∆2 be two RGD(G)-sequents
such that σ1 ↦→* σ2. Then:

(i) k1 ≤ k2.

(ii) Γ1 ∩ ℒ⊃ ⊆ Γ2 ∩ ℒ⊃ and Γ2 ∩ 𝒱 ⊆ Γ1. Moreover, if k1 = k2 then Γ1 ⊆ Γ2 and

Γ2 ∩ 𝒱 = Γ1 ∩ 𝒱 .

(iii) If k1 = k2, then Λ1 = Λ2 and ∆1 ⊆ ∆2. If k1 < k2, then ∆1 ∪ Λ1 ⊆ ∆2 and Λ2 ⊆ Γ1.

(iv) k2 ≤ k1 + ||Γ1 ∩ 𝒱||.

By Lemma 1, we get:

Proposition 1 The relation ↦→0 on RGD(G)-sequents is terminating.

Proof. Each application of rules L ⊃ and R ⊃ introduces a new subformula of G in the

conclusion, thus
−
↦→0 is terminating, Accordingly, an infinite ↦→0-chain starting from Γ ⇏k Λ ; ∆

should contain infinitely many applications of rule Succ. This is not possible, since every

application of rule Succ increases by 1 the rank of a sequent and, by Lemma 1(iv), the rank of

any sequent in the chain is bounded by k + ||Γ ∩ 𝒱||. We conclude that ↦→0 is terminating. □

4. Soundness

Soundness ofRGD(G) is stated as follows:

Theorem 1 (Soundness of RGD(G)) ⊢k
G G implies G ̸∈ GDk.

To prove this, we show that from an RGD(G)-refutation 𝒟 of G we can extract a countermodel

Mod(𝒟) for G such that h(Mod(𝒟)) = Rn(𝒟).
Let 𝒟 anRGD(G)-refutation and let σ be a sequent occurring in 𝒟; σ is a p-sequent (prime

sequent) iff σ is saturated or σ is the root sequent of 𝒟. Let Mod(𝒟) = ⟨P(𝒟), ≤, ρ, V ⟩
where:

• P(𝒟) is the set of all p-sequents occurring in 𝒟;

• for every σ1, σ2 ∈ P(𝒟), σ1 ≤ σ2 iff σ2 ↦→* σ1;

• ρ is the root of 𝒟;

• V maps a p-sequent Γ ⇏k Λ ; ∆ to the set Γ ∩ 𝒱 .

Then, since RGD(G)-refutations are linear, Mod(𝒟) is a linear model; note that, by Lemma1(ii),

σ1 ≤ σ2 implies V (σ1) ⊆ V (σ2), hence the definition of V is sound. We call Mod(𝒟) the
model extracted from 𝒟. For every sequent σ occurring in 𝒟, let φ(σ) be the p-sequent in 𝒟
immediately below σ, namely:

φ(σ) = σp iff σp ∈ P(𝒟) and σ
−
↦→* σp

It is easy to check that:



Axσ(1)
R ⊃

σ(2)
R ⊃

σ(3)
L ⊃

σ
*

(4)
Succσ(5)
R ⊃

σ
*

(6)
Succσ(7)
L ⊃

σ(8)
R ⊃

σ(9)
L ⊃

σ(10)
R ⊃

σ
*

(11)

σ(11):

σ(6): p, q

σ(4): p, q, r sequents labeled by (*) are p-sequents

σ(j) refers to the sequent at line (j)

φ(σj) =

⎧

⎪

⎨

⎪

⎩

σ(4) j = 1, 2, 3, 4

σ(6) j = 5, 6

σ(11) j = 7, 8, 9, 10, 11

Figure 3: The RGD(G)-derivation of G and the extracted countermodel.

• p-sequents are fixed points of φ, i.e., σp ∈ P(𝒟) implies φ(σp) = σp;

• φ is a surjective map from the set of sequents of 𝒟 onto P(𝒟);

• σ1 ↦→* σ2 implies φ(σ2) ≤ φ(σ1);

• h(φ(σ)) = Rn(σ).

We call φ the map associated with 𝒟; note that Mod(𝒟) is G-separable.

Example 2 The modelMod(𝒟G) and the related map φ are shown in Fig. 3. The bottom world

is the root and σ < σ′ iff the world σ is drawn below σ′. For each σ, we display the set V (σ).
As an example, V (σ4) = {p, q, r}. It is easy to check that σ(11) ⊮ G. ♢

The following lemma is the main step to prove the soundness theorem:

Lemma 2 Let 𝒟 be anRGD(G)-refutation, letMod(𝒟) be the model extracted from 𝒟 and φ

the map associated with 𝒟. For every sequent σ = Γ ⇏k Λ ; ∆ occurring in 𝒟, the following

properties hold.

(i) For every C ∈ Γ,Mod(𝒟), φ(σ) ⊩ C . Moreover, if C = A ⊃ B, thenMod(𝒟), φ(σ) ⊮
A.

(ii) For every C ∈ ∆ ∪ Λ,Mod(𝒟), φ(σ) ⊮ C .

Proof. By induction on the height of σ in𝒟, taking into account the closure properties (𝒞l1)-(𝒞l2)
and Lemma 1. □

Let ⊢k
G G. Then, there exists an RGD(G)-refutation 𝒟 of σ = Γ ⇏k′ Λ ; ∆ such that k′ ≤ k

and G ∈ 𝒞l−(∆ ∪ Λ). Let Mod(𝒟) = ⟨P,≤, ρ, V ⟩ and φ the associated map. We have

h(Mod(𝒟)) = k′ ≤ k and φ(σ) = ρ; by Lemma 2(ii), we get Mod(𝒟), ρ ⊮ C , for every

C ∈ ∆ ∪ Λ. Since G ∈ 𝒞l−(∆ ∪ Λ), by property (𝒞l3) of negative closures Mod(𝒟), ρ ⊮ G,

hence G ̸∈ GDk. This proves the soundness ofRGD(G) (Theorem 1).



5. Completeness

We prove the completeness of RGD(G):

Theorem 2 (Completeness ofRGD(G)) G ̸∈ GDk implies ⊢k
G G.

The proof goes along the following lines. First we show that we can use a G-separable coun-

termodel of G of height k to build anRGD(G)-refutation of G with rank k at most. Then, we

prove that, given a formula G ̸∈ GDk, there exists a G-separable model 𝒦 = ⟨K,≤, ρ, V ⟩ of
height at most k such that 𝒦, ρ ⊮ G.

The following properties of saturated sequents can be easily proved.

Lemma 3 Let σ = Γ ⇏k Λ ; ∆ be a saturated RGD(G)-sequent. Then:

(i) If k = 0 and A ⊃ B ∈ Sl(G) and A ∈ 𝒞l−(∆), then A ⊃ B ∈ Γ.

(ii) If A ⊃ B ∈ Sl(G) and A ∈ 𝒞l−(∆ ∪ Λ) and B ∈ 𝒞l+(Γ ∪ Λ), then A ⊃ B ∈ Γ.

(iii) If A ⊃ B ∈ Sr(G) and A ∈ 𝒞l+(Γ) and B ∈ 𝒞l−(∆ ∪ Λ), then A ⊃ B ∈ ∆.

Lemma 4 For everyRGD(G)-sequent σ, there exists a unique saturatedRGD(G)-sequent σ′

such that σ
−
↦→* σ

′.

Proof. Let 𝒮G be the set of all the RGD(G)-sequents and let us consider the Abstract Reduction

System 𝒜G = ⟨𝒮G,
−
↦→⟩ (see e.g. [32]). By Proposition 1, 𝒜G is terminating; the irreducible

elements of 𝒜G are the saturated sequents. Moreover, one can easily check that 𝒜G is locally

confluent; indeed, if σ
−
↦→ σ1 and σ

−
↦→ σ2, there exists σ

′ such that σ1
−
↦→ σ′ and σ2

−
↦→ σ′. By

Newman’s Lemma [32], 𝒜G is confluent, and this proves the assertion. □

Let σ be anRGD(G)-sequent; by σ* we denote the unique saturatedRGD(G)-sequent such

that σ
−
↦→* σ

* (thus, if σ is saturated, we have σ* = σ).

Let 𝒦 = ⟨W,≤, ρ, V ⟩ be a G-separable model. For every α ∈ W , we define the saturated

RGD(G)-sequent SatG(α) associated with α by induction on h(α).

• h(α) = 0.

SatG(α) = ( ΓAt
⇏0 · ; ∆

At⊥ )*
ΓAt = { p ∈ Sl

At(G) | 𝒦, α ⊩ p }

∆At = { p ∈ Sr
At(G) | 𝒦, α ⊮ p }

• h(α) > 0.

Let β be the immediate successor of α, let SatG(β) = Γ ⇏k Λ ; ∆ and let

Λβ = { p ∈ Sl
At(G) ∩ Sr

At(G) | 𝒦, β ⊩ p and 𝒦, α ⊮ p }

Note that Λβ is not empty (indeed, 𝒦 is G-separable). We set:

SatG(α) = ( Γ ∖ Λβ ⇏k+1 Λβ ; ∆,Λ )*



Example 3 Let G be defined as in Ex. 1. Below we display a G-separable model 𝒦 consisting

of three worlds α0, α1, α2; for each αj , the saturated set SatG(αj) coincides with one of the

saturated sequents occurring in the refutation in Fig. 2.

α2:

α1: p, q

α0: p, q, r

SatG(α0) = ¬¬p, p, q, r ⇏0 · ; ⊥, ¬p, A (σ(4))

SatG(α1) = ¬¬p, p, q ⇏1 r ; ⊥, ¬p, A, p ⊃ r (σ(6))

SatG(α2) = C, p ⊃ q, ¬¬p ⇏2 p, q ; ⊥, ¬p, A, p ⊃ r, r, B, C ⊃ (p ∨ ¬p) (σ(11))

♢

Lemma 5 Let 𝒦 = ⟨W,≤, ρ, V ⟩ be a G-separable model, let α ∈ W and SatG(α) = Γ ⇏k

Λ ; ∆. Then:

(i) k = h(α).

(ii) If p ∈ Sl
At(G) and 𝒦, α ⊩ p, then p ∈ Γ.

(iii) If p ∈ Sr
At(G) and 𝒦, α ⊮ p, then p ∈ ∆ ∪ Λ.

(iv) There exists anRGD(G)-refutation of SatG(α).

(v) If C ∈ Sl(G) and 𝒦, α ⊩ C , then C ∈ 𝒞l+(Γ).

(vi) If C ∈ Sr(G) and 𝒦, α ⊮ C , then C ∈ 𝒞l−(∆ ∪ Λ).

Proof. Points (i)-(iv) easily follow by induction on h(α). We prove (v) and (vi) by a main

induction hypothesis (IH1) on h(α) and a secondary induction hypothesis (IH2) on |C|. Note
that, by point (i), we have k = h(α).

(C1) h(α) = 0.

We have k = 0, hence Λ = ∅. Let C ∈ Sl(G) such that 𝒦, α ⊩ C; we show C ∈ 𝒞l+(Γ).
If C ∈ 𝒱 , by point (ii) we get p ∈ Γ, hence p ∈ 𝒞l+(Γ). Let C = A ∧ B. Then, 𝒦, α ⊩ A

and 𝒦, α ⊩ B. By (IH2), we get A ∈ 𝒞l+(Γ) and B ∈ 𝒞l+(Γ), hence A ∧ B ∈ 𝒞l+(Γ). The
case C = A ∨ B is similar. Let C = A ⊃ B. If 𝒦, α ⊩ B, by (IH2) we get B ∈ 𝒞l+(Γ),
hence A ⊃ B ∈ 𝒞l+(Γ). Let us assume 𝒦, α ⊮ B. Then 𝒦, α ⊮ A hence, by (IH2), we get

A ∈ 𝒞l−(∆). By point Lemma 3(i) it follows that A ⊃ B ∈ Γ, hence A ⊃ B ∈ 𝒞l+(Γ). This
concludes the proof of (v).



Let C ∈ Sr(G) such that 𝒦, α ⊮ C ; we show C ∈ 𝒞l−(∆). If C ∈ 𝒱 , by point (iii) we get

C ∈ ∆, hence C ∈ 𝒞l−(∆). Let C = A ∧ B. Then, 𝒦, α ⊮ A or 𝒦, α ⊮ B. According to the

case, by (IH2) we getA ∈ 𝒞l−(∆) orB ∈ 𝒞l−(∆), henceA∧B ∈ 𝒞l−(∆). The caseC = A∨B
is similar. Let C = A ⊃ B. We have 𝒦, α ⊩ A and 𝒦, α ⊮ B. By (IH2), we get A ∈ 𝒞l+(Γ)
and B ∈ 𝒞l−(∆). By Lemma 3(iii) it follows that A ⊃ B ∈ ∆, hence A ⊃ B ∈ 𝒞l+(∆). This
concludes the proof of (vi).

(C2) h(α) > 0.

Let β be the immediate successor of α (thus, h(β) = h(α)− 1) and let:

SatG(β) = Γ′
⇏k−1 Λ

′ ; ∆′

Λβ = { p ∈ Sl
At(G) ∩ Sl

At(G) | 𝒦, β ⊩ p and 𝒦, α ⊮ p }

We have:

SatG(α) = ( Γ′ ∖ Λβ ⇏k Λβ ; ∆
′,Λ′ )* Γ′ ∖ Λβ ⊆ Γ ∆′ ∪ Λ′ ⊆ ∆

Let C ∈ Sl(G) such that 𝒦, α ⊩ C; we show C ∈ 𝒞l+(Γ). The cases C ∈ 𝒱 , C = A ∧ B

and C = A ∨ B can be proved as in the case (C1). Let C = A ⊃ B. If 𝒦, α ⊩ B then,

by (IH2), B ∈ 𝒞l+(Γ), which implies A ⊃ B ∈ 𝒞l+(Γ). Let us assume 𝒦, α ⊮ B; we show that

A ⊃ B ∈ Γ. Since α < β, it holds that 𝒦, β ⊩ A ⊃ B. By (IH1), A ⊃ B ∈ 𝒞l+(Γ′), hence
B ∈ 𝒞l+(Γ′) or A ⊃ B ∈ Γ′. In the latter case, since A ⊃ B ∈ Γ′ ∖ Λβ and Γ′ ∖ Λβ ⊆ Γ, we
get A ⊃ B ∈ Γ. Let us consider the former case (namely, B ∈ 𝒞l+(Γ′)). From Γ′ ∖ Λβ ⊆ Γ,
it follows that Γ′ ⊆ Γ ∪ Λβ , hence B ∈ 𝒞l+(Γ ∪ Λβ). Since 𝒦, α ⊩ A ⊃ B and 𝒦, α ⊮ B, it

holds that 𝒦, α ⊮ A hence, by (IH2), A ∈ 𝒞l−(∆ ∪ Λ). We can apply Lemma 3(ii), and infer

that A ⊃ B ∈ Γ. Having proved A ⊃ B ∈ Γ, we get A ⊃ B ∈ 𝒞l+(Γ), and this concludes the

proof of point (v).

LetC ∈ Sr(G) such that𝒦, α ⊮ C ; we showC ∈ 𝒞l−(∆∪Λ). The casesC ∈ 𝒱 , C = A∧B

andC = A∨B can be proved as in the case (C1). LetC = A ⊃ B; we show thatA ⊃ B ∈ ∆∪Λ.
Since K,α ⊮ A ⊃ B, there exists γ ∈ W such that α ≤ γ and 𝒦, γ ⊩ A and 𝒦, γ ⊮ B. If

γ = α, by (IH2) we get A ∈ 𝒞l+(Γ) and B ∈ 𝒞l−(∆ ∪ Λ). By Lemma 3(iii), it follows that

A ⊃ B ∈ ∆. Let us assume α < γ. Then, β ≤ γ, hence 𝒦, β ⊮ A ⊃ B. By (IH1), we

get A ⊃ B ∈ 𝒞l−(∆′ ∪ Λ′), which implies A ⊃ B ∈ ∆′ ∪ Λ′. Since ∆′ ∪ Λ′ ⊆ ∆, we get

A ⊃ B ∈ ∆. Having proved that A ⊃ B ∈ ∆, it follows that A ⊃ B ∈ 𝒞l−(∆ ∪ Λ), and this

concludes the proof of point (vi). □

To conclude the proof of completeness, we need to prove that:

Lemma 6 If G ̸∈ GDk, then there exists a countermodel 𝒦 for G such that h(𝒦) ≤ k and 𝒦
is G-separable.

Proof. We give a sketch of the proof. Let us assume G ̸∈ GDk. Then, there exists a model

𝒦1 = ⟨W1,≤1, ρ1, V1⟩ such that 𝒦1, ρ1 ⊮ G and h(ρ1) ≤ k. We define the countermodel 𝒦 in

two steps. Firstly, we define the model 𝒦2 obtained from 𝒦1 by adding to each set V1(α) the



propositional variables in Sl
At(G) ∖ SrAt(G). Secondly, we get 𝒦 by filtrating 𝒦2. The model

𝒦2 = ⟨W2,≤2, ρ2, V2⟩ is defined as follows:

W2 = W1 ≤2=≤1 ρ2 = ρ1

∀α ∈ W1, V2(α) =
(︁

V1(α) ∪ (SlAt(G) ∖ SrAt(G))
)︁

∖ (SrAt(G) ∖ SlAt(G))

By induction on |C|, we can prove that:

(1) for every α ∈ W1 and C ∈ Sl(G), 𝒦1, α ⊩ C implies 𝒦2, α ⊩ C ;

(2) for every α ∈ W1 and C ∈ Sr(G), 𝒦1, α ⊮ C implies 𝒦2, α ⊮ C .

Let us introduce the following relation between worlds of W2:

α ∼ β iff V2(α) ∩ SfAt(G) = V2(β) ∩ SfAt(G)

It is easy to check that:

• ∼ is an equivalence relation;

• If α ≤2 β and α′ ∼ α and β′ ∼ β then α′ ∼ β′ or α′ <2 β
′.

We turn 𝒦2 into a G-separable model 𝒦 by collapsing ∼-equivalent worlds. For α ∈ W2, let

[α] denote the equivalence class of α (w.r.t. ∼) and letW be the quotient ofW2. By the above

properties, the model 𝒦 = ⟨W,≤, ρ, V ⟩ can be defined as follows:

≤= { ([α], [β]) | α ≤2 β } ρ = [ρ2]

∀α ∈ W2, V ([α]) = V2(α) ∩ SfAt(G)

By induction on |C|, we can prove that:

(3) For every α ∈ W2 and C ∈ Sf(G), 𝒦2, α ⊩ C iff 𝒦, [α] ⊩ C .

We show that 𝒦 is G-separable. Let [α] < [β]. Then, α ≤2 β and α ̸∼ β. Thus, that there exists

p ∈ V2(β) ∖ V2(α), and this implies p ∈ Sl(G) ∩ Sr(G). Since 𝒦1, ρ1 ⊮ G and G ∈ Sr(G),
by (2) and (3) we get 𝒦, ρ ⊮ G, hence 𝒦 is a countermodel for G. Finally, we observe that

h(𝒦) ≤ h(𝒦2) = h(𝒦1) = k. □

Let us assume G ̸∈ GDk. By Lemma 6, there exists a model 𝒦 = ⟨K,≤, ρ, V ⟩ such that

𝒦, ρ ⊮ G, h(ρ) ≤ k and 𝒦 is G-separable. Let SatG(ρ) = Γ ⇏k′ Λ ; ∆. By Lemma 5(i),

k′ = h(ρ) ≤ k and there exists an RGD(G)-refutation of SatG(ρ). Since 𝒦, ρ ⊮ G, by

Lemma 5(vi) we get G ∈ 𝒞l−(∆ ∪ Λ). We conclude ⊢k
G G, and this proves the completeness

theorem. As a corollary, we get

Theorem 3 G ̸∈ GD iff there exists anRGD(G)-refutation of G.



6. Conclusions

In this paper we have introduced a forward calculus RGD(G) to derive the non-validity of a

goal formula G in Gödel-Dummett logics. From anRGD(G)-refutation of G we can extract a

countermodel for G. As for the proof-search strategy, we have presented the naive forward

strategy of [15], we leave as future work the investigation of clever strategies (e.g., using

subsumption to reduce redundancies as those discussed in [8]) and the implementation of the

calculus exploiting the full-fledged Java Framework JTabWb [33]. The refinement of the forward

proof-search strategy and the implementation are key step to compare our approach with the

ones presented in [34, 9, 10]. We also aim to extend our approach to other intermediate logics.
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Abstract. The concept of Place in Geography and related fields has a
complex definition involving different facets, ranging from its aspect and
setting (e.g., buildings, shops, and the surrounding environment), to its
functional semantics and to the sentiments it may evoke. Over the last
years, researchers focused on identifying explicit and hidden semantics
behind places and their reciprocal similarities. In this article, we used
the Cresswell’s definition of place, which takes into account the senti-
ments people feel about it, i.e., the so-called Sense Of Place (SOP). As
our contribution, we first constructed a novel Twitter-based dataset by
harvesting tweets referring to 4 different cities having English as their
mother-tongue language (New York, San Francisco, Wellington and Syd-
ney). Then, the collected tweets have been labelled by three annotators
in terms of expressed SOP. Finally, we used the constructed dataset
to train classical Machine Learning (ML) models, evaluating them on a
novel (test) set of annotated tweets regarding the city of London. Results
demonstrate the validity of the SOP-based data construction in terms of
both human agreements and ML accuracy levels.

Keywords: Place · Twitter · Sentiment Analysis

1 Introduction

Artificial Intelligence (AI) is experiencing growth in activity, both in academia
and in industry. Current AI-based technologies mostly use Machine Learning
(ML) to process documents and replicate legal decision-making.

Although ML provides valid solutions, its overall usefulness is limited in that
it tends to disregard specific semantic aspects and legal reasoning.

ML is based on statistical reasoning : new cases are classified by similarity with
the cases included in the training set. As a result, performance are intrinsically
limited. Furthermore, and most important of all, as it is well-known ML tends
to behave like a “black box” unable to explain its decisions and it can therefore
lead to biases and other discriminatory outcomes: ML trained on biased datasets
tend to replicate the same biases on new inputs.

In order to overcome the limits of ML, lot of recent research has been de-
voted to investigate approaches in symbolic AI. The idea is to plug into the
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ML-based system human-understandable symbols, i.e., concepts and other logi-
cal constructs, that enable forms of logical reasoning. Besides leading to an im-
provement in the performance, symbolic AI is the path to explainability, needed
to contrast biases in decision-making [22].

Nevertheless, as it is well-known symbolic AI is requires lot of efforts, as
(human) domain experts must be involved in the creation of symbolic represen-
tations such as ontologies or logical rules. Concept are highly context-sensitive:
their meaning can vary depending on the context in which they are used so
that even domain experts can struggle to find an agreement among their defini-
tions. This is particularly true for “general-purpose” abstract concepts such as
the concept of “Place”, the one on which this paper focuses on (see 1.1 below).

Therefore, the transition from ML-based systems to sustainable approaches
in AI fully based on computational logic is still a very long journey. To under-
pin the transition, lot of contemporary approaches propose to use concepts in

combination with the statistical inferences of ML [5]. The research presented in
this paper is one of these approaches: it presents a ML-based analysis of Twitter
comments centered on the concept of “Place”.

1.1 The concept of “Place”

Place is a concept frequently mentioned in every-day life. We use it in sentences
as “This is my favourite place", “I finally found my place in the world", or “Lay

a place at the table for Mr. T". In the commonsense language, the term place

is used to refer to a city (e.g., New York), a public space (e.g., Central Park),
a shop or even to the seat we usually take at the table. These examples suggest
that the concept of place is broad and ranges from a punctual space to a wide
area.

In the Geography domain, the concept of place assumes a more structured
representation. In particular, according to Cresswell [12,11] this concept involves
three different aspects:

– Location: the physical absolute point in the space, identified by a set of
coordinates;

– Locale: the visible features and settings of a place, such as streets, shops,
parks and so on;

– Sense Of Place: the set of emotions and feelings that a place inspires in
people. These sentiments can be subjective when they are based on someone’s
personal biography, or they can be shared when a group of people feels the
same sentiment towards a place.

According to the intuition of Cresswell, a complete definition of place asks for
a systematic analysis of all the three aspects listed above. This analysis starts
with the identification of a place to focus on, and, secondly, the collection of
the features and settings that constitute the place of interest and that could
have an impact on how people feel it, such as shops, house styles and streets.
Such analysis could be conducted both at micro-level, analyzing a single street
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or house, or at macro-level, analyzing an entire district or city. Finally, the Sense

Of Place (SOP) can be “extracted” by analyzing a large set of observations by
the people living and experiencing the chosen place.

Nowadays, social networks are part of our everyday life, and people are used
to disclose their opinions, activities and emotions through them. Therefore, sci-
entific community started to consider people in social networks as social sensors
for different fields such as politics, economics and sociology [18]. Thus, it is pos-
sible to harvest and analyze their posts to discover high-level aspects. Moreover,
the possibility to associate a geographical reference to a post (the so called geo-
tags) or to infer the location starting from significant hashtags allowed scientists
to develop map-based data analysis which can also be used to identify disaster-
affected areas or regions with high crime rates, as respectively in the works of
Cerutti et al. [9] and Ristea et al. [17].

Since users’ posts contain both textual and location (the geotag) information,
they suit well to define the SOP of a chosen place. Thus, following the idea
of Siragusa and Leone [19], in this article we present a dataset of user posts,
adopting Twitter as our source of information. Such dataset could be used to
train a classifier in order to discern tweets that express a general sentiment
from those expressing a sentiment towards a place (i.e., the SOP). Our idea
is that an automatic classifier of SOP messages will allow to swiftly obtain
large quantity of data, enabling geographers and data-analysts to understand
the relationship between people and places and exploring the process that shapes
those relationships. For constructing the dataset, we chose four different cities
(San Francisco, Wellington, Sydney, and New York) that have English as their
mother-tongue language and we collected tweets referring to them. We then
asked to three annotators to judge whether the tweets were expressing some
SOP with respect to the selected cities. Finally, we trained 4 different state-
of-the-art Machine Learning classifiers: Support Vector Machine (SVM), Naive
Bayes (NB), Decision Trees (DT) and AdaBoost (AB) to recognize the SOP-
tweets, showing good performance especially with SVM.

The paper is structured as follows: Section 2 describes how the tweets were
collected and labelled to create the dataset; Section 3 describes how we used the
dataset to train the classifiers. Section 4 contains related works concerning the
extraction, labelling and analysis of place-based data. Section 5 concludes the
article with some final remarks.

2 Tweets Extraction

For creating our dataset, we collected from Twitter3 those tweets referring to
the following 4 cities: New York, San Francisco, Wellington and Sydney. We
used the Tweepy4 library for the extraction, and we collected only the tweets
containing an hashtag that represented one of the cities of interest. For each city,
the hashtags we looked for were:

3 https://twitter.com
4 https://www.tweepy.org

https://twitter.com
https://www.tweepy.org
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New York: #NewYork, #NY, #newyork;
San Francisco: #SanFrancisco, #SF, #sanfrancisco;
Wellington: #Wellington, #wellington;
Sydney: #Sydney, #NSW, #sydney.

We collected a total of more than 2 millions of tweets, even if with a varied
distribution over the 4 cities. Then, we applied to each tweet the sentiment
classifier of TextBlob5 (because the SOP is strictly entwined with the sentiment),
obtaining its sentiment expressed in the range [-1.0, 1.0], with 0 indicating a
neutral tweet. Using the sentiment scale, we filtered out all the tweets that did
not express a (positive or negative) sentiment, i.e only those with a zero score.
We decided to keep the tweets that are close to zero (e.g., 0.2) since they may
express a SOP. Table 1 reports the number of remaining tweets for each city.

City # Total Tweets # Tweets with sentiment

San Francisco 10,631 1043

New York 1,274,647 422

Sydney 24,761 1223

Wellington 1,003,007 518

Total 2,313,046 3206
Table 1. The table reports the number of collected tweets of each city and the number
of tweets expressing some sentiment (positive or negative).

We then asked to three annotators to make a judgement, under the form of Y

(corresponding to Yes) and N (corresponding to No), to find the tweets express-
ing a SOP. In particular, the annotators had to follow the following guidelines:

– a tweet is tagged with the label Y if it expresses a feeling, an emotion or
a sentiment (either positive or negative) towards a city or an area inside it
(e.g., a neighborhood or a park);

– a tweet is tagged with the label N if it does not express any feeling, emotion
or sentiment (either positive or negative) towards a city or an area inside it;

– a tweet that seems to have been written to promote trips to a city or to
promote tourist activities should not be tagged with Y since it does not
correspond to a sincere emotion, having instead only advertising purposes;

– a tweet expressing a political exposure towards the people who govern the
city does not express a feeling towards the city itself, so it should be labelled
with N.

We computed the inter-annotators agreement using Fleiss’ kappa coefficient
[13], and the agreement of each annotators pair using Cohen’s kappa coefficient
[10]. Figure 1 reports Fleiss’s kappa on each city, where San Francisco resulted to
be the city with the highest agreement (close to 0.7) between the three annotators

5 https://textblob.readthedocs.io/en/dev/

https://textblob.readthedocs.io/en/dev/
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according to the SOP expressed by the corresponding tweets. Figures 2, 3 and 4
report Cohen’s kappa coefficient for each couple of annotators. From these, we
can notice that Annotator 1 and Annotator 3 had high agreement, in contrast
with Annotator 2.

Fig. 1. The images shows the Fleiss’ kappa coefficient for all the four cities.

Fig. 2. The image shows the Cohen’ Kappa for annotator 1 and annotator 2.

We assigned the label Y or N with each tweet using a majority vote scheme
(i.e., if two annotators expressed Y on the same tweet, we labelled it with Y to
indicate a SOP, and viceversa). Table 2 shows some tweets with their annotation.
The dataset can be found at the following link: https://bit.ly/3s5KF58.

Table 3 reports the number of tweets of each city that have a sentiment, and
how many of them actually express a SOP after the application of the majority
vote scheme.

Finally, we analyzed the most frequent words in both SOP and non-SOP
tweets. More in detail, we applied the following pre-processing pipeline: first, we
removed URLs, names (words starting with @) and ReTweets (RT) tags, keeping
only those hashtags linking to salient information; then, we lowercased all words
and stemmed them, using the NLTK library6. We then generated a wordcloud

6 https://www.nltk.org

https://bit.ly/3s5KF58
https://www.nltk.org
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Fig. 3. The image shows the Cohen’ Kappa for annotator 1 and annotator 3.

Fig. 4. The image shows the Cohen’ Kappa for annotator 2 and annotator 3.

using the library WordCloud7. Figures 5 and 6 show the most frequent words for
both kinds of tweets. Comparing the two figures, we can see that both contain
words conveying sentiments as love, amazing, happy, beautiful, and so forth.
However, SOP-tweets also contain words such as love people, people living, place,
spot and live, highlighting how those tweets are more focused on the city, its
districts and citizens; non-SOP tweets, instead, show more general sentiments.

3 Automatic Detection of SOP

In this article, one contribution regards the idea of automatically distinguishing
tweets expressing a general sentiment from those having a Sense of Place (SOP).

We used the dataset described in Section 2 to perform two types of evaluation.
To check if it is possible to train a classifier to recognize other tweets that
express a SOP, we performed a 5-fold cross evaluation training the classifier
on 4 folds and testing on the remaining one. We processed each tweet in the
following way: first, we removed names (words having @ in the tweets), URLs,
and RT (ReTweetted) tags, leaving the hashtags since they sometimes express a
sentiment towards a place; finally, we lowercased all words. The resulting tweets
are then passed to a pre-trained Sentence-Bert [16] model in order to obtain
their vector representation, which is used to train these classifiers:

7 https://amueller.github.io/word_cloud/

https://amueller.github.io/word_cloud/
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Tweet Label

Great weekend with Hannah Nguyen-Chang in #SF. Think we over-
done it this Saturday as she’s experiencing lots of pa...

SOP

We are on sale in #SanFrancisco Access Hollywood Live (NBC) says
“You HAVE to check them out! That was tremendous!”

non-SOP

From https://t.co/MDjtLDWTeX - One of the greatest things about
#Wellington is that it’s full of art. As Jeff Tweedy of @people said, “I
think art is a consolation regardless of its content. It has the power to
move and make you feel like you’re not.”

SOP

Hype is getting hyped this weekend! We are so grateful to have fantastic
customers in #Newyork, #Sanfrancisco and...

non-SOP

Table 2. The table reports some tweets with their label.

City #Tweets #SOP-Tweets

San Francisco 1043 171

New York 422 7

Sydney 1223 73

Wellington 518 42

Total 3206 293
Table 3. The table reports, for each city, the number of tweets expressing a sentiment
and the number of tweets that contain a Sense Of Place.

– a Support Vector Machine (SVM) with radial basis function kernel;

– a Gaussian Naive Bayes (NB);

– a Random Forest (RF) classifier with a minimum of five examples for each
leaf. It has also the advantage of explaining why a tweet is classified as SOP
or non-SOP since each node of the tree is composed of simple human-readable
rules;

– and an AdaBoost (AB) classifier.

For each classifier, we performed a grid search to find the optimal parameters,
using the Scikit-learn8 implementation of the classifiers.

We compared them with two baseline: i) a random classifier which randomly
assigns the label SOP and non-SOP to tweets; and ii) a majority class classifier
which assigns the majority class (non-SOP label) to all tweets. Table 4 reports
the Accuracy, Precision, Recall and F-measure of each classifier. We also con-
sidered the dataset unbalance in computing the metrics. From the table, we can
notice that both SVM and RF are mostly able to recognize SOP-tweets.

We also tested the classic Term Frequency - Inverse Document Frequency
(TF-IDF) vectorization to train the classifiers, adding two further steps to the
cleaning pipeline: stopwords removal and word stemming. The classifiers trained
with this latter vectorization performed worst on all metrics, loosing about 2

8 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Fig. 5. The image shows a wordcloud of the tweets that contain a Sense Of Place.

Classifier Accuracy Precision Recall F-measure

Random 50.0 50.0 50.0 50.0

Majority Class 0.17 0.001 0.17 0.003

SVM 83.45 83.80 81.39 83.45

Gaussian NB 79.35 79.75 79.36 79.28

AB 75.08 75.17 75.09 75.06

RF 80.71 80.97 80.72 80.67
Table 4. The table reports the cross-fold evaluation of the classifiers.

percentage points for SVM and RF, and about 4 percentage points for Gaussian
NB and AB.

The problem of the previous evaluation is that we do not know how well a
classifier trained on the dataset will perform on new tweets. For this reason, we
collected an additional set of tweets about the city of London using the following
hashtags: #London, #LND and #london. Following the same steps explained
in Section 2, we extracted only those having a sentiment, obtaining a dataset
composed of 1388 tweets. We then asked to the three annotators to judge them
following the guidelines provided for the previous labelling task. After applying
the majority voting scheme, we obtained that only 73 tweets expressed a SOP.
The Fleiss’ kappa coefficient [13] for the three annotators was a bit lower, i.e.
0.34, with a Cohen’s kappa of 0.4 for Annotators 1 and 3, 0.15 for Annotators 1
and 2, and 0.23 for Annotators 2 and 3.

Finally, we trained the classifiers on the 4-cities dataset and then tested them
on the new London tweets. Table 5 reports the results, where the Majority Class
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Fig. 6. The image shows a wordcloud of non-SOP tweets.

classifier shows the highest accuracy due to the high unbalance of the dataset
towards the non-SOP label.

We can notice that the Gaussian NB classifier, despite ranked third in the
previous evaluation, performs well in the London dataset, meaning that it is
able to transfer its knowledge on SOP tweets on other datasets; AB classifier,
instead, has poor performance on both datasets, demonstrating to be not suitable
for this task. Finally, the SVM classifier performs well against the other ones
for both datasets; however, it has a drop in performance for SOP-tweets only,
obtaining 21.78 for the Precision, 84.72 for the Recall and 34.66 for the F-
measure. Using the TF-IDF vectorization, we noticed a drop in the F-measure
of 2 percentage points for all classifiers compared to the ones of Table 5. These
results demonstrate the complexity of the SOP classification task, being more
fine-grained with respect to the standard sentiment detection.

Classifier Accuracy Precision Recall F-measure

Random 50.0. 50.0. 50.0 50.0

Majority Class 94.8 47.4 50.0 48.7

SVM 83.41 60.39 84.03 62.58

Gaussian NB 86.17 61.22 81.54 64.33

AB 75.19 56.92 78.38 55.33

RF 84.57 60.08 80.04 62.41
Table 5. The table reports the results on London dataset.
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We then analyzed the errors made by the SVM classifier (false positives and
false negatives). We found that the false positives are misclassified due to the
cleaning phase. In detail, since we clean the tweet removing names and RT
tags, the resulting text could resemble the one of a SOP-tweet, especially in the
case of TF-IDF vectors where the stopwords are removed. Table 6 reports some
examples.

Tweet Clean Text TF-IDF’s Bag-Of-Words

Loved every minute of be-
ing on the #panel - what
an amazing bunch!! @UE-
LAlumni always delivers the
best!! #student #alumni
#university #London

loved every minute of

being on the #panel -

what an amazing bunch

! ! always delivers

the best ! ! #student

#alumni #university

#london

love everi minut #panel

amaz bunch alway deliv

best #student #alumni

#univers #london

#LONDON: Thanks Lon-
don its been emotional! See
you all again next year
#WeRunThisCity

#london : thanks london

its been emotional ! see

you all again next year

#werunthiscity

#london thank london

emot see next year

#werunthisc

#london #londonpride
highly appreciated the
hospitality! See you soon
#england

#london #londonpride

highly appreciated the

hospitality ! see you

soon #england

#london #londonprid

highli appreci hospit

see soon #england

Table 6. The table reports some tweets of the London dataset classified as false posi-
tive, and their pre-processed text passed to Bert.

Concerning the false negatives, this is the most interesting case. We found
two types of error (reported in Table 7):

Annotation error: there are tweets that have been classified as SOP in the
dataset, but they do not contain a sentiment towards a place; thus the
classifier correctly recognized them. These are borderline cases, where the
sentiment expressed by the user regards some activity they performed (or
attended) at the city; for instance, the tweet “It’s going to be a great weekend

@LondonTattooCon look forward to seeing the best #tattooartist” has been
labelled as SOP by the annotators, but it expresses a positive sentiment
regarding the intention to attend the tattoo convention. Since these tweets
are complex cases, our objective as future work is to discuss with annotators
and linguistic experts in order to improve the guidelines and the quality of
the dataset;

Classification error: similarly to the false positive cases, some tweets resemble
the negatives ones because they do not have any word expressing a clear
sentiment towards a place.
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Tweet Error type

It could be a magical place to go if you fancy a cheeky Butterbeer or
some Pumpkin Juice. #HarryPotter

classification

Lovely morning to start the 2nd #DevOpsDays in #London as we talk
all things #DevOps again.

annotation

Spent a great #tabletopRPG evening NMDLondon tonight Too many
AWESOME GMs to fit in one video #NoMoreDamsels #Dung...

annotation

Table 7. The table reports some tweets of the London dataset classified as false neg-
ative.

4 Related Works

The specification of a geographical reference in a shared post is nowadays an
habit for the users of the most famous social networks as Twitter9, Facebook10

and Instagram11. The geographical references can appear in a post either in the
form of a geotag or an hashtag that expresses the name of the location (a city,
a restaurant, a public park, etc.). Such information have been used by scien-
tists in order to develop geographical and temporal based studies in the field of
Geography and Data Science. In addition to these well-known platforms, other
new location-based services emerged in the last years. Among them, we mention
Trendsmap12 which shows on a map the latest trends emerging from Twitter,
Ushahidi13 which collects and visualises information about crisis witnesses pro-
viding the users the possibility to respond and FixMyStreet14 which allows the
UK citizens to signal streets problems (pot holes, unsafe walls, not working lamp-
posts) to the local authorities. FirstLife15 [3] is a more interactivity-oriented ser-
vice which focuses its attention on the user intended as citizen, giving them the
possibility to interact with a map on which they can share events, news and even
aggregate people. Moreover, the data are associated with a temporal dimension
which allows users to filter and order the information according to time.

In the context of geo-oriented social networks, it is easy to define the concept
of place expressed by Cresswell [11,12]. Both location and locale are coded in the
geographical map showed to the user, while the sense of place (SOP) is expressed
by the user via posts. Furthermore, the concept of place has evolved together
with technology, becoming the conceptual fusion of space and experience [15].
The advent of Covid-19 has fasted the projection of the concept of place from
the physical world to the virtual one, since our freedoms of movement were
taken away [6]; For instance, virtual meeting allowed to gaze the interior of our
boss’ (or employee) house, disclosing aspects of one another’s home that reveal

9 www.twitter.com
10 www.facebook.com
11 www.instagram.com
12 www.trendsmap.it
13 www.ushahidi.com
14 www.fixmystreet.com
15 www.firstlife.org

www.twitter.com
www.facebook.com
www.instagram.com
www.trendsmap.it
www.ushahidi.com
www.fixmystreet.com
www.firstlife.org
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the sense of place [14]. For these reasons, we decided to use Twitter as source
to extract SOP messages, where the hashtag of a city (e.g., #tokyo) defines
the space boundaries of the place, and the post content its sense. Our work
is similar to Siragusa and Leone [20], where the authors used Latent Dirichlet
Allocation [7] (LDA) to extract those tweets that contain the sense of place.
Instead of applying the LDA model, we decided to create a SOP dataset by
hiring annotators; such dataset could be used to train a classifier to recognize
SOP tweets or to conduct data-analysis.

Other works explored both the use of Twitter and the concept of place.
Besbris et al. [4] studied the spatial stigma, i.e. how the neighbours of a place
perceive it in a negative way due to crime, disorders, poverty and even racial
isolation; and the residents of such place may embody the negative characteris-
tics. Zhu et al. [23] tried to quantify the semantic of places according to their
interaction with streets. They found that the interaction is beneficial to identify
the semantic. Sakaki et al. [18] used the intuition of considering the users as
social sensors in order to implement event detection. Cataldi et al. [8] extracted
in real time the most emerging topics expressed by the community based on the
interests of a specific user in a particular temporal frame, while Allisio et al.
[2] exploited the temporal and spacial information associated with the tweets
in order to produce a daily estimation of the degree of happiness of the main
Italian cities. Adams et al. [1] developed a system based on Latent Dirichlet Al-
location [7] (LDA) to extract place characteristics from a travel blog. They also
correlated those characteristics to find similar places. Steiger et al. [21] applied
LDA on collected tweets to extract real-world characteristics. They also tracked
the topics frequency along a week, finding that people tend to talk about home

and work.

5 Conclusion

In this article, we presented a dataset of tweets that express a Sense Of Place
(SOP). We also showed that is possible to train a classifier on such dataset to
label new tweets.

We started from the idea presented in Siragusa and Leone [19], where the
authors used Twitter as a resource to collect users’ posts and then find those
ones that express a SOP. Differently from them, we employed three annotators
to label all the tweets. Then, we created a dataset taking those tweets labelled
as expressing or not a SOP related to a city of reference. Finally, we trained
four Machine Learning classifiers, showing both it is possible to automatically
recognize the SOP and that it is a difficult task. However, as explained in the
introduction, most of the tested state-of-art Machine Learning classifiers behave
as “black boxes”, being unable to explain why a tweet has been classified with
a SOP (or non-SOP) label. The only exception is the Random Forest, which
produces simple rules (e.g., length of the sentence greater than a threshold)
connected via conjunction or disjunction logical operators. Although these rules
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can be read by human experts, they tend to be too specific or situational, making
difficult to generalize them.

As future work, we would like to extend the size of the dataset in order to
train Neural Networks models. We think that these models could suit well for
this kind of task since they are capable to deeply analyzing the meaning of each
word of the sentence and its interaction with other ones. A preliminary result of
the positive impact of these models has been showed by the Bert vectorization of
the tweets. Another research path is the adoption of symbolic AI in conjunction
with Machine Learning models to improve both their accuracy and explainability.
In this way, the rules defined by the models could be used by data-analysts
and geographers to explain why a tweet has been labelled with a certain tag.
Furthermore, such rules will allow to understand the errors performed by the
classifier, either improving it or the annotation process by refining the guidelines.
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Abstract
Epistemic Logic Programs (ELPs) extend Answer Set Programming (ASP) with epistemic operators.

The semantics of such programs is provided in terms of world views, which are sets of belief sets.

Several semantic approaches have been proposed over time to characterize world views. Recent work has

introduced semantic properties that should be met by any semantics for ELPs. We propose a new method,

easy but, we believe, effective, to compare the different semantic approaches.

Keywords
Answer Set Programming, Epistemic Logic Programs, ELP semantics

1. Introduction

Epistemic Logic Programs (ELPs, in the following just ‘programs’ if not explicitly stated differ-

ently), were first introduced in [1, 2], and extend Answer Set Programs (ASP programs), defined

under the Answer Set Semantics of [3], with epistemic operators that are able to introspectively

“look inside” a program’s own semantics, which is defined in terms of its “answer sets”. In fact,

KA means that the (ground) atom A is true in every answer set of the very program Π where

KA occurs, whereas MA means that A is true in some of the answer sets of Π. The epistemic

negation operator not A expresses that A is not provably true, meaning that A is false in at least

one answer set of Π. It is easy to see that the operators are interchangeable, as MA can be defined

as notKnotA, and not A as notKA, not being standard ASP default negation.

Semantics of ELPs is provided in terms of world views: instead of a unique set of answer

sets like in Answer Set Programming (ASP), there is now a set of such sets. Each world view

consistently satisfies (according to a given semantics) the epistemic expressions that appear in a

given program. Many semantic approaches for ELPs have been introduced beyond the seminal

one of [1], among which we mention [4, 5, 6, 7, 8, 9, 10].
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Recent work summarized in [11] has been aimed at extending to Epistemic Logic Programming

some notions which have been previously defined for ASP, where many useful results have

stemmed from them. So, according to [11, 12, 13], analogous properties might prove useful in

ELPs as well. In particular, they consider splitting (introduced for ASP in [14]), which allows

a program to be (iteratively) divided into parts (“top” and “bottom”) in a principled way: the

answer sets of a given program can be computed incrementally, starting from the answer sets

of the bottom, which are used to simplify the top, and then the union of each answer set of the

bottom with each answer set of the corresponding simplified top forms an answer set of the overall

program. They extend to ELPs the concept of splitting and the method of incremental calculation

of the semantics (here, it is the world views that must be calculated). This by defining a notion of

Epistemic Splitting, where top and bottom are defined w.r.t. the occurrence of epistemic operators.

Further, they adapt to ELPs other properties of ASP, which are implied by this property, namely

the fact that adding constraints leads to reduce the number of answer sets, for ELPs, according

to them, of the world views (Subjective Constraint Monotonicity), and Foundedness, meaning

that atoms composing answer sets cannot have been derived through cyclic positive dependencies

(where, for ELPs, they redefine positive dependencies so as to involve epistemic operators).

In substance, this approach establishes properties that a semantics should fulfil, and then they

compare the existing semantics with respect to these properties.

In this paper, we explore a different stance: in order to establish a term of comparison among

the various semantics, we introduce a semantic approach which is very plainly based on the

basic understanding of ELP and world views. We then experiment with the new approach on

many examples taken from the relevant literature, and we “observe” its behaviour, in terms of the

correspondence or discrepancy with the results returned by other relevant semantic approaches.

The paper is organized as follows. In Sections 2 and 3 we recall ASP and ELPs. In Section 4 we

introduce and discuss, via many examples, our proposal. Finally, in Section 5 we conclude.

2. Answer Set Programming and Answer Set Semantics

In ASP, one can see an answer set program (for short ‘ASP program’) as a set of statements that

specify a problem, where each answer set represents a solution compatible with this specification.

Whenever an ASP program has no answer sets (no solution can be found), it is said to be

inconsistent, otherwise it is said to be consistent. Several well-developed freely available answer

set solvers exist that compute the answer sets of a given program. Syntactically, an ASP program

Π is a collection of rules of the form

A1| . . . |Ag ← L1, . . . , Ln.

where each Ai, 0 ≤ i ≤ g, is an atom and | indicates disjunction, and the Lis, 0 ≤ i ≤ n, are

literals (i.e., atoms or negated atoms of the form not A). The left-hand side and the right-hand

side of the rule are called head and body, resp. A rule with empty body is called a fact. Notation

A |B indicates disjunction, usable only in rule heads and, so, in facts. A rule with empty head

(or, equivalently, with head ⊥), of the form ‘← L1, ..., Ln.’ or ‘⊥ ← L1, ..., Ln.’, is a constraint,

stating that literals L1, . . . , Ln are not allowed to be simultaneously true in any answer set; the

impossibility to fulfil such requirement is one of the reasons that make a program inconsistent.

All extensions of ASP not explicitly mentioned above are not considered in this paper. We



implicitly refer to the “ground” version of Π, which is obtained by replacing in all possible ways

the variables occurring in Π with the constants occurring in Π itself, and it is thus composed of

ground atoms, i.e., atoms which contain no variables.

The answer set (or “stable model”) semantics can be defined in several ways [15, 16]. However,

answer sets of a program Π, if any exists, are the supported minimal classical models of the

program interpreted as a first-order theory in the obvious way. The original definition from [3],

introduced for programs where rule heads were limited to be single atoms, was in terms of the

‘GL-Operator’. Given set of atoms I and program Π, GLΠ(I) is defined as the least Herbrand

model of the program ΠI , namely, the (so-called) Gelfond-Lifschitz reduct of Π w.r.t. I . ΠI

is obtained from Π by: 1. removing all rules which contain a negative literal notA such that

A ∈ I; and 2. removing all negative literals from the remaining rules. The fact that ΠI is a

positive program ensures that a least Herbrand model exists and can be computed via the standard

immediate consequence operator [17]. Then, I is an answer set whenever GLΠ(I) = I .

3. Epistemic Logic Programs and Their Properties

Epistemic Logic Programs allow one to express within ASP programs so-called subjective literals

(in addition to objective literals, that are those that can occur in plain ASP programs, plus the truth

constants ⊤ and ⊥). Such new literals are constructed via the epistemic operator K (disregarding

without loss of generality the other epistemic operators). The literal KA means that the (ground)

atom A is true in every answer set of given program Π (it is a cautious consequence of Π). The

syntax of rules is analogous to ASP, save that literals in the body of rules now can be either

objective or subjective. Nesting of subjective literals is not considered here. An ELP program is

called objective if no subjective literals occur therein, i.e., it is an ASP program. A constraint

involving (also) subjective literals is called a subjective constraint, where one involving objective

literals only is an objective constraint. Let At be the set of atoms occurring (within either

objective or subjective literals) in a given program Π, and Atoms(r) be the set of atoms occurring

in rule r. By some abuse of notation, we denote by Atoms(X) the set of atoms occurring in

X , whatever X is (a rule, a program, an expression, etc.). Let Head(r) be the head of rule r

and Bodyobj (r) (resp., Bodysubj (r)) be the (possibly empty) set of objective (resp., subjective)

literals occurring in the body of r. For simplicity, we often write Head(r) and Bodyobj (r) in

place of Atoms(Head(r)) and Atoms(Bodyobj (r)), respectively, when the intended meaning is

clear from the context. We call subjective rules those rules whose body is made of subjective

literals only.

The semantics of ELPs is based on the notion of world views: namely, sets of answer sets.

Each world view determines the truth value of all objective literals in a program. For example,

the program {a←not b, b←not a, e←notKf, f←notKe}, under every semantics, has two

world views: [{a, e}, {b, e}], where Ke is true and Kf is false, and [{a, f}, {b, f}] where Kf is

true and Ke is false. Note that, according to a widely-used convention, each world view, which is

a set of answer sets, is enclosed in square brackets []. The presence of two answer sets in each

world view is due to the cycle on objective atoms, whereas the presence of two world views is

due to the cycle on subjective atoms (in general, the existence and the number of world views is

related to such cycles, cf., [18] for a detailed discussion).



Let a semantics 𝒮 be a function mapping each program into sets of ‘belief views’, i.e., sets of

sets of objective literals, where 𝒮 has the property that, if Π is an objective program, then the

unique member of 𝒮(Π) is the set of stable models of Π. Given a program Π, each member of

𝒮(Π) is called an 𝒮-world view of Π (we will often write “world view” in place of “𝒮-world

view” whenever mentioning the specific semantics is irrelevant). As usual, for any world view W

and any subjective literal KL, we write W |= KL iff for all I ∈W the literal L is satisfied by I

(i.e., if L ∈ I for L atom, or A ̸∈ I if L is notA). W satisfies a rule r if each I ∈W satisfies r.

The property of Subjective Constraint Monotonicity states that, for any epistemic program

Π and any subjective constraint r, W is a world view of Π ∪ {r} iff both W is a world view

of Π and W satisfies r. Thus, if this property is fulfilled by a semantic 𝒮, a constraint can rule

out world views but cannot rule out some answer set from within a world view (or, equivalently,

cannot substitute a world view with a new one). We report below some of the most relevant

semantic definitions for ELPs. We start with the seminal definition of the first ELP semantics,

introduced in [2], that we call for short G94. Let Π be an ELP program, and r a rule occurring

therein.

Definition 3.1 (G94-world views). The G94-reduct of Π with respect to a non-empty set of

interpretations W is obtained by: (i) replacing by ⊤ every subjective literal L ∈ Bodysubj (r)
such that L is of the form KL and W |= L, and (ii) replacing all other occurrences of subjective

literals of the form KL by ⊥. A non-empty set of interpretations W is a G94-world view of Π iff

W coincides with the set of all stable models of the G94-reduct of Π with respect to W .

This definition was then extended to a new one [4], that we call for short G11.

Definition 3.2 (G11-world views). The G11-reduct of Π with respect to a non-empty set of

interpretations W is obtained by: (i) replacing by ⊥ every subjective literal L ∈ Bodysubj (r)
such that W ̸|= L, (ii) removing all other occurrences of subjective literals of the form ¬KL. (iii)

replacing all other occurrences of subjective literals of the form KL by L. A non-empty set of

interpretations W is a G11-world view of Π iff W coincides with the set of all stable models of

the G11-reduct of Π w.r.t. W .

Notice that, ¬KL is usually indicated as notKL in examples. In [11], it is noticed that K15

[19], reported below, slightly generalizes the semantics proposed in [4].

Definition 3.3 (K15-world views). The K15-reduct of Π with respect to a non-empty set of

interpretations W is obtained by: (i) replacing by ⊥ every subjective literal L ∈ Bodysubj (r)
such that W ̸|= L, and (ii) replacing all other occurrences of subjective literals of the form KL

by L. A non-empty set of interpretations W is a K15-world view of Π iff W coincides with the set

of all stable models of the K15-reduct of Π w.r.t. W .

Semantics G11 and K15, that are refinements of the original G94 semantics, have been

proposed over time to cope with new examples that were discovered, on which existing semantic

approaches produced unwanted or unintuitive world views.

K15 can be seen as a basis for the semantics proposed in [7] (called S16 for short). In particular,

S16 treats K15 world views as candidate solutions, to be pruned in a second step, where some

world views are removed, by applying the principle of keeping those which maximize what is not



known. World views in [7] are obtained in particular as follows, where note however that they

consider the operator not, that can be rephrased as notKA where not is ASP standard ‘default

negation’ (meaning that A must be false in some answer set of a given world view).

Definition 3.4 (S16-world views). Let EP (Π) be the set of literals of the form not F occurring

in given program Π. Given Φ ⊆ EP (Π), the Epistemic reduct ΠΦ of Π w.r.t. Φ is obtained by:

(i) replacing every not F ∈ Φ with true, and (ii) replacing every not F ̸∈ Φ with not F . Then,

the set 𝒜 of the answer sets of ΠΦ is a candidate world view if every not F ∈ Φ is true w.r.t. 𝒜
(i.e., F is false in some answer set J ∈ 𝒜) and every not F ̸∈ Φ is false (i.e., F is true in every

answer set J ∈ 𝒜). We say that 𝒜 is obtained from Φ, or is corresponding to Φ, or that it is

a candidate world view w.r.t. Φ, where Φ is called a candidate valid guess. Then, 𝒜 is an S16

world view if it is maximal, i.e., if there exists no other candidate world view obtained from guess

Φ′ where Φ ⊂ Φ′ (so, Φ is called a valid guess).

All the above semantics, in order to check whether a belief view 𝒜 is indeed a world view,

adopt some kind of reduct, reminiscent of that related to the stable model semantics, and 𝒜 is a

world view if it is stable w.r.t. this reduct. The F15 semantics [6, 20] is based on very different

principles, namely, it is based on a combination of Equilibrium Logic [21, 22, 23] with the modal

logic S5. There, an EHT interpretation associates, via a function h, a belief view 𝒜 with another

belief view 𝒜′ composed, for every set A ∈ 𝒜, of sets A′ ⊆ A. The purpose is to state that an

implication is entailed, in any “belief point”, i.e., in any interpretation A ∈ 𝒜, by the couple

⟨𝒜,𝒜′⟩ if it is entailed either by 𝒜 or by 𝒜′. An EHT interpretation satisfies a theory in the usual

way, and is total on a subset 𝒳 of 𝒜 if h gives back sets in 𝒳 unchanged. A total EHT model can

be an equilibrium EHT model, and is defined to be an F15 world view, if it is minimal according

to two particular minimality conditions (not reported here).

Differently from F15, FAAEL [13] is based on the modal logic KD45. To define FAAEL,

a belief view is transformed from a set of interpretations to a set of HT-interpretations, i.e.,

interpretations in terms of the logic of Here-and-There (HT) [24] which are couples ⟨H,T ⟩
of ‘plain’ interpretations. A belief view is total if H = T for all composing interpretations,

thus reducing to the previous notion of belief view. A total version of any belief view can be

formed, taking all the T ’s as components. A belief interpretation is now a belief view plus an HT

interpretation, say Ĥ , possibly not belonging to the belief view. The peculiarity of the entailment

relation (defined in terms of HT logic) is in the implication, that must hold (in the usual way) in

the belief interpretation, but also in the total version of the belief view therein. For total belief

interpretations, the new relation collapses to the modal logic KD45. An epistemic interpretation is

defined to be a belief model if all its composing HT interpretation as well as Ĥ entail all formulas

of given theory. It is an epistemic model, if Ĥ is among the composing interpretations, and it

is an equilibrium belief model if it satisfies certain minimality conditions. A belief view is a

FAAEL world view if it is “extracted” from an equilibrium belief model ℰ by taking all the T

components of each ⟨H,T ⟩ which is found in ℰ .

For formal definitions of F15 and FAAEL, that for lack of space we cannot report here, we refer

the reader to the aforementioned references. FAAEL satisfies [12] Epistemic Splitting, Subjective

Constraint Monotonicity, and Foundedness. G94 satisfies Epistemic Splitting, Subjective Con-

straint Monotonicity, but not Foundedness. In [13], it is proved that FAAEL world views coincide



program world views

a ∨ b [{a}, {b}]
a ∨ b

a← Kb
[{a}, {b}]

a ∨ b

a← notKb
[{a}]

a ∨ b

c← notKb
[{a, c}, {b, c}]

a← notKb

b← notKa
[{a}], [{b}]

a← notKnot a

a← notKa
[{a}]

program G94/G11/FAEEL K15/F15/S16

a← notKnot a [∅], [{a}] [{a}]
a ∨ b

a← notKnot b
none [{a}]

a ∨ b

a← Knot b
[{a}], [{a}, {b}] [{a}, {b}]

a← b

b← notKnot a
[∅], [{a, b}] [{a, b}]

a← notKnot b

b← notKnot a
[∅], [{a}, {b}] [{a}, {b}]

Figure 1: On the left, examples where G94, G11, K15, F15, S16, and FAEEL agree. On the

right, examples where G94/G11/FAEEL differ from K15/F15/S16. (Figure taken from [13].)

program G94 G11/FAEEL K15 F15/S16

a← notKnot b ∧ not b

b← notKnot a ∧ not a
[∅], [{a}, {b}] [{a}, {b}]

a← Ka [∅], [{a}] [∅]
a← Ka

a← notKa
[{a}] none

Figure 2: Examples showing differences among several semantics. (Figure taken from [13].)

with founded G94 world views, where (roughly) founded world views are those where in every

composing interpretation, objective atom G is never derived, directly or indirectly, from KG.

We apologize with the readers and with the authors, because, for lack of space, we do not

consider other recent semantics, such as [25, 9, 26].

In Figures 1 and 2 a summary is reported, taken from [13], of how the semantics presented

above behave on some examples which are considered to be significant of situations that can be

found in practical programming.

4. Our Observations and Proposal

We expose the new method, and we experiment it, taking as a base the examples proposed in

Figures 1 and 2, with few others.

Let us notice that, actually, in Gelfond’s intuition, KG means that G is true in all the answer

set of a given program, where the set of these answer sets is now called world view, or that G

is true in all the answer sets of a certain world view, if there are many of them. It is not really

required for G to be derivable from the program in a ‘founded’ way as it happens in ASP, or, at

least, the concept of founded derivation becomes different.

In the GL94 computation of a world view, what is assumed to be known or not known comes

from the world view, not from the program. What is required by this basic approach is that

a world view is consistent w.r.t. the program, in the sense that what is assumed to be known

is indeed concluded, and what is assumed to be false is not concluded. However, the point is

that subjective atoms appearing in the program (and that are not derived, but elicited from the

underlying world view) have a role in drawing conclusions.



We introduce an approach where this seminal intuition is literally applied. We then put the

new approach to work on a number of examples, taking the occasion for a comparison with the

semantics we have introduced above.

4.1. A New Approach

We consider in this context only subjective literals KG and K¬G, the latter with notation

Knot G. We will consider them as new atoms, called knowledge atoms. Negation not in front of

knowledge atoms is assumed to be the standard default negation. So, instead of ELPs proper, we

here consider (equivalently) ASP programs possibly involving knowledge atoms.

First of all we introduce the concept of internal consistency of a set of atoms including

knowledge atoms.

Definition 4.1. A set A of atoms, composed of objective atoms and knowledge atoms, is said to

be knowledge consistent iff:

(i) it contains G whenever it contains KG;

(ii) it does not contain G whenever it contains Knot G.

A set of sets of atoms𝒲 , each such set composed of objective atoms and knowledge atoms, is

called here epistemic interpretation.

Definition 4.2. Given ASP program P possibly involving knowledge atoms, let SMC (P ) be the

set of those answer sets of the program which are knowledge-consistent.

Property 1. SMC (P ) correspond to the stable models of the program P ′ obtained from P by

adding, for each special atom KG or Knot G occurring in P , constraints:

← KG,notG

← Knot G,G

To the aim of establishing a uniform comparison among various semantic approaches, we

propose a basic point of view on ELPs, that for convenience we present as a new semantics.

Definition 4.3. [CF22-adaptation] The CF22-adaptation Γ −𝒲 of a program Γ with respect

to an epistemic interpretation𝒲 is obtained by adding to Γ:

(i) new fact KG whenever𝒲 |= G, and

(ii) new fact Knot G whenever𝒲 |= ¬G.

Let F𝒲 be the set of those newly added facts of the form KG.

Definition 4.4 (CF22 world view). An epistemic interpretation𝒲 is called a CF22 world view

of a theory Γ if𝒲 = SM ′(Γ −𝒲), where SM ′(Γ −𝒲) is obtained from SMC (Γ −𝒲) by

removing all knowledge atoms.



As seen, the S16 semantics maximizes what is not known, which is equivalent to minimizing

what is known. The proposers of S16 consider each potential world view (that in their approach

is associated to a guess about what is not known) as a candidate world view, and discard those for

which there exists another one with a larger guess on what is not known (equivalently, a smaller

guess on what is known), in terms of set inclusion. Rephrasing their criterion in terms of our

approach, we have:

Definition 4.5 (S16 Criterion - CF22+S16C). Each world view 𝒲 as of Def. 4.4 is consid-

ered to be a candidate world view. A candidate world view 𝒲 is indeed a world view under

CF22+S16C if no other candidate world view𝒲’ exists, where F𝒲 ′ ⊂ F𝒲 .

4.2. CF22 World Views: Examples of Application

It can be easily seen that, on the examples on the left-column table of Fig. 1, on which all the

above-presented semantic approaches agree, CF22 agrees as well. Below we present in detail a

number of examples, some taken from Figures 1 (right-column) and 2, and some from the relevant

literature. The aim is to employ CF22 as a term of comparison among the various semantics.

4.2.1. Example 1

Consider the program Γ composed of a single rule

a← notKa.

and the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added fact is:

Knot a.

We have that SMC (Γ −𝒲) = ∅, thus SM ′(Γ −𝒲) = ∅, so𝒲 is not a CF22 world view.

To see how this has been obtained, notice that Γ −𝒲 has the unique answer set {Knot a, a}
where Knot a is a fact, and a is derived from notKa, via default negation as fact Ka is not

present; this answer set is however not knowledge consistent, as it contains a where it says that a

is not known; thus, the set of knowledge consistent answer sets of Γ −𝒲 is empty.

Consider now the epistemic interpretation𝒲 = [{a}]. According to Def. 4.3, one fact is added:

Ka.

We have that SMC (Γ −𝒲) = [{Ka}], thus SM ′(Γ −𝒲) = [∅], so𝒲 is not a CF22 world

view. Therefore, in accordance to all other semantics, this program has no CF22 world views.

4.2.2. Example 2: Cyclic Dependence

Consider the program Γ composed of the two rules

a← notKb.

b← notKa.

and the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added facts are:

Knot a. Knot b.

We have that SMC (Γ −𝒲) = ∅, thus SM ′(Γ −𝒲) = ∅, so 𝒲 is not a CF22 world

view. To see how this has been obtained, notice that Γ −𝒲 has the unique answer set

{Knot a,Knot b, a, b} where Knot a,Knot b are facts, a is derived from notKb, as fact Kb

is not present, and similarly for b; this answer set is however not knowledge consistent, as it



contains a and b where it says that they are not known, thus the set of knowledge consistent

answer sets of Γ −𝒲 is empty.

Consider now the epistemic interpretation𝒲 = [{a}] (the analogous can be done for [{b}]).
According to Def. 4.3, the added facts are:

Ka. Knot b.

We have that SMC (Γ −𝒲) = [{Ka,Knot b, a}], thus SM ′(Γ −𝒲) = [{a}], so 𝒲 is a

CF22 world view (analogously for [{b}]).
Consider the epistemic interpretation𝒲 = [{a, b}]. In this case the added facts are:

Ka. Kb.

We have that SMC (Γ −𝒲) = [{Ka,Kb}], thus SM ′(Γ −𝒲) = [∅], so𝒲 is not a CF22

world view.

Finally, for the epistemic interpretation𝒲 = [{a}, {b}], according to Def. 4.3, there are no

added facts. We have that SMC (Γ −𝒲) = [{a, b}] (each atom a, b derived from not knowing

the other), thus SM ′(Γ −𝒲) = [{a, b}], so𝒲 is not a CF22 world view.

Also on this example, CF22 agrees with all other semantics.

4.2.3. Example 3

Consider the program Γ
a ∨ b.

a← Kb.

b← Ka.

and the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added facts are:

Knot a. Knot b.

We have that the two rules cannot be applied, and the disjunction would generate answer sets

{a} and {b} that are not knowledge consistent; thus, SM ′(Γ −𝒲) = ∅, so𝒲 is not a CF22

world view.

Consider the epistemic interpretation 𝒲 = [{a}] (the analogous can be done for [{b}]).
According to Def. 4.3, the added facts are:

Ka. Knot b.

We have the answer set {Ka,Knot b, b} where b is derived from the second rule. However,

this answer set is not knowledge consistent; thus, SM ′(Γ −𝒲) = ∅, so𝒲 is not a CF22 world

view.

Consider𝒲 = [{a, b}]. According to Def. 4.3, the added facts are:

Ka. Kb.

We have that SMC (Γ −𝒲) = [{Ka,Kb, a, b}], with atoms a and b derived via the rules

given the facts; this answer set is knowledge consistent, thus SM ′(Γ −𝒲) = [{a, b}], so𝒲 is a

CF22 world view.

Consider finally𝒲 = [{a}, {b}]. According to Def. 4.3, there are no added facts. We have that

SMC (Γ −𝒲) = SM ′(Γ −𝒲) = [{a}, {b}], deriving from the disjunction, as the two rules

cannot be applied; thus,𝒲 is a CF22 world view.

This example shows that CF22, that here agrees with G11, does not satisfy foundedness.

However, if one augments it with the S16 Criterion (we call the combination CF22+S16C) then

the unfounded world view [{a, b}] is excluded, as there exists SM ′(Γ −𝒲) = [{a}, {b}] which



is based on fewer added positive knowledge literals (none for the latter and Ka and Kb for the

former).

One may notice that, for world view [{a, b}], these atoms are not derived from the program

via a positive circularity: rather, they are supported, in the program, from what is deemed to

be known in the world view itself. So, while this world view can be excluded by applying a

minimality criterion, it is however not unreasonable in itself.

It can be seen that simpler example

a← Kb.

b← Ka.

has CF22 world views [∅] and [{a, b}], where the latter would be discarded under CF22+S16C.

4.2.4. Example 4

Consider the program Γ:

a← notKnot a.

and the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added fact is:

Knot a.

We have that SMC (Γ −𝒲) = [{Knot a}], thus SM ′(Γ −𝒲) = [∅], so𝒲 is a CF22 world

view.

Consider the epistemic interpretation𝒲 = [{a}]. According to Def. 4.3, the added fact is:

Ka.

We have that SMC (Γ −𝒲) = [{Ka, a}] (as fact Knot a is not present, its negation is true),

thus SM ′(Γ −𝒲) = [{a}], so𝒲 is a CF22 world view.

On this example, CF22 agrees with G94, G11, FAAEL.

4.2.5. Example 5

Let us now consider a more problematic example:

a← Ka.

a← notKa.

and the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added fact is:

Knot a.

We have that SMC (Γ −𝒲) = ∅ (as fact Ka is not present, its negation is true, thus allowing to

derive a, within however a stable model which is not knowledge consistent), thus SM ′(Γ −𝒲) =
∅ ≠ [∅], so𝒲 is not a CF22 world view.

Consider the epistemic interpretation𝒲 = [{a}]. The added fact is:

Ka.

We have that SMC (Γ −𝒲) = [{Ka, a}] , thus SM ′(Γ −𝒲) = [{a}], so𝒲 is a CF22 world

view.

On this example, CF22 agrees with G94, where however all the other semantics provide no

world view.

If the program would simply be

a← Ka.

then its world views, as can be easily seen, would be [∅] and [{a}].



On this example, CF22 agrees with G94. It would agree with G11, K15, F15, S16, FAAEL

under CF22+S16C.

4.2.6. Example 6

In previous examples, CF22+S16C tended to agree with S16. This is however not always the

case. Given the rules:
a← notKnot b, not b.

b← notKnot a, not a.

consider the epistemic interpretation𝒲 = [∅]. According to Def. 4.3, the added facts are:

Knot a. Knot b.

We have that SMC (Γ −𝒲) = [Knot a,Knot b], thus SM ′(Γ −𝒲) = [∅], so𝒲 is a CF22

world view.

Consider the epistemic interpretation 𝒲 = [{a}] (one can proceed analogously for [{b}]).
According to Def. 4.3, the added facts are:

Ka. Knot b.

We have that SMC (Γ −𝒲) = ∅ (as one can derive b, obtaining however a stable model which

is not knowledge consistent, because of fact Knot b), thus SM ′(Γ −𝒲) = ∅, so 𝒲 is not a

CF22 world view.

On this example, CF22 agrees with G94, where however all the other semantics provide no

world view.

Consider the epistemic interpretation𝒲 = [{a}, {b}], where there are no added facts. We

have that SMC (Γ −𝒲) = SM ′(Γ −𝒲) = [{a}, {b}], so𝒲 is a CF22 world view. Epistemic

interpretation [{a, b}] is easily discarded.

On this example, S22 agrees with G94, G11, K15, FAAEL. Under CF22+S16C nothing

changes, as both CF22 world views do not rely on positive knowledge atoms.

If the program is (seemingly) simpler, i.e.:

a← notKnot b.

b← notKnot a.

we have that, similarly to before, {a} and {b} are not CF22 world views. However,

SMC (Γ −𝒲) = ∅ now is a CF22 world view, because from added facts

Knot a. Knot b.

one does not derive anything. Instead,𝒲 = [{a}, {b}] is not, because with no added facts one

can derive both a and b, so SMC (Γ −𝒲) = SM ′(Γ −𝒲) = [{a, b}].
But,𝒲 = [{a, b}] is a CF22, world view, because adding new facts

Ka. Kb.

both negations in the bodies of the program’s two rules are true, so one derives both a and b

obtaining SMC (Γ −𝒲) = SM ′(Γ −𝒲) = [{a, b}].
This program, under CF22, has the world views [∅] and [{a, b}]. The rationale underlying

world view [{a, b}] is that, again, it is consistent with the given program, relatively to the positive

knowledge atoms that the world view entails.

4.2.7. Example 7

Consider the epistemic logic program:



a ∨ b.

a← Knot b.

Clearly, because of the disjunction [∅] cannot be a CF22 world view. Consider the epistemic

interpretation𝒲 = [{a}] According to Def. 4.3, the added facts are:

Ka. Knot b.

We have that SMC (Γ −𝒲) = [{Ka,Knot b, a}], thus SM ′(Γ −𝒲) = [{a}], so 𝒲 is a

CF22 world view.

Consider the epistemic interpretation𝒲 = [{b}]. Now, the added facts are:

Kb. Knot a.

We have that SMC (Γ −𝒲) = [{Kb,Knot a, b}], thus SM ′(Γ −𝒲) = [{b}], so 𝒲 is a

CF22 world view.

Consider the epistemic interpretation𝒲 = [{a}{b}]. According to Def. 4.3, there are no added

facts. We have that SMC (Γ −𝒲) = SM ′(Γ −𝒲) = [{a}, {b}], so𝒲 is a CF22 world view.

It is easy to verify that instead [{a, b}] is not a CF22 world view (because the disjunction

cannot generate both a and b).

On this example, CF22 does not agree with existing semantics, because of the world view

[{b}], that they do not produce. Under CF22+S16C, there is agreement with S16, as in fact world

view [{a}, {b}], based upon an empty set of added knowledge atoms of the form KA, rules out

both [{a}] and [{b}].

4.2.8. Example 8

Consider the program:

a ∨ b.

← notKa.

Clearly, because of the disjunction [∅] cannot be a CF22 world view. Consider the epistemic

interpretation𝒲 = [{a}] According to Def. 4.3, the added facts are:

Ka. Knot b.

We have that SMC (Γ −𝒲) = [{Ka,Knot b, a}] (the stable model with b is excluded as it is

not knowledge consistent), thus SM ′(Γ −𝒲) = [{a}], so𝒲 is a CF22 world view.

Consider the epistemic interpretation𝒲 = [{b}]. According to Def. 4.3, the added facts are:

Kb. Knot a.

The constraint is clearly violated, then we have SMC (Γ −𝒲)=SM ′(Γ −𝒲)=∅, thus𝒲 is

not a CF22 world view.

Consider now𝒲 = [{a}{b}]. According to Def. 4.3, there are no added facts. The constraint

is violated, then we have SMC (Γ −𝒲)=SM ′(Γ −𝒲)=∅, thus𝒲 is not a CF22 world view.

It is easy to verify that also [{a, b}] is not a CF22 world view (because the constraint is satisfied,

but the disjunction cannot generate both a and b). Thus, CF22 on this program agrees with K15

and S16, and, like them, it does not satisfy Subjective Constraint Monotonicity as defined in [10]

and subsequent papers. This property imposes that a constraint, in the above example

← notKa.

put at a higher level (in the sense of Lifschitz and Turner splitting notion, extended in the

above-mentioned works to ELPs) w.r.t. an “object program”, that in the above example is

a ∨ b.



might have one of the following two effects: (i) the constraint is respected in a world view of the

object (or “bottom”), program, thus such world view remains untouched; or, (ii) the constraint is

violated in a world view, and in this case the world view is excluded. In particular, according

to the FAAEL semantics, that satisfies Subjective Constraint Monotonicity, the above program

has no world views, since the unique world view of the bottom part, i.e., [{a}, {b}], is eliminated

by the constraint. However, it is not easy to understand this property, because in the “analogous”

ASP program

a ∨ b.

← not a.

the constraint is indeed allowed, in ASP, to expunge from the (unique) world view [{a}, {b}] of

the bottom part (the set of its answer sets) the answer set {b}, thus producing for the program the

unique world view [{a}]. This however, according to Subjective Constraint Monotonicity, should

not be allowed for ELPs.

5. Conclusions

In this paper, we discussed Epistemic Logic Program (ELPs). We have presented a semantic

approach for ELPs, called CF22, which applies in a straightforward way the underlying principles

of the seminal ELP approach as presented and discussed by Gelfond in [2]. We devised CF22

not exactly to propose “yet another semantics”, but rather in order to establish a principled way

of comparing the different semantic approaches. We have augmented CF22 to CF22+S16C by

adding a minimality criterion, S16C, “inherited” by the semantics S16 [7], that excludes some

world views if there are others that rely on fewer assumptions about what is known.

We have experimented with CF22 on several examples taken from the relevant literature, for

which the outcome of other semantic approaches was well-known. Results are quite surprising,

as the new semantics does not agree uniformly with the others, and in some cases it agrees with

none of them. More investigation is required to understand the reasons for these discrepancies.

When CF22 agrees with S16 (which is often the case), it is not always needed to apply the S16C

Criterion in order to get the same world views. As we may notice, a real novelty of our approach

is that CF22 world views correspond to knowledge consistent sets of atoms, and this might

presumably be a source of such differences.

CF22 can be taken as a basis for interesting extensions of the ELP paradigm. Precisely, in

future work we intend to devise an extension where ELPs will be allowed to include rules with

knowledge atoms as the head.
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Abstract
In the field of Business Process Management, the Process Discovery task is one of the most important

and researched topics. It aims to automatically learn process models starting from a given set of logged

execution traces. The majority of the approaches employ procedural languages for describing the

discovered models, but declarative languages have been proposed as well. In the latter category there is

the Declare language, based on the notion of constraint, and equipped with a formal semantics on LTLf.

Also, quite common in the field is to consider the log as a set of positive examples only, but some recent

approaches pointed out that a binary classification task (with positive and negative examples) might

provide better outcomes.

In this paper, we discuss our preliminary work on the adaptation of some existing algorithms for

Inductive Logic Programming, to the specific setting of Process Discovery: in particular, we adopt the

Declare language with its formal semantics, and the perspective of a binary classification task (i.e., with

positive and negative examples).

Keywords
Process Discovery, Declare, Inductive Logic Programming

1. Introduction and motivations

The research field of Business Process Management (BPM) was initiated more than 20 years

ago, and it is now a mature discipline that focuses on the many aspects related to the Business

Processes and IT-solutions (but not only) for BPM. In particular, the mining of Business Processes

(with the three main tasks of discovery, conformance checking and enhancement [1]) is a sub-

field aimed to support decision-making in complex industrial and corporate domains. Process
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discovery in particular deals with the automatic learning of a process model starting from a

given set of logged traces, each one representing the execution of a business case. Accordingly

to the language employed to represent the output process model, discovery algorithms fall

into procedural or declarative techniques. The latter family of techniques—which represent

the context of this work—return the model as a set of constraints (equipped with a declarative,

logic-based semantics) that must be fulfilled by the traces at hand.

The Declare language [2] is one of the most used declarative languages, and consists of a set of

template constraints that can be instantiated (grounded) with the process activities. The formal

semantics of each constraint is based on LTL, and a process model is defined as a conjunction of

grounded templates: hence, Declare does not (fully) support Conjunctive/Disjunctive Normal

Forms. Moreover, the majority of the discovery algorithms conceive this task as a one-class

supervised learning technique, while fewer works (e.g. [3, 4, 5, 6]) intend model-extraction as

a two-class supervised task—provided that the log has been partitioned into two sets, usually

named positive and negative examples.

In the field of Logic Programming, Inductive Logic Programming (ILP) is a well known family

of learning techniques that address the learning task in terms of a binary classification problem.

Noteworthy algorithms are the one proposed by Quinlan [7] and its subsequent generalization

to DNF/CNF models proposed by Mooney [8]. There, the objective is to learn a logic-based

description of two sets of ground facts.

In this paper, we discuss our preliminary investigations about the possibility of adapting the

approach proposed by Mooney, to the specific setting of BP Discovery task, and Declare as

the target language for describing the learned models. Hence, our approach will start from a

log partitioned into two sets (positive and negative labeled traces), and the outcome will be a

conjunction/disjunction of grounded Declare templates. The resulting model should be able

then to discriminate positive from negative traces, as well as to properly classify novel traces.

The proposed algorithms have been implemented in Prolog, and some preliminary testing has

been done to evaluate the correctness of our approach, and the performances of the current

implementation.

The paper is organized as follows: in Section 2 we provide some background on the field

of Process Discovery and the Declare language, and on the original algorithms proposed by

Mooney, from which we took inspiration. In Section 3 we introduce our extension/adaptation

of the existing algorithms to the specific setting, and in Section 4 we experimentally evaluate

our approach. In Section 5 we discuss some related works, while in Section 6 we discuss some

conclusion remarks and future works.

2. Preliminaries

2.1. Process Discovery, and Declare

According to the Business Process Mining Manifesto [1], Process Discovery aims to “discover”

a model of a process using the knowledge deduced from the event log without the use of

a-priori information. A distinction between the many discovery algorithms can be done on

the basis of the language adopted to output the learned process model. Indeed, two main

categories of modeling languages can be easily identified: procedural languages and declarative
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Figure 1: Examples of Declare constraints

languages. Procedural languages model the processes in terms of constructs like sequence,

parallel executions, (exclusive) choices between different execution paths, etc. Declarative

languages instead are more focused on the properties that each process execution should exhibit.

While the former languages usually adopt a closed-approach (allowed execution paths are

explicitly stated; everything else is forbidden by default), the latter approaches are usually based

on a open-approach (whatever is not explicitly prohibited can be executed and is compliant

with the process model). Notable examples of procedural modeling languages are YAWL [9] and

BPMN [10, 11], while famous examples of declarative approaches are Declare [2] and Dynamic

Condition Response Graphs [12].

Declare [2, 13] is one of the most well-established declarative process modeling languages.

A process is modeled through a conjunction of constraints that affect the presence/absence of

activity executions, and possibly the relative orders between activities. To this end, Declare

provides a set of constraint templates that can be instantiated (grounded) by specifying the

activities. Two main categories of constraint templates (or simply constraints, in the following)

are available: existence constraints that involve only one activity, and relation constraints, that

involve two of them. An example of an existence constraint is existence(a) (Figure 1a), that

specifies that activity a must be executed at least once in every process instance. An example

of relation constraint is response(a,b) (Fig. 1b): it states that, if activity a is executed, then it

must be followed by the execution of activity b. Notice that the constraint is “triggered” by

the execution of the activity a (graphically, a filled circle marks the triggering event), and that

can be also vacuously satisfied if a is not executed. Each Declare template has been equipped

with a formal semantics [2] in LTLf : for example, response(a,b) correspond to the expression

□(a ⇒ ♢b).
Some constraints are in a subsumption relation each other, meaning that traces satisfying a

constraint will satisfy also another constraint, but not the opposite. For example, the init(a)

constraint shown in Figure 1c states that every trace must begin with the execution of activity

a: it is straightforward to see that every trace compliant with init(a) will be compliant also with

existence(a), but not the other way round. Formally, as defined in [14], given a finite set A

of activities, and A∗ the set of sequences that can be generated from A, a constraint template

C is subsumed by another constraint C’, written C ⊑ C’, if for every trace t ∈ A∗ and every

parameter assignment γn from the parameters of C to tasks inA, whatever t complies withC/γn,

then t also satisfies C’/γn. This hierarchy allows us to make specialization or generalization

steps, as explained in the next section.



2.2. Learning CNF and DNF models: Mooney’s approach

Mooney in [8], proposed two algorithms for learning Conjunctive and Disjunctive Normal

Forms of logic models, respectively, starting from a labeled dataset. The DNF learner, called

PFoil, is a propositional version of Quinlan’s Foil [7], and it is composed of two cycles. The inner

cycle focuses on the generation of terms, conjunctions of feature-value pairs that necessarily

exclude all the negative examples in the event log. The outer cycle adds the returned clauses in

disjunction to the model and ends when it covers all the positive traces. The next feature-value

pair to add to the term is chosen calculating its DNF gain, a score based on the total number of

positive and negative examples in the event log and on the number of covered ones. Intuitively,

the best pair will be the one that covers more positive traces while excluding more negative

ones.

Algorithm 1 PFoil: DNF learner by Mooney

Let Pos be all the positive examples.

Let DNF be empty.

Until Pos is empty do:

Let Neg be all the negative examples.

Set Term to empty and Pos2 to Pos.

Until Neg is empty do:

Choose the feature-value L that maximizes the function DNF-gain(L, Pos2, Neg).

Add L to Term.

Remove from Neg all the examples that do not satisfy L.

Remove from Pos2 all the examples that do not satisfy L.

Add Term as one term of DNF

Remove from Pos all the examples that satisfy Term.

Return DNF.

Function DNF-gain(C, Pos, Neg)

Let P be the number of examples in Pos

Let N be the number of examples in Neg

Let p be the number of examples in Pos that satisfy C

Let n be the number of examples in Neg that satisfy C

Return p×(log10(
p

p+n
) – log10(

P
P+N

)).

The dual version of the algorithm outputs a CNF model. With respect to the Algorithm 1, the

inner cycle focuses on the positives, while the outer cycle iterate over the negative exmaples.

Consequently, also the gain function is adapted, and it is reported in Eq. 1.

CNF-gain = n×

(︂

log10
n

p+ n
− log10

N

P +N

)︂

(1)

In this case though, p and n are the number of positive and negative traces that do not satisfy

the feature-value pair in exam.



3. Applying Mooney’s algorithm to the discovery of Declare

process models

In this work we extend and adapt Mooney’s algorithm to the process discovery task. With

respect to the existing approaches for process discovery, here we consider the log as split

in two (disjoint) classes of traces or, in other words, we conceive the discovery as a binary

classification task. The goal, then, is to identify which are characteristics that allow us to discern

if a not-labeled trace belongs to one class or another.

With respect to the original proposal by Mooney, we adapt the algorithm in several ways.

First of all, the target language is Declare; secondly, the examples sets are indeed the traces

belonging to a log, i.e. sequences of events that represent an execution of the process. Thirdly,

when choosing the next constraint to be added in the resulting model, we introduce a further

choice dimension (beside the gain function) by exploiting the subsumption relation between

some Declare templates. Finally, we improve the algorithm for dealing with real logs and specific

cases.

3.1. Declare as target language

Thanks to the declarative nature of Declare, and being the language based on the notion of

constraints, it suffices to implement a specific test for checking when a trace satisfies or not a

constraint. Our extended algorithm picks up constraints (rather than feature-value couples)

from a list of candidates obtained by grounding the Declare constraint patterns.

Algorithm 2Modified DNF Learner

Let Pos be all the positive traces.

Let DNF, ExcludedNeg and ExcludedPos be empty.

Until Pos is empty do:

Let Neg be all the negative traces.

Set Term to empty and Pos2 to Pos.

Until Neg is empty do:

If the list of candidate constraints is not empty:

Choose the constraint C that maximizes the function DNF-gain(C, Pos2, Neg).

Add C to Term.

Remove from Neg all the traces that do not satisfy C.

Remove from Pos2 all the traces that do not satisfy C.

else:

Set ExcludedNeg to Neg and Neg to empty.

Remove from Pos all the traces that satisfy Term.

If at least one positive trace satisfies Term:

Add Term as one term of DNF

Else:

Set ExcludedPos to Pos and Pos to empty.

Return DNF.



The constraint that maximizes the gain function is chosen using Mooney’s formula. In the

DNF version of the algorithm, then, the chosen constraint is added to Term (in conjunction), thus

performing a “specialization” step, since the resulting conjunction of constraints will exclude

more negative traces but (possibly) also more positive ones. Similarly, the CNF algorithm will

perform a generalization step, since adding a constraint in a disjunction will allow to possibly

accept more positive and/or negative traces.

In the DNF algorithm, the inner cycle outputs a term that is a conjunction of constraints that

rules out all the negative examples. It is possible, however, that a term rules out also all the

positive examples. In such a case, the term would be redundant in the final model. We add a

control step that checks if at least one positive example is satisfied, and only in that case the

term is added to the model. Moreover, if a term does not allow any positive trace, the algorithm

will never be able to find another term (if there exists such a term, the gain function would have

selected proper constraints in earlier iterations). Therefore, it is wiser to stop the computation

and to ignore the remaining positive traces. The same thing can happen in the CNF algorithm;

if a clause, that has to satisfy all the positive traces, does not exclude any negative one, then it

is discarded.

Example 1 shows a simple log, and one among the many possible Declare models. Each trace

is represented as a Prolog structure, where the first argument is the trace identifier, while the

second is a list of events. In turn, each event is described by the name of the process activity

that has been executed, and the timestamp (an integer).

Example 1. Traces labeled as positive examples:

trace(tp1, [event(a,1), event(b,2), event(c,3), event(d,4)]).

trace(tp2, [event(a,1), event(b,2), event(b,3), event(c,4)]).

trace(tp3, [event(a,1), event(c,2), event(b,3), event(d,4)]).

trace(tp4, [event(k,1), event(c,2), event(a,3), event(d,4)]).

Traces labeled as negative examples:

trace(tn1, [event(b,1), event(c,2), event(e,3), event(d,4)]).

trace(tn2, [event(c,1), event(b,2), event(a,3), event(a,4)]).

A possible DNF model could be:

(existence(a) AND precedence(a,b)) OR existence(k)

Analogously, a CNF model would be:

(existence(a) OR existence(k)) AND precedence(a,b)

□

3.2. Exploiting the subsumtption hierarchy

Some Declare templates are in a subsumption relation with each other, as pointed out in [14].

For example, the init(a) constraint imposes that each trace should begin with the execution

of activity a; consequently, any trace that satisfies such constraint will satisfies also the more



Figure 2: Subsumption map of Declare templates [14]. Note that Participation(x) corresponds to the

template existence(X), End(x) corresponds to last(X), and AtMostOne(x) to absence2(X)

.

general constraint existence(a). In Figure 2 we report the subsumption hierarchy proposed in

[14]. We exploit such relations in two ways.

First of all, the gain function will select candidates starting from two initial sets of constraints.

As the inner cycle of the DNF specializes the current term, its starting set will contain the more

general templates, accordingly to the sumbsumption hierarchy. Analogously, the CNF version

will start considering the more specialized constraints.

Secondly, the specialization step (in the DNF algorithm) is extended as well: beside adding a

new constraint in conjunction to the term, the subsumption relation allows us to specialize a

constraint already in the term. Suppose for example that the current term constructed by the

inner cycle is (existence(a)). The specialization step could then opt to add a new constraint in

conjunction, for example responded_existence(b,c), or specialize the existing one, for instance,

in init(a). The resulting models would be [existence(a) AND responded_existence(b,c)] in the

former case, and [init(a)] in the latter.

Analogous consideration hold for the CNF algorithm, with the obvious difference that the

subsumption hierarchy is explored towards the generalization.

3.3. Dealing with real-life logs

It might not be always possible to “perfectly” separate positive form negative examples. This

because of two possible reasons: the Declare language provides a bias about the allowed LTL

formulas, and to the best of our knowledge, there is not any proof of completeness of such

language w.r.t. the classification task. Moreover, real-life logs might be inconsistent, i.e. a

trace might have been labeled as positive and as negative at the same time. To cope with

these exceptions, whenever our algorithms find negative traces that are impossible to exclude



or positive ones that cannot be covered, they simply remove them from the event log under

consideration and continue with the discovery task. At the end, the ignored traces are returned

together with the found model, if any.

Sometimes real-life logs contains positive traces only, and no negative examples are provided.

Such case affects both the DNF and the CNF original algorithms, as the DNF version’s termination

condition is given by the set of negative examples becoming empty, whereas the CNF version

would be stuck in an infinite loop as it would generate empty clauses. We designed our algorithm

to be able to deal with such logs, and to return process models that just describe the positive

traces.

4. Experimental evaluation

We implemented both theDNF and the CNF algorithms in Prolog. The core of both the algorithms

is the predicate that chooses the next constraint to be added to the term. In the DNF version, at

the first iteration over a term, the predicate chooses from the set of the most general constraints.

In the subsequent iterations it will choose between the most general constraints (not yet in the

term) and the specialization of an already selected constraint. In the CNF version, the same will

happen, a part that the specialization step will bu substituted by the generalization one.

We evaluated both the algorithms against two logs: a synthetic, controlled log whose process

model was already known, and a real-life event log (about a PAP test screening process), whose

model was not known in advance.

4.1. The synthetic, controlled event log

The controlled event log contains a set of 64000 positive traces and three different sets containing

respectively 10240, 12800 and 25600 negative ones, with 16 different activities. Each one of

the negative example sets violates a single, specific constraint: hence for each log a constraint

would be enough to discriminate between the positive and the negative traces.

All the negative examples contained in the first negative set can be ruled out by the constraint

exclusive_choice(send_acceptance_pack, receive_negative_feedback). Both the DNF and the

CNF algorithms returned the same model:

exclusive_choice(send_acceptance_pack, receive_negative_feedback)

The two remaining negative sets violate a precedence constraint grounded over dif-

ferent activities, affecting the overall process in different manner. The precedence(X,

Y) template however is neither in the starting set of the DNF algorithm nor in

the one of the CNF version. The second set of negative traces was found to be

completely ruled out by not_chain_succession(assess_loan_risk, appraise_property) and

chain_succession(receive_loan_application, appraise_property), which were the models re-

turned by the algorithm, and indeed are correct w.r.t. the original violated constraint. The

model returned by the CNF version with the third set of negative traces contained the expected

constraint. On the other hand, the DNF version returned a correct but more complex model,

composed of three constraints.



DNF version CNF version

Negative Set #1 1129 297

Negative Set #2 700 307

Negative Set #3 1648 522

Table 1

Average time (in seconds) of execution for the controlled event log

From a performance point of view, as visible in Table 1, the CNF version of the algorithm

was always faster than the DNF one. This might be the consequence of the fact that, roughly

speaking, the CNF and DNF algorithms proceed with the specialization/generalization of the

returned model: thus, they start to explore different initial constraints. Figures 3 and 4 show the

occupation of the global and local stacks right before the termination of the algorithms, when

the final model has already been found.

Figure 3: Global stack occupation right

before the termination of the algorithms.

Figure 4: Local stack occupation right before

the termination of the algorithms.

4.2. A real-life event log: the PAP test

Once performances have been assessed through the use of a synthetic controlled log, we

evaluated the algorithms on a real-life event log that contains traces relative to PAP test

screenings. The number of activities in this log is slightly higher than in the controlled event

log (19 vs. 16), but the number of traces is way lower as there are only 55 positive examples and

102 negative ones. The discovered DNF and CNF models were respectively:

choice(refuse, send_result_inadequate_papTest)

OR

(

exactly1(send_letter_negative_papTest)

AND

choice(send_letter_negative_papTest, execute_colposcopy_exam)

)



And:

(

exclusive_choice(send_letter_negative_biopsy,

send_result_inadequate_papTest)

OR

chain_succession(phone_call_positive_papTest,

execute_colposcopy_exam)

)

AND

(

chain_succession(invite, refuse)

OR

chain_succession(invite, execute_papTest_exam)

)

Regarding the performances, the discovered models were returned in a very short time as

the number of traces is extremely lower than the one in the controlled event log. Again, the

performance of the CNF version is better than the DNF’s one, with respectively 3 and 5 seconds

taken on average to return the model.

5. Related works

Traditional process discovery approaches aim at extracting a process model from positive

examples of business executions. As pointed out by Goedertier et al. [4], they can be interpreted

as machine learning techniques to extract a grammar from a set of positive sample data [15].

However, in process discovery authors typically make use of formalisms to express concurrency

and synchronization in a more understandable way w.r.t. grammar learning (where automata,

regular expressions or production rules are often employed to represent the model). Since the

learning task is inevitably influenced by the type of language used for the model, this element

is often used to classify process discovery approaches into two macro-categories: procedural

and declarative.

Procedural approaches envisage to uncover structured processes [16, 17, 18, 19, 20, 21, 22, 23].

For the sake of our comparison, it is also important to underline that most of these works

contemplate the presence of negative information in the log in the shape of non-informative

noise, which should be discarded. The approach in this work is instead an example to declarative

process discovery Since process models are sometimes less structured than one could expect [24],

procedural discovery can lead to the identification of spaghetti-models. Declarative approaches

[25, 26, 24, 27, 28, 14, 29] aim at overcoming this issue by offering a compact way to briefly list the

required or prohibited behaviours in a business process. Similarly to the procedural approaches,

the declarative discoverers listed so far do not deal with negative examples. Nonetheless, they

indirectly envisage the possibility to discard a portion of the log by setting thresholds on metrics

that the discovered model should satisfy.

In the field of grammar learning, Gold [30] showed how both positive and negative examples

are required to discover a grammar with perfect accuracy. A claim particularly relevant to our



work is that, in order to distinguish the right hypothesis among an infinite number of grammars

that fit the positive examples, the key element is the availability of negative examples. The

reason why many procedural and declarative discoverers do not take into account negative

examples can be identified in the fact that these approaches do not usually seek perfection,

but focus on good performance according to defined metrics. Among traditional grammar

learning approaches, the ones by Angluin [31] and Mooney [8] are particularly relevant for

our work. The article [31] focuses on identifying an unknown model referred as “regular set”

and represented through Deterministic Finite-state Acceptor (DFA). Coherently with Gold’s

theory [30], Angluin propose a learning algorithm that starts from input examples of the regular

set’s members and non-members. The learning process is realised through the construction of

an “observation table”. As discussed in this article, the approach of Mooney et al. [8] shows

instead three different algorithms to learn CNF, DNF and decision trees from a set of positive

and negative examples.

A subset of the declarative discoverers [32, 33, 5, 34, 35] is related to the basic principles

of Inductive Constraint Logic (ICL) [36]–which depends on the availability of both negative

and positive examples. In particular, similarly to the approach of this work, DecMiner [5]

starts from an input set of labelled examples and learns a set of SCIFF rules [37], subsequently

translated into ConDec constraints [38]. Differently from [5], our approach avoids intermediate

language and aims at learning Declare constraints directly. The work [6] by Slaats et al. propose

a universal declarative miner, applicable but not limited to Declare language, which makes use

of negative and positive traces. W.r.t. our work, the generality of the approach in [6] hiders the

use of subsumption to avoid redundancy and identify the most general model. Other relevant

works are those of Neider et al. [39], Camacho et al. [40], and Reiner [41], which start form

an input data set of positive and negative examples and employ a SAT-based solver to learn a

simple set of LTL formulas. Differently from these works, we opt for Declare formulas with

LTLf semantics. In [42], a SAT-based solver is also used to discover a Declare model from a log

with both positive and negative traces. According to the classification of Gunther et al. [43],

the concept of negative example used in these works (as well as in this one) is connected to

both the concepts of syntactical and semantic noise.

Another research field related to our work is that of deviance mining [44], which aims at

characterizing those log traces that deviates from the expected behaviour. In particular, some

works focus on the differences between the models discovered from deviant and non-deviant

traces [45, 46], whereas other works intend deviance mining as a classification task similarly to

sequence classification [47, 48, 49, 50, 51, 52, 53].

A limited number of recently proposed procedural approaches [54, 4, 55, 56, 57] also actively

take into account negative examples. Finally, the development of synthetical log generators

producing both positive and negative process cases [58, 59, 60, 4, 61, 62] is another sign that

underlines how the process discovery research field is increasingly considering negative traces

as informative examples.



6. Conclusions and future work

In this work we presented an adaptation of well known discovery algorithms from previous

works [7, 8]. In particular, we chose as target language for process descriptions the Declare

language: being based on a formal semantics expressed in LTLf, the adaptation of the existing

approaches was quite seamless. Then, we exploited the existence of a subsumption relation

between some Declare templates to extend the specialization/generalization steps towards in

the original algorithms.

From the perspective of the BPM research field, and of the Declare-based approaches, it is

worthy to notice that our discovery algorithms are quite innovative w.r.t. existing approaches.

Firstly because we put a strong emphasis on the use of negative examples. Secondly, and more

important, because we suggest new Declare models based on DNF or CNF formulas. Indeed,

at its core, Declare allows only models defined in terms of conjunction of constraints, and the

disjunction is not fully supported. Hence, Declare in its original definition would not support

CNF models, nor DNF, as instead we do in this paper. It is highly debatable, however, if the

introduction of full DNF/CNF models allows to obtain simpler, or more meaning process models

w.r.t. the original limitations imposed by Declare. In turn, usability of the whole system might

be affected by the type of discovered model. These are indeed topics of future investigation.

Besides this, there are many aspects that we plan to investigate in future research activities.

First of all, Declare models are defined in terms of completely grounded constraints: the intro-

duction of variables in the constraints might result in better process models, and technically

speaking, Inductive Logic Programming algorithms would provide already an interesting so-

lution (at a higher computational cost, unfortunately). The use of variables would also offer

another way for specializing/generalizing the models.

Another aspect that might enjoy the use of variables in the models, and the adoption of

ILP techniques, is related to the presence of data in the logs. It is quite common to encounter

process logs where activities in a trace are associated with more information than just their

name or timestamp. Being able to support all the data associated to each activities could make

it possible to perform other tasks, different from the generation of the model. For example,

having not only the information that someone logged into their account at a certain time, but

also knowing who it was and what password was used could be useful for a statistical research

on how many times someone tried to log into a certain profile, leading to the identification of

hacking attempts and of the processes adopted in the attempts.

From a technical viewpoint, the introduction of variables in the Declare model would require

a different semantics (the current one is based on propositional LTL over finite traces). In this

sense, Constraint Logic Programming (CLP) over finite domains might be a viable alternative,

supporting the semantics and the implementation at the same time. With a minimum amount

of code it would be feasible to specify, for example, that a certain variable "X" can only as-

sume values associated with a finite set of activities. As a side advantage, the definition of

some constraints would be easier: for example, a quite common business constraint is that a

certain activity should not be executed twice consecutively; this would be achieved through a

chain_response(X,Y) constraint, with a further CLP constraint X ̸= Y.

Another interesting research direction regards the gain function used in the algorithm.

Currently, the gain function only takes into account the number of positive and negative traces



covered by a constraint. However, we might imagine scenarios where the users want to express

desiderata and preferences over the discovered process models. For example, users might have

a preference for a specific constraint template like init(X), or constraints grounded on certain

activities rather than others. This could be achieved by defining a different gain function or,

exploiting the existing literature on the topic, by investigating the relations with the existing

preference logics. In turn, such perspective open up a question about the optimality of a model,

that indeed was not investigated in this work.

Finally, a deeper comparison with existing approaches should be carried on, in order to better

understand the quality of the discovered models, the usability of the approach and the usability

of the discovered models from the final user viewpoint, and also to assess the performances of

our approach w.r.t. state-of-the-art process discovery algorithms.
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Abstract
In this work we introduce a labelled sequent calculus for Conditional Logics admitting the axiom of

Conditional Excluded Middle (CEM), rejected by Lewis but endorsed by Stalnaker. We also consider some

of its standard extensions. Conditional Logics with CEM recently have received a renewed attention and

have found several applications in knowledge representation and artificial intelligence. The proposed

calculus improves the only existing one, SeqS, where the condition CEM on conditional models is

tackled by means of a simple but computationally expensive process of label substitution. Here we

propose an alternative calculus avoiding label substitution, where a single rule deals simultaneously

with conditional formulas and the CEM axiom. We have implemented the calculi in Prolog following

the “lean” methodology, then we have tested the performances of the prover and compared them with

those of CondLean, an implementation of SeqS. The performances are promising and better than those

of CondLean, witnessing that the proposed calculus provides an effective improvement with respect to

the state of the art.

Keywords
conditional logics, sequent calculi, proof methods, theorem proving

1. Introduction

Conditional logics are extensions of classical logic by means of a binary operator >, in order to

express conditional implications of the form A > B. They have a long history, starting with the

seminal works by [1], [2], [3], [4], and [5]. Conditional logics have found an interest in several

fields of artificial intelligence and knowledge representation, from reasoning about prototypical

properties and non-monotonic reasoning [6, 7, 8, 9], where A > B can be used to formalize

that “typically, theAs are alsoBs” or “in normal circumstances, ifA thenB”, to modeling belief

change, knowledge update and revision [10, 11, 12], where the relation with conditional logics

is expressed by the so-called Ramsey’s Rule:

(A ∘B) → C holds if and only if A → (B > C) holds

where the operator ∘ is any update operator satisfying postulates of [13], that are considered

the “core” properties for any concrete and plausible operator of belief update. Ramsey’s rule

means that C is entailed by “A updated by B” if and only if the conditional B > C is entailed

by A. In this sense it can be said that the conditional B > C expresses an hypothetical update
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of the information A. Moreover, conditional logics have been employed in order to represent

conditional sentences that cannot be captured by material implication and, in particular, coun-

terfactuals [1], e.g., conditionals of the form “if A were the case, then B would be the case”,

where A is false, as well as to model hypothetical queries in deductive databases and logic

programming [14], causal inference and reasoning about action execution in planning [15, 16],

access control policies in security [17].

Similarly to modal logics, the semantics of conditional logics can be defined in terms of

possible world structures. In this respect, conditional logics can be seen as a generalization

of modal logics (or a type of multi-modal logic) where the conditional operator is a sort of

modality indexed by a formula of the same language. However, as a difference with modal

logics, a universally accepted semantics for conditional logics lacks and it is the main reason for

the underdevelopment of proof-methods and theorem provers. The semantics we consider in

this work is the selection function semantics [2], where truth values are assigned to formulas

depending on a world. Intuitively, the selection function f selects, for a world w and a formula

A, the set of worlds f(w,A)which are “most-similar tow" or “closer tow" given the information

A. In normal conditional logics, the function f depends on the set of worlds satisfying A rather

than on A itself, so that f(w,A) = f(w,A′) whenever A and A′ are true in the same worlds

(normality condition). A conditional sentence A > B is true in w whenever B is true in every

world selected by f for A and w. It is the normality condition which marks essentially the

difference between conditional logics on the one hand, and multimodal logic, on the other

(where one might well have a family of □ indexed by formulas). We believe that it is the very

condition of normality what makes it difficult to develop proof systems for conditional logics

with the selection function semantics.

Since we adopt the selection function semantics, CK is the fundamental system [2]; it has

the same role as the system K (from which it derives its name) in modal logic: CK-valid

formulas are exactly those ones that are valid in every selection function model. Extensions

are then obtained by imposing restrictions on the selection function. In this work, we focus

on the systems equipped with the condition of Conditional Excluded Middle (CEM), whose

characterizing axioms are of the form

(A > B) ∨ (A > ¬B)

corresponding to the semantic condition that, for each world w and for each formula A, the
selection function f selects at most one world for w and A, in other words the cardinality of

the selection function is at most 1.
While [1] provides an argument against CEM, essentially based on his treatment of “might”

counterfactuals so that both conditionals can be false, [3] provides an argument in favor,

intuitively stating that the conditionals can be indeterminate but their disjunction is true.

Consider the example in [18] and the two counterfactual sentences “if Bizet and Verdi were

compatriots, would they be Italian?” and “if Bizet and Verdi were compatriots, would they

be not Italian?”: Lewis rejects, stating that the two conditionals are intuitively false, whereas

Stalnaker endorses it, conjecturing that they are both indeterminate but their disjunction is

true. More recently, [18] has provided a general positive argument for CEM, defending the

Stalnaker’s verdict.



In [19] the authors have introduced a labelled sequent calculus for CK and the extensions

with condition CEM, but also ID (identity), MP (conditional modus ponens), and CS (conditional

strong centering), as well as most of the combinations of them. The proposed calculi, called

SeqS, are modular and, in some cases, optimal, however, for the systems with CEM, a label

substitution mechanism is needed in order to deal with the above mentioned condition on

the selection function. They have also introduced a Prolog theorem prover, called CondLean,

implementing those calculi, whose performances are promising in general, however, due to the

label substitution mechanism, they degrade for systems with CEM, especially in finding that a

formula is not valid.

In this paper we provide a first step in the direction of efficient theorem proving for conditional

logics dealing with conditional excluded middle, by tackling the problems of SeqS and CondLean

with an alternative calculus (and, as a consequence, an alternative implementation) in which

the label substitution mechanism is replaced by a suitable rule for dealing with conditional

formulas in these systems. We are able to give cut-free calculi, called SeqS’, for CK+CEM and

all the extensions with ID and CS. The completeness of the calculi is an immediate consequence

of the admissibility of cut. We show that one can derive a decision procedure from the cut-free

calculi, providing a constructive proof of decidability of the logics considered. As usual, we

obtain a terminating proof search mechanism by controlling the backward application of some

critical rules. By estimating the size of the finite derivations of a given sequent, we also obtain

a polynomial space complexity bound for these logics.

We have implemented the calculi SeqS’ in Prolog following the line of CondLean: our theorem

prover is inspired to the “lean” methodology, whose basic idea is to write short programs and

exploit the power of Prolog’s engine as much as possible. The implementation offer significantly

better performances with respect to those of CondLean, allowing us to conclude that the calculi

SeqS’ can be considered a first, plausible solution to the problem of reasoning in conditional

logics with CEM.

The plan of the paper is as follows. In Section 2 we introduce Conditional Logics with

Conditional Excluded Middle. In Section 3 we present SeqS’, the novel labelled sequent calculi,

by emphasizing the differences with SeqS. In Section 4 we describe a Prolog implementation

of SeqS’, then we conclude in Section 6 with some experimental results witnessing that its

performance are better than those of CondLean. and with some pointers to future works.

2. Conditional Logics with Conditional Excluded Middle

In this section we briefly present propositional conditional logics with CEM.

A propositional conditional language ℒ contains: (i) a set of propositional variables ATM ;

(ii) the constants ⊥ and ⊤; (iii) a set of connectives ¬ (unary), ∧, ∨, →, > (binary). Formulas of

ℒ as follows:

• ⊥, ⊤, and the propositional variables of ATM are atomic formulas;

• if A and B are formulas, ¬A, A ∧B, A ∨B, A → B and A > B are complex formulas.

We define the selection function semantics as follows: given a non-empty set of possible worlds

𝒲 , the selection function f selects, for a world w and a formula A, the set of worlds of 𝒲



which are closer to w given the information A. A conditional formula A > B holds in a world

w if the formula B holds in all the worlds selected by f for w and A.

Definition 1 (Selection function semantics). A model is a triple ℳ = ⟨𝒲, f, [ ]⟩ where:

• 𝒲 is a non empty set of worlds;

• f is the selection function

f : 𝒲 × 2𝒲 −→ 2𝒲

satisfying the condition for conditional excluded middle:

| f(w, [A]) | ≤ 1

• [ ] is the evaluation function, which assigns to an atom P ∈ ATM the set of worlds where

P is true, and is extended to the other formulas as follows:

– [⊥] = ∅;
– [⊤] = 𝒲 ;

– [¬A] = 𝒲 ∖ [A];

– [A ∧B] = [A] ∩ [B];

– [A ∨B] = [A] ∪ [B];

– [A → B] = (𝒲∖[A]) ∪ [B];

– [A > B] = {w ∈ 𝒲 | f(w, [A]) ⊆ [B]}.

It is worth noticing that we have defined f taking [A] rather thanA (i.e. f (w,[A]) rather than

f (w,A)) as an argument; this is equivalent to define f on formulas, i.e. f (w,A) but imposing

that if [A]=[A
′

] in the model, then f (w,A)=f (w,A
′

). This condition is called normality.

The semantics above characterizes the basic conditional system we consider, called CK+CEM.

An axiomatization of this system is given by:

• any axiomatization of classical propositional calculus;

• (CEM) (A > B) ∨ (A > ¬B)

• (Modus Ponens)
A A → B

B

• (RCEA)
A ↔ B

(A > C) ↔ (B > C)

• (RCK)
(A1 ∧ · · · ∧An) → B

(C > A1 ∧ · · · ∧ C > An) → (C > B)

As for modal logics, we can consider extensions of CK+CEM by assuming further properties

on the selection function. We consider the following ones:

Logic Axiom Model condition

ID A > A f(w, [A]) ⊆ [A]

CS (A ∧B) → (A > B) w ∈ [A] → f(w, [A]) ⊆ {w}

The above axiomatization is complete with respect to the semantics [2].



3. A Labelled Sequent Calculus for Conditional Logics with CEM

We introduce SeqS’, a sequent calculus for the conditional systems with CEM. The calculi make

use of labels to represent possible worlds. We consider a languageℒ and a denumerable alphabet

of labels 𝒜, whose elements are denoted by x, y, z, .... There are two kinds of labelled formulas:

• world formulas, denoted by x: A, where x ∈ 𝒜 and A ∈ ℒ, used to represent that A holds

in a world x;

• transition formulas, denoted by x
A

−→ y, where x, y ∈ 𝒜 and A ∈ ℒ. A transition formula

x
A

−→ y represents that y ∈ f (x, [A]).

A sequent is a pair ⟨Γ,∆⟩, usually denoted with Γ ⊢ ∆, where Γ and∆ are multisets of labelled

formulas. The intuitive meaning of Γ ⊢ ∆ is: every model that satisfies all labelled formulas of

Γ in the respective worlds (specified by the labels) satisfies at least one of the labelled formulas

of ∆ (in those worlds). Formally, given a model ℳ = ⟨𝒲, f, [ ]⟩ for ℒ, and a label alphabet

𝒜, we consider any mapping I : 𝒜 → 𝒲 . Let F be a labelled formula, we defineℳ |=I F as

follows:

• ℳ |=I x: A if and only if I(x) ∈ [A]

• ℳ |=I x
A

−→ y if and only if I(y) ∈ f(I(x), [A])

We say that Γ ⊢ ∆ is valid in ℳ if for every mapping I : 𝒜 → 𝒲 , if ℳ |=I F for every

F ∈ Γ, thenℳ |=I G for someG ∈ ∆. We say that Γ ⊢ ∆ is valid in a system, either the basic

CK+CEM or any extension of it, if it is valid in everyℳ satisfying the specific conditions for

that system.

The calculi SeqS’ are shown in Figure 1. We say that a sequent Γ ⊢ ∆ is derivable if it admits

a derivation in SeqS’, i.e. a proof tree, obtained by applying backwards the rules of the calculi,

having Γ ⊢ ∆ as a root and whose leaves are all instances of (AX). As usual, the idea is as

follows: in order to prove that a formula F is valid in a conditional logic, then one has to check

whether the sequent ⊢ x : F is derivable in SeqS’, i.e. if there is a derivation, obtained by

applying backwards the rules, having ⊢ x : F as a root.

As a difference with the starting point of this work, namely the sequent calculi SeqS introduced

in [19], the calculi SeqS’ deal with the CEM condition by means of a second rule whose principal

formula is a conditionalA > B on the right-hand side of a sequent, in addition to the “standard”

one already belonging to the original calculus. The novel rule, called (CEM>), is as follows:

Γ ⊢ ∆, x
A

−→ y Γ ⊢ ∆, y : B
(CEM>)

Γ ⊢ ∆, x : A > B

This rule replaces the following rule (CEM) of SeqS:

Γ, x
A

−→ y ⊢ ∆, x
A

−→ z (Γ, x
A

−→ y ⊢ ∆)[y/u, z/u]
(CEM)

Γ, x
A

−→ y ⊢ ∆

where Σ[x/u] is used to denote the multiset obtained from Σ by replacing the label x by u
wherever it occurs, and where it holds that y ̸= z and u ̸∈ Γ,∆. The basic idea underlying the



Figure 1: Rules of sequent calculi SeqS’

.

new formulation is to generate a new label when dealing with a conditional x : A > B on the

right-hand side of a sequent only one time, in order to generate a single world belonging to

the selection function of the world represented by x for A, satisfying the semantic condition of

having at most one such a world. As an example, Figure 2 shows a derivation of an instance of

the characterizing axiom (CEM).

It is easy to observe that the rule (> R) is first applied to A > B, introducing the new label

y, representing the world selected by the selection function. Then, when the other conditional

A > ¬B is taken into account, the rule (> R) is no longer applied, however the new rule

(CEM>) is applied by selecting the world represented by y as the only one belonging to the

“most similar” worlds to the one represented by x given the formula A.

The following basic structural properties hold for all the calculi SeqS’ (proofs are similar to

those in [19] and omitted to save space.



(AX)
x

A
−→ y ⊢ x

A
−→ y, x : A > B, y : B

(AX)
x

A
−→ y, y : B ⊢ x : A > B, y : B

(¬R)
x

A
−→ y ⊢ x : A > B, y : B, y : ¬B

(CEM>)
x

A
−→ y ⊢ x : A > B, x : A > ¬B, y : B

(> R)
⊢ x : A > B, x : A > ¬B

(∨R)
⊢ x : (A > B) ∨ (A > ¬B)

Figure 2: A derivation of CEM in SeqS’.

Theorem 1 (Height-preserving admissibility of weakening). If Γ ⊢ ∆ is derivable in

SeqS’ with a derivation whose height is h, then also are Γ ⊢ ∆, F and Γ, F ⊢ ∆, with proofs of

height h1 ≤ h and h2 ≤ h, respectively, where F is any labelled formula.

Theorem 2 (Height-preserving invertibility of the rules). If Γ ⊢ ∆ is derivable in SeqS’

with a derivation whose height is h, and Γ ⊢ ∆ is an instance of the conclusion of a rule R of SeqS’,

then also Γ′ ⊢ ∆′, where Γ′ ⊢ ∆′ is an instance of one of the premises of R, is derivable in SeqS’

with a proof of height h′ ≤ h.

Theorem 3 (Height-preserving admissibility of contraction). If Γ ⊢ ∆, F, F , where F is

any labelled formula, is derivable in SeqS’ with a derivation whose height is h, then also Γ ⊢ ∆, F
is derivable in SeqS’ with a proof of height h′ ≤ h. If Γ, F, F ⊢ ∆, where F is any labelled formula,

is derivable in SeqS’ with a derivation whose height is h, then also Γ, F ⊢ ∆ is derivable in SeqS’

with a proof of height h′ ≤ h.

The calculi SeqS’ are sound and complete for all the systems considered, namely the basic

system CK+CEM, as well as the three extensions with ID, CS, and both CS and ID:

Theorem 4 (Soundness and completeness). Given a conditional formula F , it is valid in a

conditional logic with conditional excluded middle if and only if it is derivable in the corresponding

calculus of SeqS’, that it to say |= F if and only if ⊢ x : F is derivable in SeqS’.

Proof. For the soundness, we have to prove that, if a sequent Γ ⊢ ∆ is derivable, then the

sequent is valid. This can be done by induction on the height of the derivation of Γ ⊢ ∆. The

basic cases are those corresponding to derivations of height 0, that is to say instances of (AX).
It is easy to see that, in all these cases, Γ ⊢ ∆ is a valid sequent. As an example, consider

Γ, x : P ⊢ ∆, x : P : consider every modelℳ and every mapping I satisfying all formulas in

the left-hand side of the sequent, then also x : P . This means that I(x) ∈ [P ], but then we

have thatℳ satisfies via I at least a formula in the right-hand side of the sequent, the same

x : P . For the inductive step, we proceed by considering each rule of the calculi SeqS’ in order

to check that, if the premise(s) is (are) valid sequent(s), to which we can apply the inductive

hypothesis, so is the conclusion. Due to space limitations, we only present the case of the



new rule (CEM>), for the other rules the proof is similar to the one of SeqS in [19]. Let the

considered proof ended as:

(1) Γ ⊢ ∆, x
A

−→ y (2) Γ ⊢ ∆, y : B
(CEM>)

(3) Γ ⊢ ∆, x : A > B

By inductive hypothesis, both (1) and (2) are valid. By absurd, suppose (3) is not, that is to
say there exists a model ℳ and a mapping I satisfying all formulas in Γ but falsifying all

formulas in ∆ as well as x : A > B. Since (1) is valid, sinceℳ and I falsifies all formulas in

∆, necessarily we have that ℳ |=I x
A

−→ y, that is to say I(y) ∈ f(I(x), [A]). By the CEM

semantic condition, it follows that (*) f(I(x), [A]) = {I(y)}. Analogously, by the validity of

(2) we have that ℳ |=I y : B. If ℳ ̸|=I x : A > B in (3), there exists a world w such that

w ∈ f(I(x), [A]) and w ̸∈ [B], however, since (*), we have that I(y) = w, against the validity

of (2), and we are done.

The completeness is an easy consequence of the admissibility of the cut rule:

Γ ⊢ ∆, F F,Γ ⊢ ∆
(cut)

Γ ⊢ ∆

where F is any labelled formula. As usual, the proof proceeds by a double induction over

the complexity of the cut formula and the sum of the heights of the derivations of the two

premises of cut, in the sense that we replace one cut by one or several cuts on formulas of

smaller complexity, or on sequents derived by shorter derivations. We only show one of the

paradigmatic cases involving the novel rule (CEM>), namely the case in which the cut formula

is the principal formulas in both the premises of (cut), and the rules applied to it are (CEM>)
and (> L). The situation is as follows:

(1)Γ ⊢ ∆, x
A

−→ y (2)Γ ⊢ ∆, y : B
(CEM>)

(5)Γ ⊢ ∆, x : A > B

(3)Γ, x : A > B ⊢ ∆, x
A

−→ y (4)Γ, x : A > B, y : B ⊢ ∆
(> L)

(6)Γ, x : A > B ⊢ ∆
(cut)

Γ ⊢ ∆

Since weakening is height-preserving admissible, we can obtain a proof (with a derivation of

at most the same height of (5)) for (5′) Γ ⊢ ∆, x : A > B, y : B. By inductive hypothesis on

the height of the derivations, we can cut (4) and (5′), obtaining a derivation of (7) Γ, y : B ⊢ ∆.

We can then apply the inductive hypothesis on the complexity of the cut formula to cut (2) and
(7), and we are done with a derivation of Γ ⊢ ∆. The remaining cases are similar to those in

[19] and left to the reader.

With the rule (cut) at hand, we show that if a formula F is valid in a conditional logic

with CEM, then ⊢ x : F is derivable in SeqS’. We proceed by induction on the complexity of

the formulas, therefore we show that the axioms are derivable and that the set of derivable

formulas is closed under (Modus Ponens), (RCEA), and (RCK). A derivation of axioms (ID)

and (CS) can be obtained as in SeqS [19]. A derivation of (CEM) is provided in Figure 2. For

(Modus Ponens), suppose that ⊢ x : A → B and ⊢ x : A are derivable. We easily have that

x : A → B, x : A ⊢ x : B is derivable too. Since cut is admissible, by two cuts we obtain



⊢ x : B:
x : A → B, x : A ⊢ x : B ⊢ x : A → B

(cut)
x : A ⊢ x : B ⊢ x : A

(cut)
⊢ x : B

For (RCEA), we have to show that if A ↔ B is derivable, then also (A > C) ↔ (B > C)
is so. The formula A ↔ B is an abbreviation for (A → B) ∧ (B → A). Suppose that

⊢ x : (A → B) ∧ (B → A) is derivable, then also x : A ⊢ x : B and x : B ⊢ x : A are

derivable since rules are height-preserving invertible. We can derive x : A > C ⊢ x : B > C
as follows:

x : A ⊢ x : B x : B ⊢ x : A
(EQ)

x : A > C, x
B

−→ y ⊢ x
A

−→ y, y : C x : A > C, x
B

−→ y, y : C ⊢ y : C
(> L)

x
B

−→ y, x : A > C ⊢ y : C
(> R)

x : A > C ⊢ x : B > C

The other half is symmetric. For (RCK), suppose that (1) ⊢ x : B1 ∧ B2 · · · ∧ Bn → C is

derivable, by the height-preserving invertibility of the rules also y : B1, . . . , y : Bn ⊢ y : C is

derivable. We obtain the following derivation:

x
A

−→ y ⊢ x
A

−→ y

x
A

−→ y ⊢ x
A

−→ y x : A > B1, y : B1, . . . , y : Bn ⊢ y : C
(⇒ L)

x
A

−→ y, x : A > B1, y : B1, . . . , y : Bn−1 ⊢ y : C

...

x
A

−→ y, x : A > B1, . . . , x : A > Bn, y : B1 ⊢ y : C
(> L)

x
A

−→ y, x : A > B1, . . . , x : A > Bn ⊢ y : C
(> R)

x : A > B1, . . . , x : A > Bn ⊢ x : A > C

■

The presence of labels and of the rules (> L), (ID), and (CS), which increase the complexity

of the sequent in a backward proof search, is a potential cause of a non-terminating proof search.

However, with a similar argument to the one proposed in [19], we can define a procedure that

can apply such rules in a controlled way and introducing a finite number of labels, ensuring

termination. Intuitively, it can be shown that it is useless to apply (> L) on x : A > B by

introducing (looking backward) the same transition formula x
A

−→ y more than once in each

branch of a proof tree. Similarly, it is useless to apply (ID) or (CS)on the same transition

x
A

−→ y more than once in a backward proof search in each branch of a derivation. This leads

to the decidability of the given logics:

Theorem 5 (Decidability). Conditional logics CK+CEM, CK+CEM+ID, CK+CEM+CS, and

CK+CEM+ID+CS are decidable.



We can show that provability in all the conditional logics with CEM considered is decidable in

O(n2 log n) space, the proof is essentially the same as in [19] and can be omitted in order to

save space.

4. A Theorem Prover for Conditional Logics with CEM

We have implemented the calculi SeqS’ introduced in the previous section (https://gitlab2.educ.

di.unito.it/pozzato/condlean4) in order to show that such a calculus can be the base for efficient

theorem proving for conditional logics with conditional excluded middle. In order to provide a

safe and direct comparison with CondLean [20, 21], as far as we know, the only theorem prover

for these logics, we have followed the so-called “lean” methodology, introduced by Beckert

and Posegga in the middle of the 90s [22, 23, 24]. Beckert and Posegga have proposed a very

elegant and extremely efficient first-order theorem prover, called leanTAP, consisting of only

five Prolog clauses. The basic idea of the “lean” methodology is “to achieve maximal efficiency

from minimal means” [22] by writing short programs and exploiting the power of Prolog’s

engine as much as possible.

We implement each component of a sequent by a list of formulas, partitioned into three

sub-lists: atomic formulas, transitions and complex formulas. Atomic and complex formulas are

implemented by a Prolog list of the form [x,a], where x is a Prolog constant and a is a formula.

A transition formula x
A

−→ y is implemented by a Prolog list of the form [x,a,y]. Labels are

implemented by Prolog constants. The sequent calculi are implemented by the predicate

prove(Cond, Gamma, Delta, Labels, Tree)

which succeeds if and only if Γ ⊢∆ is derivable in SeqS, where Gamma and Delta are the lists

implementing the multisets Γ and∆, respectively and Labels is the list of labels introduced in

that branch. Cond is a list of pairs of kind [F,Used ], where F is a conditional formula [X,A =>

B] and Used is a list of transitions [[X,A1, Y1], ..., [X,An, Yn]] such that (> L) has already

been applied to x : A > B by using transitions x
Ai−→ yi. The list Cond is used in order to

ensure the termination of the proof search, by applying the restrictions described in the previous

section in order to avoid useless applications of the rules. Similar mechanisms are adopted for

extensions of the basic system CK+CEM, in order to control the applications of rules (ID) and

(CS). Tree is an output term: if the proof search succeeds, it matches an implementation of the

derivation found by the theorem prover.

Each clause of the prove predicate implements one axiom or rule of SeqS’. The theorem prover

proceeds as follows. First of all, if Γ ⊢∆ is an axiom, then the goal will succeed immediately

by using the clauses for the axioms. If it is not, then the first applicable rule is chosen. The

ordering of the clauses is such that the application of the branching rules is postponed as much

as possible. Concerning the rules for > on the right-hand side of a sequent, the rule (> R),

which introduces a new label in a backward proof search, is first applied to a sequent of the

form Γ ⊢ ∆, x : A > B. If this does not lead to a derivation, the new rule for CEM is then

applied.

As an example, the clause for the axiom checking whether the same atomic formula occurs

in both the left and the right hand side of a sequent is implemented as follows:

https://gitlab2.educ.di.unito.it/pozzato/condlean4
https://gitlab2.educ.di.unito.it/pozzato/condlean4


prove(_,[LitGamma,_,_],[LitDelta,_,_],_):-

member(F,LitGamma),member(F,LitDelta),!.

As another example, here is the clause implementing (> L):

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[LitDelta,TransDelta,ComplexDelta], Labels):-

member([X,A => B],ComplexGamma),

select([[X,A => B],Used],Cond,TempCond),

member([X,C,Y],TransGamma),

∖+member([X,C,Y],Used),!,

put([Y,B],LitGamma,ComplexGamma,NewLitGamma,

NewComplexGamma),

prove([[[X, A => B],[[X,C,Y] | Used]] | TempCond],

[LitGamma,TransGamma,ComplexGamma],

[LitDelta,[[X,A,Y]|TransDelta],ComplexDelta],Labels),

prove([[[X, A => B],[[X,C,Y] | Used]] | TempCond],

[NewLitGamma,TransGamma,NewComplexGamma],

[LitDelta,TransDelta,ComplexDelta],Labels).

The predicate put is used to put [Y,B] in the proper sub-list of the antecedent. The two

recursive calls to prove implement the proof search on the two premises of the rule.

As a further example, here is the code of the novel rule (CEM>):

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[LitDelta,TransDelta,ComplexDelta], Labels):-

select([X,A => B],ComplexDelta,ResComplexDelta),!,

member([X,_,Y],TransGamma),

put([Y,B],LitDelta,ResComplexDelta,NewLitDelta,NewComplexDelta),

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[LitDelta,[[X,A,Y] | TransDelta],ComplexDelta], Labels),

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[NewLitDelta,TransDelta,NewComplexDelta], Labels).

In order to search a derivation of a sequent Γ ⊢∆, the theorem prover proceeds as follows.

First, if Γ ⊢∆ is an axiom, the goal will succeed immediately by using the clauses for the axioms.

If it is not, then the first applicable rule is chosen, e.g. if ComplexDelta contains a formula

[X,A -> B], then the clause for (→ R) rule is used, invoking prove on the unique premise of

(→ R). The prover proceeds in a similar way for the other rules. The ordering of the clauses is

such that the application of the branching rules is postponed as much as possible.



In order to check whether a formula is valid in one of the considered system, one has just to

invoke the following auxiliary predicate:

pr(Formula)

which wraps the prove predicate by a suitable initialization of its parameters.

The theorem prover is available for free download at https://gitlab2.educ.di.unito.it/pozzato/

condlean4, where one can also find an updated version of CondLean in order to compute the

statistics described in the next section.

5. Statistics

We have tested both CondLean and our theorem prover over

1. a set of randomly generated formulas, either valid or not

2. a set of formulas holding only in systems with CEM

obtaining the following results:

1. over randomly generated formulas, we have observed an improvement of the perfor-

mances of CondLean of 48, 27%.

2. over a set of valid formulas we are able to improve the performances of CondLean of

20, 57%. As an example, running both the provers over the formula

(A > (B1 ∨ . . . B5)) > ((A > B1) ∨ . . . ∨ (A > B5))

our theorem prover is able to build a derivation in 94 ms, against the 266 ms needed by

CondLean.

We are currently testing the performances of our implementation over the extensions with ID

and CS and we are developing a graphical interface for the prover and we are also providing

Prolog files that will allow the user to reproduce a detailed comparison between the two systems

in a completely automated way.

The performance of the proposed theorem prover are promising, especially concerning all

cases in which it has to answer no for a not valid formula: this is justified by the fact that

CondLean has to make a great effort in order to explore the whole space of alternative choices

in label substitution, operation needed in order to conclude that no derivation exist.

6. Conclusions and Future Works

In this work we have introduced labelled sequent calculi for conditional logics with the axiom

of conditional excluded middle (CEM), as well as all the extensions with axioms ID and CS.

Our calculi revise those introduced in [19], where a modular labelled sequent calculus SeqS has

been introduced for several conditional logics, including those with CEM. We have provided

alternative calculi, where the original rule for CEM, based on an expensive mechanism of label

https://gitlab2.educ.di.unito.it/pozzato/condlean4
https://gitlab2.educ.di.unito.it/pozzato/condlean4


substitution, has been replaced by a novel and “standard” rule, called (CEM>) specifically
tailored for handling conditional formulas A > B in these systems.

We have also implemented the prosed calculi in order to obtain an empirical witness of the

fact that our solution improves the one in [19]. We have compared the performances of our

theorem prover with those of CondLean, a Prolog implementation of the calculi SeqS. Our

implementation is inspired to the “lean” methodology and, in order to focus on CEM, it adopts

all the choices of CondLean, essentially just by replacing the rule for conditional excluded

middle with a clause implementing the novel (CEM>).
In future work we plan to extend the calculi and the implementation to other conditional

logics with conditional excluded middle. In particular, our main objective is to include extensions

with the axiom MP of conditional modus ponens:

(A > B) → (A → B),

whose selection functions must respect the following condition:

if w ∈ [A], then w ∈ f(w, [A]).

This system, as well as its extensions with ID and CS, is not handled by CondLean, since [19]

does not show that (cut) is admissible also for them in the calculi SeqS.

Moreover, we aim at implementing a “concrete” theorem prover, starting from the one

proposed in this work, implementing state of the art heuristics, data structures and suitable

refinements. As already mentioned, we are currently working on extending the set of formulas

used in order to obtain further statistics, with the objective of comparing the performances of

the proposed theorem prover with those of CondLean.
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Declarative Pattern Mining in Digital Forensics:

Preliminary Results
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Abstract
This paper proposes the application of ASP-based sequential pattern mining techniques in the analysis

of evidence collected according to the practice of digital forensics. In particular, it reports preliminary

results concerning the analysis of anonymised mobile phone recordings, which highlight the sequences

of events in a given time span.

Keywords
Sequential Pattern Mining, Answer Set Programming, Digital Forensics

1. Introduction

Digital Forensics (DF) is a branch of criminalistics which deals with the identification, acquisition,

preservation, analysis and presentation of the information content of computer systems, or in

general of digital devices, by means of specialized software, and according to specific regulations.

In particular, the phase of Evidence Analysis involves examining and aggregating evidence about

possible crimes and crime perpetrators collected from various electronic devices in order to

reconstruct events, event sequences and scenarios related to a crime. Evidence Analysis results

are made available to law enforcement, investigators, intelligence agencies, public prosecutors,

lawyers and judges.

Unlike the phase of Identification, where the application of Machine Learning (ML) tech-

niques can be useful for the analysis of big data, the phase of Evidence Analysis has particular

requirements that make the use of techniques from Knowledge Representation (KR) and Auto-

mated Reasoning (AR) a much more promising approach, potentially becoming a breakthrough

in the state-of-the-art. The ultimate goal of Evidence Analysis is indeed the formulation of

verifiable evidence that can be rationally presented in a trial. Under this perspective, the results

provided by ML classifiers or other types of “black box” AI systems do not have more value

than human witness’ suspicions and cannot be used as legal evidence. Logical methods provide

a broad range of proof-based reasoning functionalities that can be implemented in a declarative

framework where the problem specification and the computational program are closely aligned.
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This has the benefit that the correctness of the resulting systems can be formally verified.

Moreover, recent research has led to new methods for visualising and explaining the results

of computed answers (e.g., based on argumentation schemes). So one can not only represent

and solve relevant problems, but also provide tools to explain the conclusions (and their proofs)

in a transparent, comprehensible and justified way. This approach to DF was first explored

by Costantini et al. [1, 2], and subsequently adopted by the COST Action “Digital forensics:

evidence analysis via intelligent systems and practices" (DigForASP)1 which aims at promoting

formal and verifiable AI methods and techniques for Evidence Analysis [3].

Pattern mining [4] is a class of data mining tasks that consist of extracting interesting

structured patterns from a set of structured examples. These tasks encompass itemset mining,

sequence mining and graph mining. The interestingness measure of a pattern is, in most

of the algorithms, the number of its occurrences in the set of examples. Given a threshold

𝑘, interesting patterns are those that occur at least in 𝑘 examples. In this case, the task is

known as frequent pattern mining for which many algorithms have been proposed. Most of

the efficient algorithmic solutions rely on an antimonotonicity property of the support: the

larger the pattern, the fewer it occurs. Declarative pattern mining (DPM) aims at encoding

pattern tasks in a declarative framework, and more specifically the frequent pattern mining

tasks. Declarative pattern mining addressed the tasks of frequent itemset mining [5, 6], frequent

sequential patterns [7, 8]. Different declarative frameworks have been explored: SAT [5], CP

[9, 6], and ASP [8, 10]. We do not expect DPM to be competitive with dedicated algorithms,

but to take advantage of the versatility of declarative frameworks to propose pattern mining

tools that could exploit background knowledge during the mining process to extract less but

meaningful patterns. In this paper we will consider the case of sequential patterns, which turn

out to be promising as a support to the analysis of events and sequences of events in scenarios

of interest to DF experts.

The paper is organized as follows. In Section 2 we provide the necessary preliminaries on

ASP, sequential pattern mining and the ASP encoding used in our work. In Section 3 we describe

the application to a typical DF problem: the analysis of mobile phone recordings. In Section 4

we report some preliminary experimental results. In Section 5 we conclude by commenting the

ongoing work and by outlining some promising directions for research.

2. Preliminaries

2.1. Answer Set Programming

In the following we give a brief overview of the syntax and semantics of disjunctive logic

programs in ASP. The reader can refer to, e.g., [11] for a more extensive introduction to ASP.

Let 𝑈 be a fixed countable set of (domain) elements, also called constants, upon which a

total order ≺ is defined. An atom 𝛼 is an expression 𝑝(𝑡1, . . . , 𝑡n), where 𝑝 is a predicate of

arity 𝑛 ≥ 0 and each 𝑡i is either a variable or an element from 𝑈 (i.e., the resulting language is

function-free). An atom is ground if it is free of variables. We denote the set of all ground atoms

1DigForASP: https://digforasp.uca.es/
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over 𝑈 by 𝐵U . A (disjunctive) rule 𝑟 is of the form

𝑎1 ∨ . . . ∨ 𝑎n ← 𝑏1, . . . , 𝑏k, 𝑛𝑜𝑡 𝑏k+1, . . . , 𝑛𝑜𝑡 𝑏m

with 𝑛 ≥ 0, 𝑚 ≥ 𝑘 ≥ 0, 𝑛 + 𝑚 > 0, where 𝑎1, . . . , 𝑎n, 𝑏1, . . . , 𝑏m are atoms, or a count

expression of the form #𝑐𝑜𝑢𝑛𝑡{𝑙 : 𝑙1, . . . , 𝑙i} ◁▷ 𝑢, where 𝑙 is an atom and 𝑙j is a literal (i.e.,
an atom which can be negated or not), 1 ≥ 𝑗 ≥ 𝑖, ◁▷∈ {≤, <,=, >,≥}, and 𝑢 ∈ N. Moreover,

“not” denotes default negation. The head of 𝑟 is the set ℎ𝑒𝑎𝑑(𝑟) = {𝑎1, . . . , 𝑎n} and the body

of 𝑟 is 𝑏𝑜𝑑𝑦(𝑟) = {𝑏1, . . . , 𝑏k, 𝑛𝑜𝑡 𝑏k+1, . . . , 𝑛𝑜𝑡 𝑏m}. Furthermore, we distinguish between

𝑏𝑜𝑑𝑦+(𝑟) = {𝑏1, . . . , 𝑏k} and 𝑏𝑜𝑑𝑦−(𝑟) = {𝑏k+1, . . . , 𝑏m}. A rule 𝑟 is normal if 𝑛 ≤ 1 and a

constraint if 𝑛 = 0. A rule 𝑟 is safe if each variable in 𝑟 occurs in 𝑏𝑜𝑑𝑦+(𝑟). A rule 𝑟 is ground
if no variable occurs in 𝑟. A fact is a ground rule with 𝑏𝑜𝑑𝑦(𝑟) = ∅ and |ℎ𝑒𝑎𝑑(𝑟)| = 1. An
(input) database is a set of facts. A program is a finite set of rules. For a program Π and an input

database 𝐷, we often write Π(𝐷) instead of 𝐷 ∪Π. If each rule in a program is normal (resp.

ground), we call the program normal (resp. ground).

Given a program Π, let 𝑈Π be the set of all constants appearing in Π. 𝐺𝑟(Π) is the set

of rules 𝑟𝜎 obtained by applying, to each rule 𝑟 ∈ Π, all possible substitutions 𝜎 from the

variables in 𝑟 to elements of 𝑈Π. For count-expressions, {𝑙 : 𝑙1, . . . , 𝑙n} denotes the set of all
ground instantiations of 𝑙, governed through 𝑙1, . . . , 𝑙n. An interpretation 𝐼 ⊆ 𝐵U satisfies

a ground rule 𝑟 iff ℎ𝑒𝑎𝑑(𝑟) ∩ 𝐼 ̸= ∅ whenever 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝐼 , 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝐼 = ∅, and for

each contained count-expression, 𝑁 ◁▷ 𝑢 holds, where 𝑁 = |{𝑙|𝑙1, . . . , 𝑙n}|, 𝑢 ∈ N and

◁▷∈ {≤, <,=, >,≥}. A ground program Π is satisfied by 𝐼 , if 𝐼 satisfies each 𝑟 ∈ Π. A

non-ground rule 𝑟 (resp., a program Π) is satisfied by an interpretation 𝐼 iff 𝐼 satisfies all

groundings of 𝑟 (resp., 𝐺𝑟(Π)). A subset-minimal set 𝐼 ⊆ 𝐵U satisfying the Gelfond-Lifschitz

reduct ΠI = {ℎ𝑒𝑎𝑑(𝑟)← 𝑏𝑜𝑑𝑦+(𝑟)|𝐼 ∩ 𝑏𝑜𝑑𝑦−(𝑟) = ∅, 𝑟 ∈ 𝐺𝑟(Π)} is called an answer set of

Π. We denote the set of answer sets for a program Π by 𝐴𝑆(Π).
The tools used in this work are part of the Potassco2 collection [12]. The main tool of the

collection is the clingo ASP solver [13].

2.2. Sequential Pattern Mining

Our terminology on sequence mining follows the one in [7]. Throughout this article, [𝑛] =
{1, . . . , 𝑛} denotes the set of the first 𝑛 positive integers.

Let Σ be the alphabet, i.e., the set of items. An itemset 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎m} ⊆ Σ is a finite

set of items. The size of 𝐴, denoted |𝐴|, is 𝑚. A sequence 𝑠 is of the form 𝑠 = ⟨𝑠1𝑠2 . . . 𝑠n⟩
where each 𝑠i is an itemset, and 𝑛 is the length of the sequence.

A database 𝒟 is a multiset of sequences over Σ. A sequence 𝑠 = ⟨𝑠1 . . . 𝑠m⟩ with 𝑠i ∈ Σ is

contained in a sequence 𝑡 = ⟨𝑡1 . . . 𝑡n⟩ with 𝑚 ≤ 𝑛, written 𝑠 ⊑ 𝑡, if 𝑠i ⊆ 𝑡ei for 1 ≤ 𝑖 ≤ 𝑚
and an increasing sequence (𝑒1 . . . 𝑒m) of positive integers 𝑒i ∈ [𝑛], called an embedding of 𝑠
in 𝑡. For example, we have ⟨𝑎(𝑐𝑑)⟩ ⊑ ⟨𝑎𝑏(𝑐𝑑𝑒)⟩ relative to embedding (1, 3). (𝑐𝑑) denotes the
itemset made of items 𝑐 and 𝑑.
Given a database 𝒟, the cover of a sequence 𝑝 is the set of sequences in 𝒟 that contain 𝑝:

𝑐𝑜𝑣𝑒𝑟(𝑝,𝒟) = {𝑡 ∈ 𝐷|𝑝 ⊑ 𝑡}. The number of sequences in 𝒟 containing 𝑝 is called its support,

2Potassco: https://potassco.org/
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Table 1

An example of sequence database 𝒟.

Id Sequence

1 ⟨𝑑 𝑎 𝑏 𝑐⟩
2 ⟨𝑎 𝑐 𝑏 𝑐⟩
3 ⟨𝑎 𝑏 𝑐⟩
4 ⟨𝑎 𝑏 𝑐⟩
5 ⟨𝑎 𝑐⟩
6 ⟨𝑏⟩
7 ⟨𝑐⟩

that is, 𝑠𝑢𝑝𝑝(𝑝,𝒟) = |𝑐𝑜𝑣𝑒𝑟(𝑝,𝒟)|. For an integer 𝑘, the problem of frequent sequence mining

is about discovering all sequences 𝑝 such that 𝑠𝑢𝑝𝑝(𝑝,𝒟) ≥ 𝑘. We often call 𝑝 a (sequential)
pattern, and 𝑘 is also referred to as the (minimum) support threshold. For 𝑘 = 2 we can see how

⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑎 𝑏⟩, ⟨𝑎 𝑐⟩, ⟨𝑏 𝑐⟩ e ⟨𝑎 𝑏 𝑐⟩ are common patterns in the database 𝒟 reported in

Table 1.

2.3. Mining sequential patterns with ASP

The sequence database𝒟 is represented in terms of ASP facts seq(t, p, e), where the seq predicate

says that an item e occurs at position p in a sequence t. For example, Listing 1 represents the

seven sequences of Table 1 in ASP format.

1 seq(1,1,d). seq(1,2,a). seq(1,3,b).seq(1,4,c).

2 seq(2,1,a). seq(2,2,c). seq(2,3,b).seq(2,4,c).

3 seq(3,1,a). seq(3,2,b). seq(3,3,c).

4 seq(4,1,a). seq(4,2,b). seq(4,3,c).

5 seq(5,1,a). seq(5,2,c).

6 seq(6,1,b).

7 seq(7,1,c).

Listing 1: ASP encoding for the sequence database 𝒟 reported in Table 1.

The ASP encoding for sequential pattern mining follows the principles outlined in [14] and

[8]. In particular, there are two parameters to be defined: maxlen determines the maximum

length of the patterns of interest and th specifies the minimum support threshold. The lower

the value of th the more patterns will be extracted; the lower the maxlen parameter, the

smaller the ground program will be. Therefore the parameters allow a tuning for the program

efficiency. Also, each answer set comprises a single pattern of interest. More precisely, an

answer set represents a frequent pattern 𝑠 = ⟨𝑠i⟩i≤th≤m such that 1 ≤ 𝑚 ≤ 𝑚𝑎𝑥𝑙𝑒𝑛 from

atoms 𝑝𝑎𝑡(𝑚, 𝑠1), ..., 𝑝𝑎𝑡(1, 𝑠m). The first argument expresses the position of the object in

increasing order, where m can vary, while 1 always indicates the first item in the pattern. For

example the atoms pat(1, a), pat(2, b) and pat(3, c) describe a frequent pattern ⟨𝑎 𝑏 𝑐⟩ of the



database in Table 1.

1 item(I) :- seq(_, _,I).

2

3 %sequential pattern generation

4 patpos(1).

5 0 { patpos(Ip+1) } 1 :- patpos(Ip), Ip<maxlen.

6 patlen(L) :- patpos(L), not patpos(L+1).

7

8 1 { pat(Ip,I): item(I) } 1 :- patpos(Ip).

9

10 %pattern embeddings

11 occ(T,1,Is) :- seq(T,Is,I), pat(1,I).

12 occ(T,Ip,Is) :- occ(T, Ip, Is-1), seq(T,Is,_).

13 occ(T,Ip,Is) :- occ(T, Ip-1, Is-1), seq(T,Is,I), pat(L,I).

14

15 %frequency constraint

16 seqlen(T,L) :- seq(T,L,_), not seq(T,L+1,_).

17 support(T) :- occF(T, L, LS), patlen(L), seqlen(T,LS).

18 :- { support(T) } < th.

Listing 2: Basic ASP encoding for sequential pattern mining [10].

Listing 2 reports the ASP program for sequential pattern mining according to [10]. Line 1

defines a new predicate that provides all items from the database. Lines 4 to 8 of the program

encode the pattern generation. Lines 11 to 13 encode pattern embedding search. Finally, Lines

16 to 18 are dedicated to assess the pattern frequency constraint. For a thorough discussion of

the program the reader can refer to [10].

3. Sequence Mining in Mobile Phone Records with ASP

During the investigation of a crime, it is common to analyze the communications of a particular

suspect. Given that, nowadays the mobile phone or smartphone is an object owned by anyone, it

can be useful for investigators to analyze the calls or messages exchanged. The telephone records

are a set of data inserted in tables that contain the data relating to the external communications

of the devices. In other words, the telephone records contain all the traces of communications

relating to a specific user over a certain period of time, therefore they contain traces of telephone

calls, SMS, and all the data traffic of the mobile phone.

Telephone records concern various pieces of information, such as:

• the telephone number of the caller

• the telephone number of the recipient

• the type of communication, e.g.: call, sms, missed call;

• the duration of the communication, indicated in minutes and seconds in the event of a

call. On the other hand, in the case of text messages or missed calls, this value will be

equal to 0 seconds.



In addition to the information indicated above, telephone records can report a series of

additional information usually referred to mobile users and therefore related to communications

via mobile phones.

Through a telephone records it is not possible to trace a series of important data such as the

audio of calls sent or received, the list of SMS messages, the content of the e-mails received

or sent, and the list of the web sites visited. In fact, through a telephone records it is possible

to have a trace of the communication that has taken place but not to obtain its content. The

telephone records can be requested by the Judicial Authority if it deems it useful to get hold of

them in order to carry out investigations on the individual owner of the user.

Correctly analyzing the telephone records is essential to obtain useful data. Depending on the

analysis, different types of information can be extracted. As a rule, the records are analyzed for

comparing the geographical positions with respect to the declarations, and for reconstructing

the network of contacts with reference to a single user in order to trace which conversations

he/she has had with which people and at what times.

3.1. The DigForASP dataset

For our experiments we have considered a dataset which consists of the telephone records of

four users from a real-word investigative case. The dataset has been made available by Prof.

David Billard (University of Applied Sciences in Geneva) under NDA to DigForASP members

for academic experimentation.

Each file in the dataset has the following schema:

• Type: what kind of operation the user has performed (e.g., incoming/outgoing call or

SMS);

• Caller : who makes the call or sends an SMS;

• Callee: who receives the call or SMS;

• Street: where the operation has taken place;

• Time: when the operation has taken place (ISO format3 HH: MM: SS);

• Duration: how long the operation has been (ISO format HH: MM: SS);

• Date: when the operation has taken place (format: day, month, year).

The type of the operation is one of the following cases: “config”, “gprs”, “redirect”,

“out_sms(SUB_TYPE)”, “in_sms(SUB_TYPE)”, “out_call(SUB_TYPE)”, “in_call(SUB_TYPE)”. Sub-

types are: “simple”, “ack”, “foreign”.

The dataset has undergone the mandatory anonymization process for reasons of privacy and

confidentiality. Therefore it does not contain data that allows tracing back to the real people

involved in the investigative case. For instance, there is no phone number for the caller/callee

but only a fictitious name. The names and the sizes (# rows) of the four files in the dataset are

the following: Eudokia Makrembolitissa (8,783), Karen Cook McNally (20,894), Laila Lalami

(12,689), and Lucy Delaney (8,480). An excerpt of the file containing the phone recordings of

Eudokia Makrembolitissa is reported in Figure 1.

3Format to describe dates and times: https://en.wikipedia.org/wiki/ISO_8601

https://en.wikipedia.org/wiki/ISO_8601


Figure 1: Some rows of the DigForASP dataset. The columns reflect the schema (type, caller, callee,

street_a, street_b, time, duration, date).

3.2. Data pre-processing

The dataset can not be used as is to mine sequences with ASP. So, data is pre-processed to lead

the dataset to a suitable ASP encoding.

As described in Section 2.2, the problem of sequential pattern mining consists in finding

frequent and non-empty sequences 𝑠, called sequential patterns, from a database of sequences

𝒟. The dataset of interest is the one described in Section 3.1. Obviously, in its original state it

cannot be considered as a set of sequences but must undergo an intermediate transformation

that leads it to be like the databases described in Section 2.3. In short, each line of the original

dataset will be transformed into an ASP fact through the seq_event atom.

The procedure for transforming the original dataset into sequences of ASP facts is the

following. Each row of the dataset has been transformed into a fact seq_event(t, p, e) (Listing 3),

where e represents the item (in our case the event), p defines the position of e within the

sequence t (identified by date). The term p is important as it allows you to define the order of

events within a sequence. More specifically, e is made up of the following features:

• Type: type of event (“in_sms”, “redirect”, “out_call”, etc.);

• Caller : the name of the caller;

• Callee: the name of the callee;

• Street_a: the geo-location of the event;

• Street_b: the geo-location of the event;

• the (hour, minute, seconds) triple: indicates the moment in time when the event occurred;

• Weekday: the day of the week (0 = Monday, ..., 6 = Sunday);

• Duration: duration, expressed in seconds, of the operation described by Type.

Depending on the analyst’s needs, it is also possible to transform in sequence only certain

days, months or years so as to subsequently carry out a more granular analysis.



seq_event((1,9,2040),1,(out_call(simple),eudokia_makrembolitissa,florence_violet_mckenzie

,acheson_boulevard,acheson_boulevard,(0,12,9),5,10)).

seq_event((1,9,2040),2,(out_call(simple),eudokia_makrembolitissa,florence_violet_mckenzie

,acheson_boulevard,ashcott_street,(0,12,50),5,39)).

seq_event((1,9,2040),3,(in_sms(simple),florence_violet_mckenzie,eudokia_makrembolitissa,

acheson_boulevard,ashby_place,(1,12,8),5,0)).

.

.

seq_event((2,9,2040),1,(in_sms(simple),annie_dillard,eudokia_makrembolitissa,alder_road,

none,(9,22,26),6,0)).

seq_event((2,9,2040),2,(out_call(simple),eudokia_makrembolitissa,irena_jordanova,

alexander_muir_road,adenmore_road,(11,55,29),6,82)).

seq_event((2,9,2040),3,(out_call(simple),eudokia_makrembolitissa,irena_jordanova,

alder_road,abigail_place,(12,17,57),6,39)).

.

.

Listing 3: Some facts representing sequences of events in the dataset.

Notice that, with reference to the first two facts in Listing 3, the event 𝑒1 is prior to 𝑒2 since
(𝑝e1 = 1) < (𝑝e2 = 2).

The seq_event atoms in Listing 3, in this form, are useless for discovering recurring pat-

terns without first making a more granular choice of which patterns to look for. Additional

pre-processing is required to create simpler and easier to analyze sequences. The idea is to

create sequences whose identifier refers to a particular day describing what events on that day

happened. Two types of sequences have been identified:

Communication sequences The event e refers to the (Caller, Callee) pair.

Localization sequences The event e refers to the (Street_a, Street_b) pair.

Listing 4 creates sequences of events in the format shown in Listing 5). The input to this script is

sequences like the ones shown in 3. Line 6 allows the creation of sequences via the seq predicate.

Line 8 contains a rule for calculating the number of sequences, whereas Line 10 generates

len_sequence facts which denote for each sequence its length, i.e., the number of events. The

rule at Line 11 calculates the average length of all sequences, which is the average number of

events for each sequence. The rule at Line 13 calculates the sequence with the greatest number

of events. Finally, at Lines 15-18, the atoms describing the previously mentioned statistics are

shown on an output standard (e.g., terminal, screen) respectively.

1 % from

2 % seq_event(Date, Seq_position, (Type_op, Caller, Callee, Street_a, Street_b, Time,

Weekday, Duration))

3 % to

4 % seq(Date, Seq_position, (Caller, Callee))

5

6 seq(Date, Seq_position, (Caller, Callee)) :- seq_event(Date, Seq_position, (_, Caller,

Callee, _, _, _, _, _)).

7



8 number_of_sequences(N) :- N = #count{D : seq(D, _, _)}.

9

10 len_sequence(D, L) :- L = #max{P : seq(D, P, _), seq(D1, _, _), D != D1}, seq(D, _, _).

11 avg_len_sequences(A) :- S = #sum{L, D : len_sequence(D, L)}, number_of_sequences(N), A =

S/N.

12

13 max_len_sequences(D, N) :- N = #max{L : len_sequence(_, L)}, len_sequence(D, N).

14

15 #show number_of_sequences/1.

16 #show max_len_sequences/2.

17 #show avg_len_sequences/1.

18 #show seq/3.

Listing 4: Generation of communication sequences with ASP.

avg_len_sequences(53).

number_of_sequences(164).

max_len_sequences((1,2,2041),129).

seq((1,9,2040),1,(eudokia_makrembolitissa,florence_violet_mckenzie)).

seq((1,9,2040),2,(eudokia_makrembolitissa,florence_violet_mckenzie)).

seq((1,9,2040),3,(florence_violet_mckenzie,eudokia_makrembolitissa)).

.

.

seq((2,9,2040),1,(annie_dillard,eudokia_makrembolitissa)).

seq((2,9,2040),2,(eudokia_makrembolitissa,irena_jordanova)).

seq((2,9,2040),3,(eudokia_makrembolitissa,irena_jordanova)).

.

.

Listing 5: Output generated by Listing 4 from the facts reported in Listing 3.

A similar transformation is needed in order to create localization sequences as shown in

Listing 6.

avg_len_sequences(53).

number_of_sequences(164).

max_len_sequences((1,2,2041),129).

seq((1,9,2040),1,(acheson_boulevard,acheson_boulevard)).

seq((1,9,2040),2,(acheson_boulevard,ashcott_street)).

seq((1,9,2040),3,(acheson_boulevard,ashby_place)).

.

.

seq((2,9,2040),1,(alder_road,none)).

seq((2,9,2040),2,(alexander_muir_road,adenmore_road)).

seq((2,9,2040),3,(alder_road,abigail_place)).

.

.

Listing 6: Output generated by Listing 3.2 from the facts reported in Listing 3.



This can be done by replacing the rule in line 6 of Listing 4 with the following:

seq(Date, Seq_position, (Street_a, Street_b)) :- seq_event(Date, Seq_position, (_,_,_,

Street_a,Street_b,_,_,_)).

3.3. Our ASP Encoding for the Analysis of Mobile Phone Records

For the purposes of law enforcement investigations, it is especially useful to understand what

the extracted patterns are and what information they provide to the analyst. To this aim, the

basic algorithm provided by [10] was modified in such a way as to elaborate patterns whose

items have a more complex structure including elements such as caller, callee, type of operation,

and time when this occurred (see Section 3.2).

Listing 7 reports the adapted basic algorithm to handle items with an internal structure (Line

1). Consequently, all the rules that managed the embedding were modified to manage a complex

item (Lines 11 and 13). For investigative purposes it is necessary to understand in which and

how many daily sequences the patterns were found (Lines 21 and 34). Lines 22 and 35, on

the other hand, allows you to associate each pattern found with information such as: type of

operation (Type) carried out between the two communicating entities (CC) and the precise

time of day (Time) with the relative date (T ). Furthermore, since the dataset contains rows

with undefined values (indicated with none), two constraints have been added to eliminate all

patterns with a value of none (Lines 25 and 26). A further modification concerns the possibility

of being able to search for patterns between a certain minimum and maximum length. To do

this, in addition to the maxlen parameter, already present, the minlen parameter with relative

constraint has been added (Line 29).

1 item(I) :- seq(_, _,(I, _, _)).

2

3 %sequential pattern generation

4 patpos(1).

5 { patpos(X+1) } :- patpos(X), X<maxlen.

6 patlen(L) :- patpos(L), not patpos(L+1).

7

8 1 {pat(X,I): item(I)} 1 :- patpos(X).

9

10 %pattern embeddings

11 occ(T,1,P) :- seq(T,P,(I, _, _)), pat(1,I).

12 occ(T,L,P) :- occ(T, L, P-1), seq(T,P,_).

13 occ(T,L,P) :- occ(T, L-1, P-1), seq(T,P,(C, _, _)), pat(L,C).

14

15 %frequency constraint

16 seqlen(T,L) :- seq(T,L,_), not seq(T,L+1,_).

17 supp(T) :- occ(T, L, LS), patlen(L), seqlen(T,LS).

18 :- { supp(T) } < th.

19

20 %pattern information

21 len_support(N) :- N = #count{T : supp(T)}.



22 pat_information(T, (Pos, CC) , Type, Time) :- supp(T), pat(Pos, CC), seq(T, P, (CC, Type,

Time)), occ(T, Pos, P).

23

24 % constraint for specific db with none line

25 :- pat(_, (none, _)).

26 :- pat(_, (_, none)).

27

28 % constraint for pattern of minimum lenght

29 :- #count{T : pat(T, _)} < minlen.

30

31 % atom to print

32 #show pat/2.

33 #show len_support/1.

34 #show support/1.

35 #show pat_information/4.

Listing 7: Modified ASP encoding for sequential pattern mining.

Each answer set returned by the ASP encoding in Listing 7 is a sequential pattern represented

by means of the 𝑝𝑎𝑡/2 predicate. The answer includes addition information which is deemed

useful for investigation in forensic practice such as: the days in which that pattern was found

(see predicate 𝑠𝑢𝑝𝑝𝑜𝑟𝑡/1), the type of operation carried out between caller and callee and the

precise time of the day (see predicate 𝑝𝑎𝑡_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛/4), and the support of that pattern

(predicate 𝑙𝑒𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡/1). The support can be useful to understand if the pattern is of interest

or a fact given that it occurs every day.

1 Answer: 1

2 pat(1,(margaret_hasse,karen_cook_mcnally))

3 pat(2,(karen_cook_mcnally,lucie_julia))

4 support((8,9,2040)) support((9,9,2040)) support((12,9,2040))

5 pat_information((8,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,0,55))

6 pat_information((8,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,2,27))

7 pat_information((8,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_sms(simple),(8,55,9))

8 pat_information((8,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_sms(simple),(8,55,16)

)

9 pat_information((9,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,33,29))

10 pat_information((9,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_call(simple)

,(10,24,9))

11 pat_information((12,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_call(simple)

,(8,23,41))

12 pat_information((12,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_call(simple)

,(8,26,17))

13 len_support(3)

Listing 8: First of the 15 answers generated by Listing 7.

As an example, the first answer out of the 15 returned by the ASP encoding in Listing 7



is reported in Listing 8. It refers to the running over 100 instances, with maximum pattern

length equal to 3 and minimum support threshold equal to 25%. Here, Answer 1 highlights

the existence of a sequential pattern which consists of a first communication event between

Margaret Hasse and Karen Cook McNally followed by the one between Karen Cook McNally

and Lucie Julia (see Lines 2 and 3). The pattern occurs in the days 8, 9 and 12 of September

2040, as shown at Line 4. The fact 𝑙𝑒𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡(3) provides numerical information about the

pattern support, in this case 3. Looking at the facts 𝑝𝑎𝑡_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛/4 concerning the date
08/09/2040 (see Lines 5 and 7), we get to know that Karen (the subject of the phone records)

received a text message from Margaret at 01:00:55 and then Karen sent a text message to Lucie

at 08:55:09.

4. Experiments

The goal of the following experiments is to evaluate the number of patterns discovered by

varying the key parameters. For the first group, the minimum support threshold varies from

10% to 50% while keeping the maximum pattern length fixed at 5. For the second group, the

maximum pattern length varies over (3, 5 and 8) while keeping the minimum support threshold

fixed to 25%.

All the experiments were conducted over the largest available file of the DigForASP dataset

(named Karen Cook McNally) made up of more than 20,000 instances. Given the size, a fairly

long execution time for the ASP program is assumed, Therefore, the timeout has been set to 5

hours.

In all presented experiments, we used the version 5.4.0 of clingo, with default solving parame-

ters. The ASP programs were run on a laptop computer with Windows 10 (with Ubuntu 20.04.4

subsystem), AMD Ryzen 5 3500U @ 2.10 GHz, 8GB RAM without using the multi-threading

mode of clingo. Multi-threading reduces the mean runtime but introduces variance due to the

random allocation of tasks. Such variance is inconvenient for interpreting results with repeated

executions.

Table 2

Number of frequent patterns extracted by varying the minimum support threshold (from 10% to 50%)

while keeping the maximum pattern length fixed to 5.

Min. Supp. Threshold # Patterns Execution time

10% 5,135 18000s (5h)

20% 1,004 18000s (5h)

30% 730 18000s (5h)

40% 55 18000s (5h)

50% 78 18000s (5h)

Table 2 summarizes the results from the first group of experiments. One can observe the

decrease in the number of patterns as the minimum support threshold increases. It is interesting

to observe the time taken for the computation: in all cases the computation reached 5 hours



and stopped. This means that the program did not finish the computation but was interrupted

by the set time-out. The reason is to be attributed to the size of the analyzed dataset. Given the

nature of ASP (generate&test paradigm), the high number of combinations contributed to the

long time taken to extract the patterns. Finally the patterns extracted are not all the possible

ones but they are only those extracted within 5 hours. There may be others or not by continuing

to analyze the search space.

Table 3 summarizes the results from the second group of experiments. Here, it is evident the

increase in the number of patterns as the maximum pattern length increases. It is interesting

to observe that, as the maximum pattern length increases, the time taken for computation

increases as well. Only with a maximum pattern length of 3 the computation ended, whereas

for length 5 and 8 the computation was interrupted as soon as the time-out was reached.

Table 3

Number of frequent patterns extracted by varying the maximum pattern length (3, 5, 8) while keeping

the minimum support threshold fixed to 25%.

Max. patt. length # Patterns Execution time

3 769 4816s (1h20s)

5 922 18000s (5h)

8 1,528 18000s (5h)

4.0.1. Scalability tests

With scalability tests, the goal is to assess the performance of Listing 7 over a dataset of

increasing size. Also in this case we considered the dataset concerning Karen Cook McNally,

from which we extracted test instances ranging over 100, 1000 and 10,000. We ran two groups of

tests, by varying the maximum pattern length from 3 to 5, while keeping the minimum support

threshold fixed to 25%. Tables 4 and 5 report the results from the two groups.

Table 4

Number of frequent patterns extracted by varying the number of instances (100, 1K, 10K), while leaving

the minimum support threshold (25%) and maximum pattern length (3) unchanged.

# Instances # Sequences # Patterns Execution time

100 6 15 0.079s

1,000 9 9,831 34.962s

10,000 93 947 2468.745s (41m15s)

A similar trend appears evident with a peak of patterns found when the number of instances

is equal to 1,000. This peak is due to the fact that the 1,000 instances are distributed over 9

sequences and with a threshold equal to 25% in minimum number of sequences necessary for a

pattern to be frequent is equal to 3 (rounded up because ASP considers only integers). As for



Table 5

Number of frequent patterns extracted by varying the number of instances (100, 1K, 10K), while leaving

the minimum support threshold (25%) and maximum pattern length (5) unchanged.

# Instances # Sequences # Patterns Execution time

100 6 15 0.101s

1,000 9 127,657 625.498s (10m25s)

10,000 93 2,050 18,000s (5h)

the execution time, we observe that the execution ends before the time-out when the patterns

have a maximum length of 3. Conversely, when the maximum pattern length goes from 3 to

5, the execution is interrupted for the time-out set at 5 hours with 10,000 instances while the

execution time for 1,000 instances goes from 34 seconds to more than 10 minutes.

5. Final remarks

Sequential pattern mining provides a suite of powerful tools for discovering regularities in

sequences of events. Therefore it is naturally suitable for analysing evidence in the context of

DF investigations. The expressive power of ASP makes the definition of algorithmic variants of

the basic encoding pretty easy, mainly thanks to a clever use of constraints. As a case study

we have considered the analysis of a real-world dataset of anonymised phone recordings. The

preliminary results are encouraging, although they highlight several weaknesses. A major

limit of the current encoding is the combinatorial explosion due to several factors. In order to

address this limit, we are currently working on extended versions of the basic ASP encoding

here presented, which are aimed at mining so-called condensed patterns (maximal and closed).

For the future we intend to significantly go beyond the state of the art in declarative pattern

mining, e.g., by devising effective constraints to reduce the size of the output. In parallel to the

methodological work, we plan to solicit a feedback from the DF experts involved in DigForASP,

as regards the validity and the usefulness of the work from their viewpoint. The interaction

with experts could trigger new interesting directions of research.
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Abstract
This paper presents an ongoing work on project MAP4ID “Multipurpose Analytics Platform 4 Industrial
Data”, where one of the objectives is to propose suitable combinations of machine learning and Answer
Set Programming (ASP) to cope with industrial problems. In particular, we focus on a specific use case of
the project, where we combine deep learning and ASP to solve a problem of compliance to blueprints of
electric panels. The use case data was provided by Elettrocablaggi srl, a SME leader in the market. Our
proposed solution couples an object-recognition layer, implemented resorting to deep neural networks,
that identifies components in an image of an electric panel, and sends this information to a a logic
program, that checks the compliance of the panel in the picture with the blueprint of the circuit.

Keywords
Answer Set Programming, Neural-symbolic AI, Compliance

1. Introduction

With the rise of new technologies for Cyber-Physical Systems and Big Data Analytics, the
industry moved a step forward to a new era in the field of manufacturing. This complex
transformation, including the integration of emerging paradigms and solutions (e.g., Machine
and Deep Learning, Human-Computer Interaction, Cloud Computing and Industrial Internet Of
Things (IIoT) and Blockchain), is referred as Industry 4.0. In this evolving scenario, Quality
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Control (QC) is greatly benefiting from the adoption of advanced Artificial Intelligence (AI)
solutions, indeed AI techniques and tools can allow to speed-up or automatize processes of
assessment about the integrity, the working capability and the durability of the products. In
particular, automating the compliance verification process for products represents an important
problem for all the companies operating in themanufacturing field since it is an indispensable but
expensive and time consuming task in the supply chain. Recently, defect detection for electrical
control panels (ECPs) is gaining growing interest as these tools are used in different scenarios.
Indeed, to date ECPs are employed to control a wide variety of components exploited in industry
e.g., they permits to control mechanical equipment, electrical devices, etc. In this work, we
consider the problem to assist the human operator in verifying the compliance of blueprints
with the control panel instances so to timely detect possible errors such as missing components,
wrong connections and placements, etc. To the best of our knowledge the problem addressed in
this paper has been scarcely investigated in the literature. However, some recent works studied
tasks relevant for Industy 4.0 within the Predictive Maintenance field. For example, in [1]
the authors introduce a framework that integrates Industrial Internet of Things (IIoT) devices,
neural networks, and sound analysis for detecting anomalies in the supply chain. [2] proposes a
holistic solution for quality inspection based on merging Machine Learning techniques and Edge
Cloud Computing technology. A Deep Learning based approach for monitoring the process
of sealing and closure of matrix-shaped thermoforming food packages is proposed in [3]. [4]
defines a deep neural network (DNN) soft sensor enabling a fast quality control for the Printing
Industry. Finally, in [5] the authors describe a deep learning based framework to detect/recognize
machines for smart factories. In this paper we devise a novel approach integrating Machine
Vision (MV) and Answer Set Programming (ASP) [6] to support the QC for electrical control
panels. ASP is a well-established paradigm for declarative programming and non-monotonic
reasoning developed in the area of Knowledge Representation and Reasoning [7, 6, 8]. ASP
has been employed to develop many academic and industrial applications of AI [9, 10]. ASP is
based on logic programming and non-monotonic reasoning, and it allows for flexible declarative
modeling of search problems, by means of logic programs (collection of rules), whose intended
models (answer sets) encode solutions [11]. In our case, we propose solution composed of two
main phases: (i) first, we defined a Machine Learning flow based on a neural architecture to
address the problem of recognizing the components (Object Detection) from the pictures of
the panels, (ii) then, we realized an Answer Set Programming-based system used to compare
the scheme reconstructed from the picture with its original blueprints, to discover possible
mismatches/errors. The development of this work was inspired by Elettrocablaggi srl, a SME
leader in the market of electric panels. This is one of the use cases of the MAP4ID “Multipurpose
Analytics Platform 4 Industrial Data” project that aims at proposing suitable combinations of
machine learning and ASP to cope with industrial problems. This paper, after presenting an
overview of the architecture of our system for the compliance of electric panels, focuses on the
logic-programming-based module of our approach.
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Figure 1: Framework for Automatic Compliance Verification.

2. Framework Overview

In this section we describe the solution approach devised to tackle the main problem i.e.,
automating the compliance verification process of the control panels. To this aim, we defined
the framework shown in Figure 1 that includes two main macro-modules respectively named,
Component Detection and Quality Assessment. The former block is devoted to recognizing the
electrical components assembled in the cabinet. Basically, it includes a number of machine
learning methods to train a model able to identify the components composing the panel from its
picture. The Model Building module in Figure 1 allows for training the deep architecture used
to perform the component detection. Basically, we used the Convolutional neural architecture
proposed in [12], named Mask R-CNN, whose objective is to detect and highlight relevant items
within an image.

The backbone of the Mask R-CNN used in our framework is a ResNet (Residual Network)
[13], whose advantage is the generation of skip connections and residual blocks, whose usage
allows for handling the well-known degradation problem (i.e., neural networks performing
worse at the increasing depth), and ensures a good trade-off between convergence rapidity and
expressivity/accuracy.
The Quality assessment module exploits ASP to tackle the task of compliance checking. It

automatically compares the control panel scheme built starting from the neural network output
and the corresponding blueprint to highlight any anomaly. The ASP-based module will be
described in details in the following.

3. ASP-based compliance checking

In this section we describe the logic-based component of our architecture for compliance
checking. The specification (logic program) described in the following can be fed to an ASP



system to actually compute the solutions to the modeled program [14]. In the following we
focus on the core parts of our solution and simplify some technical aspects that do not impact
on the comprehension of the working principle of our solution. This is done with the aim of
making the presentation more accessible and to meet space requirements. Hereafter, we assume
the reader to be familiar with ASP, for more details refer to [6, 7, 8].

3.1. Input specification

In ASP the input specification is made by a set of “facts”, that is assertions that model true
sentences. Thus, the labelled blueprint of the circuit (we informally refer to it as cad) and
output of the deep learning algorithm used to recognize the components and the output of the
Mask-RCNN (we informally refer to it as net) is converted in a set of ASP facts of the following
form:

object(LABEL, ID, X_TOP_L, Y_TOP_L, X_BOT_R, Y_BOT_R, MEMBERSHIP).

These facts provide information about the components like their label, id, and the top-left
and the bottom-right coordinates and the membership. In particular, the membership is valued
with “cad” if the object modeled is part of the blueprint of the panel, and “net” if it is recognized
by the neural network in the actual picture we are comparing the blueprint.

Moreover, we also compute a graph of topological relations among objects, providing infor-
mation on relative position and distance among objects. The relative position and the distance
among components are actually calculated by our ASP program but for simplicity, we assume
here they are given in input as facts of the form:

between(ID, START_ID, END_ID, DIR, MEMBERSHIP).
manhattan(ID1, ID2, DIST, MEM1, MEM2).

The predicate between denotes the neighbours for the component ID along the direction DIR;
while the predicate manhattan specifies the manhattan distance between the two components
ID1 and ID2, where the terms MEM1 and MEM2 stand for their membership.

3.2. ASP program

We now present ASP program (see Program 1) that encodes in a uniform way (w.r.t. the input
instance provided as set of facts) the compliance problem.

First, the graph is preprocessed (lines 2-3), by calculating useful information about the relative
positions of the objects. Next, according to the “guess-and-check” programming methodology
a disjunctive rule guesses the mapping between “cad” components of the blueprint and “net”
components predicted by the neural network (see lined 6-7). The disjunctive rule can be read as
follows: ‘Given a cad component and a net component of the same type, the two can be mapped,
or not”. The candidate solutions are filtered out by the constraints in lines 9-13, ensuring that
the same element of the cad is not mapped twice, and the same element of the net is not mapped
twice. The optimal mapping is obtained by weak constraints in lines 15-35. In detail, the
program first minimizes the cad elements without a mapping (lines 15-16), then (also in order of



Algorithm 1 ASP program modeling compliance
1: % Calculate auxiliary information
2: previous(ID, Start_ID, D, M):- between(ID, Start_ID,_ , D, M).
3: after(ID, End_ID, D, M):- between(ID, _, End_ID, D, M).
4: % Guess mapping between cad components and net components
5: simpObject(C1,ID1,M) :- object(C1,ID1,_,_,_,_,M).
6: mapped(ID1,ID2) ‖ noMapped(ID1,ID2)
7: :- simpObject(C1,ID1,”cad”),simpObject(C1,ID2,”net”).
8: % No element from the cad is mapped twice
9: :- mapped(Cad_ID,Net_ID1), mapped(Cad_ID,Net_ID2),
10: Net_ID1!=Net_ID2.
11: % No element from the net is mapped twice
12: :- mapped(Cad_ID1,Net_ID), mapped(Cad_ID2,Net_ID),
13: Cad_ID1!=Cad_ID2.
14: % Minimize the cad elements without a mapping
15: atLeastOne(Cad_ID) :- mapped(Cad_ID,_).
16: :∼ simpObject(C1,ID1,”cad”), not atLeastOne(ID1). [1@3,C1,ID1]
17: % Optimize mapping by relative position
18: :∼ mapped(Cad_ID1, Net_ID1), mapped(Cad_ID2,Net_ID2),
19: previous(Cad_ID1,Cad_ID2,DIR,”cad”),
20: not previous(Net_ID1, Net_ID2, DIR,”net”).
21: [1@2,Cad_ID1, Net_ID1,Cad_ID2,Net_ID2,DIR]
22: :∼ mapped(Cad_ID1,Net_ID1), mapped(Cad_ID2,Net_ID2),
23: after(Cad_ID1, Cad_ID2,DIR,”cad”),
24: not after(Net_ID1,Net_ID2,DIR,”net”).
25: [1@2,Cad_ID1,Net_ID1,Cad_ID2,Net_ID2,DIR]
26: :∼ mapped(Cad_ID1, Net_ID1),
27: previous(Cad_ID1, Cad_ID2, DIR,”cad”),
28: absent(_,Cad_ID2). [1@2,Cad_ID1,Net_ID1,Cad_ID2,DIR]
29: :∼ mapped(Cad_ID1, Net_ID1),
30: after(Cad_ID1, Cad_ID2, DIR,”cad”),
31: absent(_,Cad_ID2). [1@2,Cad_ID1,Net_ID1,Cad_ID2,DIR]
32: % Optimize mapping by distance
33: :∼ mapped(Cad_ID, Net_ID),
34: manhattan(Cad_ID, Net_ID, Dis,”cad”,”net”).
35: [Dis@1,Cad_ID,Net_ID,Dis]
36: % Identify absent and in excess components
37: mappedCad(ID1):- mapped(ID1,_).
38: mappedNet(ID1):- mapped(_,ID1).
39: absent(C1,ID1):- simpObject(C1,ID1,”cad”), not mappedCad(ID1).
40: excess(C1,ID1):- simpObject(C1,ID1,”net”), not mappedNet(ID1).

priority) the weak constrains in lines 18-31 ensure that “If a cad component ID1 is mapped to a
net component ID2, ID1 neighbors should be mapped to ID2 neighbors”. The mapping is further
optimized considering distance (lines 33-35) between cad components and net components. The
distance is optimal when the elements are in the same position in “net” and “cad”. Finally, the
program identifies components that are absent or in excess w.r.t. the blueprint by rules in lines
37-40. The actual code used in our system implements others features, such as suggestions on
where to place the absent elements in the right position inside the panel, and suggestions on
where the misplaced components are expected to be moved. These are also obtained by logic
rules that are omitted here to simplify the presentation and focus on the core of the solution.



Figure 2: Timing boxplot

3.3. Preliminary results

The component detection module has shown a promising capability in automatically identifying
the elements in the electric panels. In an experimentation on a dataset of about 10 thousand
pictures (split in training and test sets, with a proportion of 90-10), theMask R-CNN network was
able to detect the 83.1% of all the components. On the other hand, the ASP-based component, that
correctly implements our specification, always provides the expected answer, thus accuracy is
only determined by the performance of the machine learning component. It might be interesting
to know whether the ASP based component is efficient enough. To this end, we conducted an
experiment to measure the execution time of the ASP-based component. Usually real panels are
made of few components (the larger usually contains less than 25 components). We generated
instances of compliance testing in a range of 6 to 50 labels (types of components), and of 12
to 75 components, and averaged over 500 samples the execution time need by DLV2 [15] to
solve the instances. The results are reported in Figure 2. It is easy to see that our system can
provide optimal answers in a short time, in the order of milliseconds for instances sized as
real-world ones, and performance is acceptable (avg. 1.93s, max about 18s) also for instances of
75 components.

4. Conclusion

Our experience confirms that the loose combination of neural networks and ASP can result
in an effective solution for checking the compliance of electric panels. The two modules are
loosely coupled but complement each-other. Indeed, provided that the ML component knows
how to recognize all the components, one can just provide a new logic specification of the
blueprint to check compliance, with no need for retraining. As far as future work, we plan
to further improve the neural network module to increase its performance, possibly trying to
exploit ASP, implement a thorough validation analysis on data provided by Elettrocablaggi, and
to develop an online panel compliance system featuring a user interface based on augmented
reality glasses.
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KINS: Knowledge Injection via Network Structuring
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Abstract
We propose a novel method to inject symbolic knowledge in form of Datalog formulæ into neural

networks (NN), called KINS (Knowledge Injection via Network Structuring). The idea behind our method

is to extend NN internal structure with ad-hoc layers built out the injected symbolic knowledge. KINS

does not constrain NN to any specific architecture, neither requires logic formulæ to be ground. Moreover,

it is robust w.r.t. both lack of data and imperfect/incomplete knowledge. Experiments are reported to

demonstrate the potential of KINS.

Keywords
neural network, explainable AI, symbolic knowledge injection, KINS, PSyKI

1. Introduction

Supervised machine learning (ML) commonly exploits opaque predictors – such as neural

networks (NN) – as black boxes [18]. There are several application scenarios where this is

becoming troublesome. Indeed, it is non-trivial to forecast what will NN actually learn from

data, or whether and how they will grasp general, reusable information for the whole domain.

Current state-of-the-art solutions address this issue by supporting a plethora of methods for

“opening the black-box” [14]—i.e., inspecting or debugging the inner functioning of NN.

Rather, in this work we tackle the problem of how injecting prior symbolic knowledge in

order to endow them with the designer’s common sense. In this way the issue of opacity is

circumvented, as designers may force NN to learn correct-by-design information whenever the

situation at hand requires to do so.

Along this line, we propose a novel method for the injection of logic formulæ in Datalog

[1] form into NN of arbitrary structure. Our method – called KINS (Knowledge Injection via

Network Structuring) – works by extending NN architecture with additionalmodules, i.e., ad-hoc

layers reflecting symbolic knowledge. The modules are in charge of numerically computing the

truth degree of the logic formulæ to be injected, hence increasing the networks performance in

the inference phase. Of course, the network still requires training over data in order to adapt

injected knowledge to the particular situation at hand.
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Unlike other knowledge injection techniques, KINS (i) does not require input formulæ to be

ground, (ii) does not impose any constraint on the NN, and (iii) is robust w.r.t. the lack of data

exemplifying the injected knowledge. In other words, KINS supports the injection of knowledge

describing scenarios where few training data exist. This in turn may let designers suitably

handle the case where poor training data covers a given phenomenon the network should be

able to deal with—e.g., unbalanced classes in classification tasks.

In order to validate our method, we report an experiment on a well-known benchmark dataset

where the designer’s common sense provided by human experts is injected into a NN classifier

to improve its performances.

Accordingly, the paper is organised as follows. Section 2 briefly summarises the background

on symbolic knowledge injection (SKI). Section 3 formally describes KINS, its rationale and

internal operation. Section 4 reports our experiments and their design, whereas results are

discussed in Section 5. Finally, Section 6 concludes the paper by providing some insights about

how the current limitations of KINS could be overcome.

2. Symbolic Knowledge Injection: Background

We call “symbolic knowledge injection” (SKI) the task of letting a sub-symbolic predictor exploit

formal, symbolic information to improve its performances (e.g., accuracy, learning time, need

for less training data). Generally speaking, SKI serves the purpose of transferring the designer’s

common sense into the predictor, hence overcoming the lack of data, or harnessing predictor

towards correct-by-construction directions.

While ML predictors are commonly trained over numeric data, formal logic enables repre-

sentation of knowledge in a compact and expressive way, as intensional representations of

complex concepts may be concisely written via logic. Hence, assuming that the input–output

relation the ML predictor can learn from data can be expressed in formal logic, and that some

SKI procedure is available, human experts may handcraft ad-hoc symbolic knowledge to aid the

training of a particular predictor, for a specific learning task. In other words, injection makes it

possible to provide ML predictors under training with some prior knowledge.

Many methods for SKI have been proposed into the literature along the years [5, 26, 6]. Most

of them target NN for their excellent performances in most ML tasks and domains. Concerning

the kind of the provided knowledge, it is virtually always expressed in first order logic (FOL)

or subsets of FOL such as Horn’s clauses, Datalog, knowledge graphs and propositional logic.

Possible reasons behind these choices are the flexibility of logic in expressing symbolic informa-

tion, and the malleability of NN—which can be structured in manifold ways to serve disparate

purposes.

Broadly speaking, there exist two major sorts of approaches supporting the injection of

symbolic knowledge into NN. Methods of the first sort perform injection during the network’s

training, using the symbolic knowledge as either a constraint or a guide for the optimisation

process (i.e., back-propagation). The core idea is to exploit the training step of a NN to increase

the error between the prediction value and the expected result when the knowledge is vio-

lated. Conversely, approaches of the second sort perform injection by altering the network’s

architecture to make it mirror the symbolic knowledge.



Figure 1: An example of a network’s architecture after the insertion of modules derived from logic

formulæ.

One of the first notable works that combine NN and logic rules is KBANN [24]. There, given a

set of propositional logic rules, a NN is built by mapping each rule into sub parts of the network.

In addition, the loss function of the network is modified with a cost factor that penalises the

violation of the prior knowledge—so KBANN exploits both the main injection methods. The

algorithm is then validated on classification tasks over biological datasets. In Section 4 our SKI

algorithm is compared with KBANN by replicating one of those experiments.

Some other interesting works based on NN structuring are [4, 25, 13, 2, 12, 16, 20], whereas

relevant works based on constraining are [3, 7, 9, 10, 27]. In particular, the method in [13] is

tested on the same task and with the same methodology as [24]. We obtain similar performance

(see Section 5), however they report a greater test accuracy value for KBANN and the other

benchmark algorithms w.r.t. [24]: we believe that they consider the best result for each algorithm.

More details on SKI algorithms can be found in some recent surveys [5, 26, 6].

3. Injection via Network Structuring

We propose an approach to SKI called KINS—short for Knowledge Injection via Network Structur-

ing. There, a neural network architecture is extended with additional neuralmodules, structured

to reflect and mimic the symbolic knowledge provided by designers. There, a module is a

(sub-)network having the same input layer of the original network, yet outputting a value

representing the evaluation of a logic formula under a continuous interpretation. The model is

aimed at (i) evaluating a specific logic formula against the current input, and (ii) computing

the degree of truth of that formula – i.e., a value in range of [0, 1] – to complement the current

output. Variables in formulæ are “dynamically grounded” w.r.t. the current input during the

feed-forward phase. As a result, non-ground formulæ can be exploited for SKI as such, with no

need for any prior groundisation step—which could result unfeasible for non-trivial domains.

It is worth noticing that the provided formulæ are not required to cover all possible scenarios.

This implies, for instance that rules in classification problems may be provided covering only a



portion of all possible classes.

Figure 1 shows the general architecture of the resulting NN after the injection ofm modules

(represented as blue rectangles), corresponding to the m rules to be injected. Modules can

be arbitrarily complex sub-networks, sharing the same input and their final outputs with the

original NN. White boxes represent arbitrary hidden layers H1, . . . , Hn of the original NN,

whereas X is the input layer and Y is the output layer. The injection can be done at any layer

Hi and Y . For instance, when dealing with networks that first extract features from the input

(such as convolutional NN), then perform classification, one can choose to inject the knowledge

in between the two.

Under the hypotheses above, the injection procedure is straightforward. Formulæ are firstly

encoded into real-valued functions – hence numerically interpreted –, as described in Section 3.1.

Then, a neural module is build to approximate each single real-valued function, following the

strategy described in Section 3.2. Finally, that module is added to the original neural network,

following the pattern depicted in Figure 1.

Notably, the inner synapses of modules can be either immutable – meaning that weights

and biases cannot vary during training – or mutable—meaning that weights are trainable. Of

course, any other synapsis – there including all hidden synapses among layers H1, . . . , Hi, as

well as all the ingoing synapses of layerHi+1 and of the following layers – are kept trainable.

Thus the NN can exploit both prior knowledge and the information it gathers from data during

training. Notice that the synapses connecting each module (and the very last hidden layer) with

the output layer are trainable as well. This implies the NN can freely adjust the weights for

logic rules during training. The rationale behind this choice is that one cannot assume a logic

rule to hold for all the possible patterns in a given domain, yet it may be generally true with a

certain degree of confidence. Hence, we let the network learn the relative weight of the injected

knowledge w.r.t. the scenario at hand.

In order to operate, KINS does not require the loss function to be affected, nor it does impose

any constraint on the architecture (e.g., number of layers, number of neurons, types of activation

functions, etc.) or the initialisation status (e.g., random weights or partially trained) of the

network subject to injection. So, it can be applied to untrained networks as well as to (partially)

trained ones. It does require, however, (i) the network to have an input and an output layer,

and (ii) to be trained via gradient descent or similar algorithms. Furthermore, it also requires

(iii) symbolic knowledge to be expressed via one or more formulæ in Datalog form, and (iv) logic

statements about the network’s input or output features to be encoded.

A public implementation of the algorithm is available as part of the PSyKI framework [19].

3.1. Input Knowledge

KINS supports the injection of knowledge bases composed of one or more logic formulæ in

“stratified Datalog with negation” form. Datalog is a restricted subset of first order logic (FOL),

representing knowledge via function-free Horn clauses [1]. Horn clauses, in turn, are formulæ

of the form φ← ψ1 ∧ ψ2 ∧ . . . denoting a logic implication (←) stating that φ (the head of the

clause) is implied by the conjunction among a number of atoms ψ1, ψ2, . . . (the body of the

clause). Since KINS relies on Datalog with negation, atoms in the bodies of clauses are allowed

to be negated. In case the ith atom in the body of some clause is negated, we write ¬ψi. There,



each atom φ, ψ1, ψ2, . . . may be a predicate of arbitrary arity.

An l-ary predicate p denotes a relation among l entities: p(t1, . . . , tl) where each ti is a term,

i.e., either a constant (denoted in monospace) representing a particular entity, or a logic variable

(denoted byCapitalised Italic) representing some unknown entity or value. Well-known binary

predicates are admissible too, such as >, <, =, etc., which retain their usual semantics from

arithmetic. For the sake of readability, we may write these predicates in infix form—hence

> (X, 1) ≡ X > 1.
Consider for instance the case of a perfect rule (i.e., always true) aimed at defining when a

Poker hand can be classified as a pair. Assuming that a Poker hand consists of 5 cards, each

one denoted by a couple of variables Ri, Si – where Ri (resp. Si) is the rank (resp. seed) of

the ith card in the hand –, hands of type pair may be described via a set of clauses such as the

following one:

pair(R1, S1, . . . , R5, S5) ← R1 = R2

pair(R1, S1, . . . , R5, S5) ← R2 = R3
...

pair(R1, S1, . . . , R5, S5) ← R4 = R5

(1)

To support injection into a particular NN, we further assume that input knowledge base defines

at least one outer relation – say output or class – involving as many variables as the input and

output features the NN has been trained upon. The relation may be defined via one clause or

more, and each clause may possibly leverage on other predicates in their bodies. In turn, each

predicate may be defined through one or more clause. In that case, since we rely on stratified

Datalog, we require the input knowledge to not include any (directly or indirectly) recursive

clause definition.

For instance, for a 3-class classification task, any provided knowledge base should include a

clause, as in the following example:

class(X̄, y1)← p1(X̄) ∧ p2(X̄)
class(X̄, y2)← p ′1(X̄) ∧ p ′2(X̄)
class(X̄, y3)← p ′′1 (X̄) ∧ p ′′2 (X̄)

where X̄ is a tuple having as many variables as the neurons in the output layer, and yi is a

constant denoting the ith class.

3.2. Fuzzy Logic Formulæ as Neural Modules

Before undergoing injection, each formula corresponding to some output neuron must be

converted into a real-valued function aimed at computing the cost of violating that formula. To

serve this purpose, we rely on a multi-valued interpretation of logic inspired to Łukasiewicz’s

logic [15] reported in Table 1.

Accordingly, we encode each formula via J·K function, mapping logic formulæ into real-valued

functions accepting real vectors of sizem + n as input and returning scalars in R as output.



Formula C. interpretation Formula C. interpretation

J¬φK η(1− JφK) Jφ ≤ ψK η(1 + JψK− JφK)
Jφ ∧ ψK η(min(JφK, JψK)) Jclass(X̄, yi)← ψK JψK∗

Jφ ∨ ψK η(max(JφK, JψK)) Jexpr(X̄)K expr(JX̄K)
Jφ = ψK η(J¬(φ ̸= ψ)K) JtrueK 1
Jφ ̸= ψK η(|JφK− JψK|) JfalseK 0
Jφ > ψK η(max(0, 1

2
+ JφK− JψK)) JXK x

Jφ ≥ ψK η(1 + JφK− JψK) JkK k

Jφ < ψK η(max(0, 1
2
+ JψK− JφK)) Jp(X̄)K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the value for the ith output

∗∗ assuming p is defined by k clauses of the form:

p(X̄)← ψ1, . . . , p(X̄)← ψk

Table 1

Logic formulæ’s encoding into real-valued functions. There, X is a logic variable, while x is the

corresponding real-valued variable, whereas is X̄ a tuple of logic variables. Similarly, k is a numeric

constant, and k is the corresponding real value, whereas ki is the constant denoting the i
th class of a

classification problem. Finally, expr(X̄) is an arithmetic expression involving the variables in X̄ .

Scalars are then clipped into the [0, 1] range, via function η : R→ [0, 1] defined as follows:

η(x) =











0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

(2)

The resulting values are the continuous truth degrees of the formulæ. It is worth noticing that

this specific mapping is just one among the many that one may design. Therefore, it could be

considered a hyperparameter of the algorithm.

While Table 1 describes the mapping between formulæ and their fuzzy interpretations, we

discuss how such an interpretation can be further encoded into neural modules to be added to

the NN undergoing injection.

By considering the same domain of Equation (1), we can define a perfect rule for class flush,

i.e., all cards have the same suit, as follow:

class(S̄, flush)← S1 = S2 ∧ S1 = S3 ∧ S1 = S4 ∧ S1 = S5 (3)

The overall procedure that encodes a logic formula into an ad hoc network is exemplified in

Figure 3 – where Equation (3) is converted into a neural module –, and it consists of three

phases: (i) the logic formula is parsed and its abstract syntax tree (AST) is constructed, as

shown in Figure 3a; (ii) the AST is simplified, merging commutative binary operators, as

shown in Figure 3b; and finally (iii) the AST is encoded into a NN, where each operator is

converted into a neuron reifying the corresponding operation specified in Table 1, as shown

in Figure 3c. In particular, in the last step, operators are converted by recursively applying

the encoding rules graphically defined in Figure 2. There, variables Si are mapped into input

neurons, while constants possibly occurring in formulæ are mapped into neurons with constant



Figure 2: Mapping of formulæ into neurons. White circles are input variables (I), green boxes represent

the corresponding weights (W ), purple circles are the sum of the weighted inputs (W × I). Yellow
rectangles are activation functions, net is the output ofW × I , max and min respectively the maximum

and minimum of input values, η is the function described in Equation (2).

output. Similarly, algebraic operators such as addition and multiplication are encoded in single

neurons that perform the same operation.

4. Experiments

Here we report experiments aimed at assessing KINS for SKI w.r.t. its capability to improve

NN’s predictive performance. For the sake of reproducibility, the code of our experiments is

available at https://github.com/matteomagnini/kins-experiments-cilc-2022.

https://github.com/matteomagnini/kins-experiments-cilc-2022


(a) AST of a formula

→

(b) Optimised AST of a formula

→

(c) Layers from the optimised AST

Figure 3: Example of the encoding process of formulæ into module network. Box coloured in the same

way represent the encoding of a given operator through each encoding step.

4.1. Primate Splice-Junction Gene Sequences

To validate our method, we test KINS performance on a well-known benchmark: the primate

splice-junction gene sequences (PSJGS) dataset [11]. The dataset consists of 3190 records, each

of them represents a sequence of 60 DNA nucleotides—namely adenine (a), cytosine (c), guanine

(g) and thymine (t). Each sequence starts from position -30 up to 30, zero excluded. One DNA

sequence can be classified as an intron–exon (ie) boundary, an exon–intron (ei) boundary, or

none (n) of them. Class frequencies are 50% for n, 25% for both ie and ei.

The PSJGS dataset comes with a set of textual logical rules aimed at classifying DNA sequences

provided by human experts. In Table 2 we report the same rules converted in Datalog form.

Datalog rules are equivalent to the original ones that are expressed in a different custom

formalism, but they are machine-interpretable as well.

Within Datalog rules, variables are indexed starting from -30 to 30, zero excluded:

X−30, . . . ,X−1,X+1, . . . ,X+30. There, variable X±i denotes the value of the nucleotide in

position ±i, which is represented via ad-hoc constants (namely, a, c, g, t). For the sake of

readability, we write X̄ in place of the full sequence of variables X−30, . . . ,X+30.

It is worth noticing that the original rules from the PSJGS dataset include different symbols

to denote multiple possible nucleotides in a compact way. Table 3 reports the meaning of the

additional symbols: rules in Table 2 are reported using them.

When classifying data from the PSJGS dataset according to the rules in Table 2, sequences of type

ie are correctly classified 295 times – true positives (TP) –, however the rule is also true for 25

ei records and for 3 n records—false positives (FP). Instead, ei sequences are correctly classified

31 times, and there are no FP. Figure 4 shows the confusion matrix of the rules considering also

a fictional rule for class n that corresponds to the logical and of both ie and ei rules negated:

class(X̄, n)← ¬class(X̄, ei) ∧ ¬class(X̄, ie) (4)

While this is far from being perfect knowledge describing the entire domain with no or few

errors, it is still good enough to positively affect the training of the predictor.



Class Logic Formulation

EI

class(X̄ , ei)←X−3 = m ∧X−2 = a ∧X−1 = g ∧X+1 = g ∧

X+2 = t ∧X+3 = a = r ∧X+4 = a ∧

X+5 = g ∧X+6 = t ∧ ¬(ei_stop(X̄ ))
ei_stop(X̄ )← X−3 = t ∧X−2 = a ∧X−1 = a

ei_stop(X̄ )← X−3 = t ∧X−2 = a ∧X−1 = g

ei_stop(X̄ )← X−3 = t ∧X−2 = g ∧X−1 = a

ei_stop(X̄ )← X−4 = t ∧X−3 = a ∧X−2 = a

ei_stop(X̄ )← X−4 = t ∧X−3 = a ∧X−2 = g

ei_stop(X̄ )← X−4 = t ∧X−3 = g ∧X−2 = a

ei_stop(X̄ )← X−5 = t ∧X−4 = a ∧X−3 = a

ei_stop(X̄ )← X−5 = t ∧X−4 = a ∧X−3 = g

ei_stop(X̄ )← X−5 = t ∧X−4 = g ∧X−3 = a

IE

class(X̄ , ie)←pyramidine_rich(X̄ ) ∧ ¬(ie_stop(X̄ )) ∧

X−3 = y ∧X−2 = a ∧X−1 = g ∧X+1 = g

pyramidine_rich(X̄ )← 6 ≤ (X−15 = y+ . . .+ X−6 = y)
ie_stop(X̄ )← X+2 = t ∧X+3 = a ∧X+4 = a

ie_stop(X̄ )← X+2 = t ∧X+3 = a ∧X+4 = g

ie_stop(X̄ )← X+2 = t ∧X+3 = g ∧X+4 = a

ie_stop(X̄ )← X+3 = t ∧X+4 = a ∧X+5 = a

ie_stop(X̄ )← X+3 = t ∧X+4 = a ∧X+5 = g

ie_stop(X̄ )← X+3 = t ∧X+4 = g ∧X+5 = a

ie_stop(X̄ )← X+4 = t ∧X+5 = a ∧X+6 = a

ie_stop(X̄ )← X+4 = t ∧X+5 = a ∧X+6 = g

ie_stop(X̄ )← X+4 = t ∧X+5 = g ∧X+6 = a

Table 2

Datalog formulæ describing DNA classification criteria generated from the original one.

4.2. Methodology

To make our experiments comparable with already existing literature benchmarks, we follow

the very same method used by Towell and Shavlik in [24]. We use 10-fold cross validation with

a training size of 1000 randomly-chosen records—drawn among the 3190 available ones (i.e.,

31.3% of the overall dataset). Then, for each fold, we train one instance of KINS. Finally, test

accuracy is computed on the 2190 records excluded from training, by averaging the predictions

of the 10 KINS instances. Unlike the original method, we repeat the overall experiment 30 times

– instead of just 10 – to improve result significance.



Symbol Adenine Cytosine Guanine Thymine Logic form

d ∙ ∙ ∙ (Xi = d) ≡ (Xi = a ∨Xi = g ∨Xi = t)
m ∙ ∙ (Xi = m) ≡ (Xi = a ∨Xi = c)
r ∙ ∙ (Xi = r) ≡ (Xi = a ∨Xi = g)
s ∙ ∙ (Xi = s) ≡ (Xi = c ∨Xi = g)
y ∙ ∙ (Xi = y) ≡ (Xi = c ∨Xi = t)

Table 3

Mapping of aggregative symbols and the four nucleotides. Each symbol can be substituted with one

base on the right that has a dot.

More precisely, each time we train an instance of KINS we leverage on a NN with 3 fully

connected layers: input layer (60 neurons), hidden layer (neurons), and output layer (3 neurons).

During training, we exploit dropout [23] for each layer, up to some extent (0.2), to increase

robustness of the network w.r.t. overfitting. Layers have rectified linear unit as activation

function, except the output one that has Softmax. The optimiser used for training is Adam

[17], categorical cross-entropy as loss function. We use the same stopping criteria used in [24],

namely: (i) for the 99% of training examples the activation of every output unit is within 0.25 of

correct, (ii) at most 100 epochs, (iii) predictor has at least 90% of accuracy on training examples

but has not improved its ability to classify training examples for 5 epochs.

Rules (Table 2) ei_stop(X̄) and ie_stop(X̄) are immutable, while class(X̄, ei), class(X̄, ie)
and pyramidine_rich(X̄) are mutable. We recall that mutable rules have trainable weights

whereas immutable rules have fixed weights—structure is always preserved.
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Figure 4: Confusion matrix using only the provided knowledge to classify DNA sequences.
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Figure 5: Per-class error rate of different algorithms on the primate slice-junction gene sequences

dataset.

5. Discussion

We test KINS by injection the prior knowledge in different layers of the NN previously described.

Best results are obtained when the injection is performed at the first hidden layer. Following

the aforementioned methodology, we have 10 predictors trained on 900 records each – 1000

unique training records in total out of 3190 – for each experiment. We run 30 experiments using

10-fold cross validation with random weights initialisation.

After the injection of the prior knowledge into the first layer and training, the mean accuracy

of the 30 experiment on the test set is 94.73%. Single mean class accuracies are: (ie) 92.79%,

(ei) 92.49%, (n) 96.67%.

We execute 30 additional runs using the same base architecture NN without the injection

of any knowledge obtaining the following results: (mean accuracy) 94.45%, (ie) 91.67%, (ei)

92.73%, (n) 96.54%. After computing Student’s T-test on the two distributions we reject the null

hypothesis: predictors generated from KINS have better accuracies with statistic relevance.

The improvement of the accuracy using our injection method is significant even with im-

perfect knowledge. Figure 5 reports the error rate per single class using different algorithms.

KINS is our knowledge injection method, while DNN is the network used in KINS, but without

knowledge injection. KBANN is the algorithm proposed in [24]: it performs slightly worse than

DNN and KINS. Arguably, the main reason for this difference in performance is that the entire

structure of KBANN reflects the provided knowledge, whereas in KINS a portion of the network

is free to adapt to the data. This is a strength when the knowledge is close to the real rules

for the domain, but clearly a weakness in the opposite scenario. The remaining algorithms are

(i) standard back-propagation [22], (ii) PEBLS [8], (iii) ID3 [21], and (iv) nearest neighbours.

Generally, they all perform worse than KINS.



6. Conclusion

In this work we define KINS, a general technique for symbolic knowledge injection into deep

neural networks. Designer uses rules in Datalog form (stratified with negation) to express

common sense, which are injected through additional modules – ad-hoc layers – capable of

evaluating the truth degree of the rules themselves. Rules are interpreted as class-specific

fuzzy-logic functions that are then used to build the modules to be inserted into the NN.

We report a number of experiments where we compare networks without knowledge injection

with networks – architecturally equivalent except for knowledge injection – that receives

additional information in a multi-classification task. We also compare our method with different

algorithms, in particular KBANN, which is also based on knowledge injection. The selected

task has some of the common criticalities of ML classification tasks, in particular data set size

limitation and unbalanced classes. Moreover, the provided prior knowledge is far to be perfect.

Results show that our approach can improve network’s accuracy with statistical significance.

Investigating the joint use of SKI and symbolic knowledge extraction (SKE) in the same ML

workflow is indeed a topic of major interest, which we plan to explore. Introducing multiple

cycles of SKI and SKE, possibly using different kind of predictors, could bring several benefits

(e.g., final performances of the predictor, more precise knowledge).
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Abstract
While training and benchmarking neural networks, a large and precise set of data and an efficient test
environment are parts of a successful process. A good data set is usually produced with high effort
in terms of cost and human work to satisfy the constraints imposed by the expected results. In the
first part of this paper we focus on the specification of the properties of the solutions needed to build
a data set rather than using common primitives of imperative programming, exploring the possibility
to procedurally generate data-sets using constraint programming in Prolog. In this phase geometric
predicates describe a virtual environment according to inter-space requirements. The second part is
focused to test the generated data set in a machine learning context by means of an AI gym and space
search techniques. We developed a deep Q-learning model based neural network agent in Python able to
address the NP search problem in the virtual space; the agent has the goal to explore the generated virtual
environment to seek for a target, improving its performance through a reinforced learning process.

Keywords
procedural generation, constraint programming, deep Q-learning, intelligent agent, unknown ambient
exploration, neural network training, neural network benchmark, neural network gym, AI gym

1. Introduction

The ability to efficiently train and benchmark a deep learning neural network to solve hard tasks
such as, speech processing, image recognition, image classification etc. has grown significantly.
While those tasks require large - but available - data sets and powerful computing resources, tasks
like environment exploration are more difficult to train and benchmark due to lack of available
data sets and the long time needed to compile one by hand. To overcome these limitations, we
propose a procedural generator of virtual environments based on a logic constraint solver. In
the second part of this work, a deep learning explorer agent will be located in the resulting
simulated environments to be trained to search for a specific target.

1.1. Related work

Procedural generation is a method of algorithmic data creation widely associated with the
world of computer graphics and video games. This context is generally described as Procedural
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Generated Content (PGC) “PCG is the algorithmic creation of game content with limited or indirect
user input” [1]; in this work we focus on the generation of 2D geometric spaces representing
a simplified house plan, as shown in Section 2. The procedural generation phase gives us a
diverse set of environments which cannot be easily obtained manually. This set can be used to
train and benchmark an explorer agent without any given a-priori data set. The PCG is based on
search and/or optimization algorithms - i.e. evolutionary algorithms - to find the solution that
best satisfies an evaluation metric, which consists of a function that associates each individual
component of the generated content with a metric that contributes to the quality of the solution.

1.1.1. Procedural generated spaces

Since we intend to simulate the exploration of an autonomous agent immersed in a virtual
space, we focus on procedural generated spaces, i.e., geometrical description of 3D volumes,
or 2D partitions that can be assimilated to navigable indoor spaces such as dungeon maps,
rooms or house plans. We can find examples of procedural generated spaces in architecture
[2]. The dynamic generation video-games dungeons as described in [3] inspired our approach:
generate environments that consist of a given number of rooms, connected by a given number
of corridors, all enclosed by walls that delimit the possible space.

1.1.2. Constraint generation

Generating content using a constraint problem can be done either using an imperative method
[2] where house plans are generated hierarchically over a discrete grid, or using a declarative
approach [4] by means of an answer set programming constrained program.

1.1.3. Deep Q-learning for spaces exploration

Deep Q-learning (DQL) is an implementation that substitutes the state-action look-up-table
of the classical Q-learning algorithm [5] with a deep learning neural network [6]. It has been
recently applied to ambient exploration [7] showing that it is possible to explore unknown
environments by an agent that received in input a low resolution image from an on-board
simulated camera in the 3D space, while exploring the environment.

2. Geometrical description of 2D environments

Differently from conventional dungeon generation, we opted to avoid internal corridors to
reduce the complexity of the generated house plans. So, we introduce a simplification about
the inter-rooms connection by having rectangular rooms connected with doors all connected
to a single central shared room, as shown in Fig. 1. Also, in order to render a more realistic
environment we generated a selection of typical home furnishings and their position inside the
rooms, taking into account rules like: a bed shall not stand in the middle of the room, a closet
shall not impede doors and windows.



Figure 1: Reference model of the generated rooms set. Left: the room interconnection via the central
main room. Right: furniture distribution inside a room of type “bedroom” with a bed, a sofa and a closet.

3. Geometrical Constraints Generation

We defined a set of geometrical constraints that the final virtual house plan has to comply with:
room size, room type (bedroom, dining room, bathroom, kitchen), furniture position depending
on the room type, allocation of all needed room types to have a complete house.
The set of constraints used to generate the 2D virtual house plans can be summarized as

follows:

• the house is made of a central room that connects all the secondary rooms by doors.
• each secondary rooms can have only 1 door.
• all secondary bounding boxes shall not overlap, i.e. have an empty space intersection
• the area of secondary rooms shall never be larger than the main room
• a house shall contain at least 2 rooms of basic types (bedroom, bathroom, kitchen); a
shared central room is always generated

• furniture can be positioned only in the secondary rooms
• furniture items have to be compatible with the room type they are in

The rectangles describing the rooms are defined by top-left and bottom-right vertex coordi-
nates in a 2D continuous space.

The problem has been coded in CLP(R) Prolog, Constraint Logic Programming with Real num-
bers [8]; the code is available at the GitHub repository [9], were a full example of the generated
Prolog code can be seen at https://github.com/AAAI-DISIM-UnivAQ/bd-procedural-env-deep-learning/
blob/master/environments/example1.pl. The constraint generator Python program is called
Main.py which handles interaction with the user to collect her preferences in terms of number
of rooms, type, number and types of furnishings. It then generates the Prolog knowledge base
in function of user preferences adding constraints rules; via the PySWIP library it submits the
query to the SWI-Prolog interpreter. An example of the generated query is available in the
source code repository.

generateEnvironment(EnvWidth, EnvHeight, R0X, R0Y, R0W, R0H) :-
repeat,

https://github.com/AAAI-DISIM-UnivAQ/bd-procedural-env-deep-learning/blob/master/environments/example1.pl
https://github.com/AAAI-DISIM-UnivAQ/bd-procedural-env-deep-learning/blob/master/environments/example1.pl
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Figure 2: Data flow to obtain the constrained generated virtual house plan: 1: the user fixes the number
and type of rooms, with furniture preferences, 2: the Python program generates Prolog rules with CLP(R)
constraints expressions, 3: the SWI-Prolog interpreter is invoked and queried, 4: grounded variables
from the query result are used to generate the final JSON geometrical house plan description.

random(100.0, 145.0, R0W),
random(100.0, 145.0, R0H),
WSUB0 is EnvWidth - R0W,
random(0.0, WSUB0, R0X),
HSUB0 is EnvHeight - R0H,
random(0.0, HSUB0, R0Y),
!.

The generated Prolog code above shows the random generation of a room by its origin
coordinates (R0X, R0Y) and size (ROW, ROH), respecting the overall space limits (EnvWidth,
EnvHeight). It keeps generating random rectangles until an acceptable solution is found
according to the following CLP(R) constraints definitions:

{(30.0 =< B0X ; B0X + B0W =< 9.5) ;
(200.0 =< B0Y ; B0Y + B0H =< 175.0)},

{(30.0 =< BS0X ; BS0X + BS0W =< 9.5) ;
(200.0 =< BS0Y ; BS0Y + BS0H =< 175.0)},

{(30.0 =< W0X ; W0X + W0W =< 9.5) ;
(200.0 =< W0Y ; W0Y + W0H =< 175.0)},

{(W0X + W0W =< B0X ; B0X + B0W =< W0X) ;
(W0Y + W0H =< B0Y ; B0Y + B0H =< W0Y)},

{(BS0X + BS0W =< W0X ; W0X + W0W =< BS0X) ;
(BS0Y + BS0H =< W0Y ; W0Y + W0H =< BS0Y)},

This code portion is about the generation of just one bedroom, with bed coordinates starting
with B, commode starting with B, closet starting with W. All furniture constraints are in the
form described by the formula:



⎧⎪⎨⎪⎩
𝑋𝑑𝑜𝑜𝑟 + 𝑊𝑑𝑜𝑜𝑟 ≤ 𝑋𝑜𝑏𝑗;𝑋𝑜𝑏𝑗 + 𝑊𝑜𝑏𝑗 ≤ 𝑋𝑑𝑜𝑜𝑟;𝑌𝑑𝑜𝑜𝑟 + 𝐻𝑑𝑜𝑜𝑟 ≤ 𝑌𝑜𝑏𝑗;𝑌𝑜𝑏𝑗 + 𝐻𝑜𝑏𝑗 ≤ 𝑌𝑑𝑜𝑜𝑟; (1)

where X and Y are coordinates and W and H are the width and height of the doors and
objects (objs) respectively.

The first case represents a situation in which the door of the room is positioned horizontally
while, in the second, the door is positioned on a vertical wall. The sub-cases instead represent, in
order, the situations in which the object is completely to the right or to the left of the horizontal
door or completely above or below the vertical door. It can easily be verified that the simple
disjunction of disjunctions ensures the non-overlapping of the elements of a room with its door.
A typical graphical result, with much more rooms and constraints, can be seen in Fig. 3 . The
colored rendering is the result of a Python/Pygame 1 program that reads the JSON described
solution and visualizes it on the computer screen. The temporal complexity of the algorithm
is clearly exponential, given that it explores an infinite space of solutions by evaluating the
correctness of each one individually. This exploration is based on a random seed, so although
the algorithm converges to a solution in a short time for most runs, we cannot currently rule
out rare cases where a conforming solution is never found. Furthermore, Prolog queries for
the various types of rooms look for a solution that simultaneously satisfies the criteria of each
room of that type: this means that, by increasing the number of rooms, the time complexity of
the algorithm also increases considerably. In particular, using simple probabilistic terms, called
the 𝑝 probability of finding the solution for a single room, the probability of finding a solution
valid for two rooms of the same type is, 𝑝2. More generally this probability is 𝑝𝑛𝑖 , with 𝑛𝑖 is
the numbers rooms for each room type. It is clear that a non-deterministic Turing machine
could return any of the valid results in polynomial time as it can attempt every possibility
simultaneously, therefore the algorithm can fall into the class of NP-hard problems.

{ "roomNumber" : int,
"floor" : { "x": float, "y": float,
"width": float, "height": float },

"RX" : { "x": float, "y": float,
"width": float, "height": float,
"type": "bedroom | bathroom | kitchen | hall",

"children" : [{ "x": float, "y": float,
"width": float, "height": float,
"type": "bed | bedside | wardrobe…",
"orientation": "W | N | E | S" }]

}
}

1http://www.pygame.org is Python library optimized in fast screen rendering widely used to implement 2D
video games.

http://www.pygame.org


Figure 3: An example of a house plan generated by CLP(R) constraint program. Colored in green is the
bedroom, pink is the bathroom, orange is the dining room, yellow is the kitchen.

The above code is the typical JSON definition of a room that is generated by the CLP(R)
Prolog system that we called CoPLEnG (Costraing-Procedural Logic Environments Generator).
Such code is then fed to the simulator were the DQL agent lives in for it to explore.

4. Deep Q-learning explorer agent

The agent starts off in his exploration phase being instantiated by the Python/Pygame program
in gym-simulator which takes care of collisions with walls and obstacles and generating sensors
data at the agent input layer. The agent has an input array of 40 simulated optical sensors
deployed in the front part of its body, in a 120 degree view window; we call them rays, each one
measuring the distance to the obstacle/object were is pointed at. Given the 3 possible actions
the agent can perform in the environment (rotate left, go straight, rotate right), a totally random
selection would have resulted in a 66% chance of rotating against 33% of moving. The observed
pattern with these odds was that the agent spent more time wandering around his spawn point
rather than exhibiting exploration-oriented behaviours right from the start. So we favored the
moving primitive by shifting its chance to as much as 93%, with the rest split among the other 2
actions. This simple change made a huge difference as this modified random agent was now
able to move long distances while turning left or right every once in a while, effectively granting
a good realism and variability in the forthcoming inputs. In an attempt to raise the neural
network from learning unnecessary patterns and thus simplify the model, we have wondered
if there were any simpler problems - in fulfilling the main objective - that we could solve in a
more mechanical way. Avoiding obstacles and walls was a task which met such description. So,



Figure 4: A set of generated home-like spaces derived from the constraints.

drawing inspiration on the Subsumption Architecture introduced by Rodney Brooks [10], we
implemented a scripted behaviour - called “Avoidance” - which triggers when the minimum
distance perceived in the rays gets lower than an empirically calculated threshold. When it
does, it forces the agent to rotate to avoid the incoming collision, purposefully ignoring the
prediction from the neural net. With these two mechanics combined, the agent is free to roam
with no danger of collision from the beginning and can solidify this initially random behaviour
in a predicted one.

4.1. Neural network model

The structure is composed of 7 layers, which follow a so-called “diverging-converging” pattern:
the neurons per layer increase in quantity up to half the network and then shrink down to the
output layer, whose population is defined by the number of primitive actions, as shown in [11]
to have a good compromise between the total number of internal weights, the generalization
capability of the neural network and learning and testing performance. The first layer is
connected to the input through a pre-processing module; it consists of a vector of 40 tuples
bearing the contribution of each ray projected by the agent in the environment. Following is a
utility layer (without neurons) called “Flatten” which is particularly useful where the input to
the network should consist of a multidimensional vector as it is capable of “spreading” data
along a single one-dimensional array to avoid sending through the various layers of “heavy”
data to read. The following hidden layers are of the type dense standard and are all activated by
the Rectifier Linear Unit (RLU). The function of activation of the output layer is the softmax
since the agent shall deliberate over a single motion action . The loss function is the MSE



Figure 5: The overall flowchart of the generation process performed by the Python function
generateRoomsAndDoors which, starting from the user preferences describing the expected house
plant model, it generates the appropriate query to submit to the SWI-Prolog/CLP(R) interpreter and
solver.

(Mean Square Error), in accordance with the formula derived from the Q-Function on which
the network optimizes. The deep learning algorithm is driven by the Adam stochastic gradient
optimizer [12].

4.2. Performance metric definition

A simple performance metric could be defined by counting the number of targets reached in a
finite time interval from its starting position, even if the agent receives commands by a human.
We found that, in this kind of generated environments, the performance the human can achieve



Figure 6: Deep learning neural network model adopted the controller of the explorer agent. Inputs are
proximity distance sensors readings, output is direction of motion or rotation.

is - in average - 27 targets in 15 seconds while searching in the main room, and about 10 targets
while searching for them in secondary rooms. In this way we introduced a global behavioural
metric to judge the agent performance, not just looking at each single action move.

4.3. Training method

The explorer agent is trained by a reinforcement learning algorithm in function of its perfor-
mance while exploring the generated environment, as shown in Fig. 7. To further help the
model converge, we make use of the well known Remember & Replay method [13]. Experi-
ences are first stored in the agent’s memory in the form of tuples containing the information
pertaining to a single transition from one observation to the next. The tuple structure is(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑑𝑜𝑛𝑒) where done is a flag indicating whether the episode has
ended or not; this is useful to check if there was any more reward achievable in that time step
or not. After an episode ends, a random batch of experiences are sampled from the memory and
fed to the neural net for learning. Reward is 1 for each transition in which the agent managed
to gather an objective.

5. Results: trained agent performance

The trained agent showed excellent capability to reach the target in the main room, always
performing better than the human pilot. On the other, hand statistically it fails to reach the
target that is positioned inside the secondary rooms. When the target is visible from the main
room it can achieve to reach 1 target in 15 seconds. A trained agent behavior example has been
recorded in the animated GIF image inside the software repository [9] .



Figure 7: The pseudo-code for the reinforcement learning of the explorer agent.

Figure 8: Agent progressing to the objective.

6. Conclusions

In this work we explored the possibility to build a constraint-procedural logic generator for
environments to be used as training and benchmarking tool for deep Q-learning agents. The
resulting products are a working generator of environments that resembles house floors and
an exploring deep Q-learning agent. The generated rooms are connected by a common space
and filled with coherent furniture, variably distributed on the room continuous space. The
exploring agent is partially capable of solving the given task of finding an object in the generated
environment and learning through reinforcement of a reward. It actually outperforms a human
competitor when the target is inside the central room. With this work we verified the feasibility
of such tool and implemented an instance of both generator and exploring agent. Further
evolution of the generator could include support for corridors, multi-story houses and stairs,
dynamic elements such as obstacles, simulation for humans, animals and other agents, door
states management (such as open, closed, locked etc.), light management, ambience management
(such as smoke, fog, humidity etc.), temperature, friction and other challenging elements to



train and benchmark the agent. From the agent side, it could be improved with the ability to
explore the rooms and interact with the environment (ie. open doors), be able to consider data
from other sensors and act accordingly.
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A Four-State Labelling Semantics for Weighted

Argumentation Frameworks⋆
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Abstract
Computational Argumentation provides tools for both modelling and reasoning with controversial

information. The building blocks in this field are represented by Abstract Argumentation Frameworks,

namely structures which explicit the relationships between arguments in order to establish their accept-

ability. Indeed, arguments can be assigned different justification states: some of the arguments may be

accepted, while some other rejected; it could also be the case that some arguments are ignored. Labels

corresponding to such states are assigned through sets of criteria called labelling-based semantics. In this

paper, we consider Weighted Argumentation Frameworks and propose a novel labelling-based semantics

which differentiates four different states, also generalising existing approaches.

Keywords
Computational Argumentation, Weighted Abstract Argumentation Framework, Four-state Labelling

1. Introduction

Computational Argumentation and its applications are receiving increasing interest in many

fields of AI. For instance, argumentative processes are used in a paper by Lawrence et al. [1] to

interpret online debates, while Walton and Koszowy [2] devise an argumentation system for

supporting expert opinion. Argumentation is also used to aid machine learning (as surveyed

by Cocarascu and Toni [3]) for both improving performances (e.g., classification accuracy) and

providing explanations for the results. Argumentation problems are modelled through Abstract

Argumentation Frameworks (AFs in short) [4], which consist of directed graphs in which the

nodes are arguments that contain abstract information and the edges represent attack relations.

The main goal of these frameworks is to check the acceptability of arguments, which indicates

how credible they can be when used, for example, in a speech or debate.

The acceptability of an argument of an AF can be established following different criteria,

formalised through the extension-based [4] and the labelling-based semantics [5]. Through

the reasoning on the acceptability of the arguments according to a notion of defence, one can

divide the set of arguments into two separated subsets, respectively containing acceptable and
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non-acceptable arguments. Various approaches have been proposed to cope with the problem

of detecting different justification states of arguments in AFs. Indeed, apart from accepted and

rejected, arguments could be just ignored or even in an inconsistent state. Caminada [5], for

example, introduces a labelling-based semantics in which the state of an argument can be left

undecided, without further specifying the reason why. The motivation for not labelling an

argument as neither accepted nor rejected is explicitly expressed by Jakobovits and Vermeir [6],

who made a distinction between arguments we “don’t care” about and those we “do not know”

how to label.

In order to increase the expressiveness of AFs, attack relations between arguments can be

endowed with a value (a weight) which indicates the strength of the attacks themselves. In

this kind of frameworks, called Weighted AF, the acceptability criteria for the arguments also

need to consider the weight of incoming and outgoing attacks. Bistarelli et al. [7, 8] group the

attacks from an argument to a set of arguments as if they were a unique attack; in particular,

the authors consider a weighted notion of defence that takes into account the weight associated

with each attack, also generalising other approaches [9, 10].

In this paper, which complements a series of work [11, 12, 13, 14], we provide a four-state

labelling for Weighted AFs that generalises other approaches proposed in the literature for the

non-weighted case and the three-state labelling for Weighted AFs. For each weighted semantics,

we give the conditions under which a labelling corresponds to an extension (that is a set of

accepted arguments). We use a partial labelling (i.e., we can leave specific arguments unlabelled)

with four labels to identify the possible states of arguments, namely IN for accepted, OUT for

rejected, DK for arguments we don’t know how to label, and DC for arguments we don’t care

about (because not adopted in an AF or just ignored by the user).

The rest of this paper is structured as follows. In Section 2 we summarise the main concepts

of AFs, providing the definitions for extension-based semantics considering both weighted and

non-weighted cases. In Section 3 we present our definition of four-state labelling for Weighted

Argumentation Frameworks. Section 4 discusses relevant work on labelling-based semantics

for (W)AFs already present in the literature, and finally, in Section 5 we conclude the paper,

also discussing possible future research lines.

2. Preliminaries

In this section, we recall the formal definitions of AFs [4] and Weighted AFs [7, 8], together

with te notion of extension- and labelling-based semantics [15, 5].

Definition 1 (Abstract Argumentation Framework). Let 𝒰 be the set of all available argu-

ments1. An Abstract Argumentation Framework is a pair ⟨𝒜,ℛ⟩where𝒜 ⊆ 𝒰 is a set of arguments

and ℛ is a binary relation on 𝒜. Arguments in 𝒜 are said to be adopted.

Definition 2 (Attacks). Let ⟨𝒜,ℛ⟩ be an AF, and consider two arguments 𝑎, 𝑏 ∈ 𝒜. If (𝑎, 𝑏) ∈
ℛ, we say that 𝑎 attacks 𝑏; conversely, 𝑏 is an attacker of 𝑎. Moreover, given 𝐴 ⊆ 𝒜, we define

1The set U , which we refer to as the Universe of arguments, is not present in the original definition of AFs, and it is

introduced to model arguments which are external to A [16, 17].



the sets 𝑎+ = {𝑏 ∈ 𝒜 | (𝑎, 𝑏) ∈ ℛ}, 𝑎− = {𝑏 ∈ 𝒜 | (𝑏, 𝑎) ∈ ℛ}, 𝐴+ =
⋃︀
{𝑎+ | 𝑎 ∈ 𝐴} and

𝐴− =
⋃︀
{𝑎− | 𝑎 ∈ 𝐴}.

In order for an argument 𝑎 to be acceptable, we require that every attacker of 𝑎 is defeated in

turn by some other argument.

Definition 3 (Acceptable argument). Let ⟨𝒜,ℛ⟩ be an AF, and consider 𝑎 ∈ 𝒜 and 𝐷 ⊆ 𝒜.

The argument 𝑎 is acceptable with respect to the subset 𝐷 if and only if ∀𝑏 ∈ 𝐴.∃𝑑 ∈ 𝐷 | (𝑏 ∈
𝑎−) =⇒ (𝑑 ∈ 𝑏−). In that case, we say that 𝑎 is defended by 𝐷 from the attack of 𝑏.

We also say that argument is acceptable if there exists a subset of arguments with respect to

which it is acceptable. Using the notion of defence as a criterion for distinguishing acceptable

arguments in the framework, one can further refine the set of selected arguments through the

so-called extension-based semantics.

Definition 4 (Extension-based semantics). Given an AF ⟨𝒜,ℛ⟩, we say that a set of argu-

ments 𝐸 ⊆ 𝒜 is conflict-free if and only if ∄𝑎, 𝑏 ∈ 𝐸 such that (𝑎, 𝑏) ∈ ℛ. A conflict-free set 𝐸 is

said to be

• admissible, if each 𝑎 ∈ 𝐸 is defended by 𝐸

• complete, if it is admissible and ∀𝑎 ∈ 𝒜 defended by 𝐸, 𝑎 ∈ 𝐸

• stable, if 𝐸 ∪ 𝐸+ = 𝒜

• preferred, if it is complete and it is maximal (with respect to set inclusion)

• grounded, if it is complete and it is minimal (with respect to set inclusion)

In this paper, we only consider the above semantics, although other extension-based semantics

have also been defined in the literature, such as ideal, semi-stable and stage [15]. In Figure 1,

we provide an example of an AF for which we compute the set 𝑆 of conflict-free, admissible,

complete, stable, preferred and grounded extensions (abbreviated with cf, adm, com, stb, prf and

gde, respectively): 𝑆cf (𝐹 ) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑑}}, 𝑆adm(𝐹 ) = {∅, {𝑎},
{𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆com(𝐹 ) = {{𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆prf (𝐹 ) = {{𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆stb(𝐹 )
= {{𝑎, 𝑑}} and 𝑆gde(𝐹 ) = {{𝑎}}.

Figure 1: Example of an AF with five arguments.

We give some details on the extensions found. The singleton {𝑒} is not conflict-free because

𝑒 attacks itself. Argument 𝑏 is not contained in any admissible extension because no other

argument (included itself) defends 𝑏 from the attack of 𝑎. The empty set and the singletons {𝑐}
and {𝑑} are not complete extensions because they do not contain 𝑎, which is not attacked by

any other argument. Only the maximal complete extensions {𝑎, 𝑐} and {𝑎, 𝑑} are preferred,



while the minimal complete {𝑎} is the unique grounded extension. Since argument 𝑎 attacks

arguments 𝑏 and argument 𝑑 attacks arguments 𝑐 and 𝑒, we have that {𝑎, 𝑑} is a stable extension.
To obtain different nuances for the acceptability of arguments, we can rely on the notion of

labelling-based semantics [5], namely functions that partitions the arguments of an AF into

three subsets.

Definition 5 (Labelling for AFs). Let 𝐹 = ⟨𝒜,ℛ⟩ be an AF. A labelling 𝐿 of 𝐹 is a total

function 𝐿 : 𝒜 → {IN, OUT, UNDEC}.

Notation 1. Given a labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ⟩ and 𝐴 ⊆ 𝒜, we denote 𝐴 ↓IN, 𝐴 ↓OUT and

𝐴 ↓UNDEC the sets of all arguments labelled IN, OUT and UNDEC, respectively, by 𝐿.

We show in Figure 2 an example of labelling: IN arguments are highlighted in green and

OUT ones in red, while UNDEC are represented in yellow. It is also possible to identify a

correspondence between labellings and sets of extensions for a certain semantics [15].

Figure 2: Example of labelling for an AF with five arguments.

Definition 6 (Labelling-based semantics). Let 𝐿 be a labelling of an AF 𝐹 = ⟨𝒜,ℛ⟩ and
𝑎 ∈ 𝒜. Then

• 𝐿 is a conflict-free labelling if:

– 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN = ∅, and

– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a admissible labelling if:

– 𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓OUT, and

– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a complete labelling if:

– 𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓OUT, and

– 𝐿(𝑎) = OUT ⇐⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a stable labelling if:

– 𝐿 is a complete labelling, and

– 𝒜 ↓UNDEC = ∅;

• 𝐿 is a preferred labelling if:

– 𝐿 is an admissible labelling, and

– 𝒜 ↓IN is maximal among all the admissible labellings



• 𝐿 is a grounded labelling if:

– 𝐿 is a complete labelling, and

– 𝒜 ↓IN is minimal among all the complete labellings

We have, for instance, that the labelling of Figure 2 is complete, but not grounded. Since all

attacks in AFs have the same “strength”, it is not possible to further diversify the relations among

arguments, and thus the existence of an attack is the only thing that matters in determining

the semantics. To overcome this limitation, we can resort to Weighted AFs, whose attacks are

endowed with a value that represents the support of the relation [18]. In this kind of framework,

the notion of defence needs to be adapted to encompass the refined attack relation. In a paper

by Bistarelli et al. [8], Weighted AFs are equipped with a c-semiring [19, 20] that provides

operations for composing the weights and estimating the effectiveness of a defence.

Definition 7 (c-semirings). A c-semiring is a tuple S = ⟨𝑆,⊕,⊗, ⊥,⊤⟩ such that 𝑆 is a set,

⊤,⊥ ∈ 𝑆, and⊕,⊗ : 𝑆×𝑆 → 𝑆 are binary operators making the triples ⟨𝑆,⊕,⊥⟩ and ⟨𝑆,⊗,⊤⟩
commutative monoids (semi-groups with identity), satisfying i) ∀𝑠, 𝑡, 𝑢 ∈ 𝑆. 𝑠 ⊗ (𝑡 ⊕ 𝑢) =
(𝑠 ⊗ 𝑡) ⊕ (𝑠 ⊗ 𝑢) (distributivity), and ii) ∀𝑠 ∈ 𝑆. 𝑠 ⊗ ⊥ = ⊥ (annihilator). Moreover, we have

that ∀𝑠, 𝑡 ∈ 𝑆. 𝑠⊕ (𝑠⊗ 𝑡) = 𝑠 (absorption). The operator ⊕ also defines a preference relation ≤S

over the set 𝑆, such that 𝑎 ≤S 𝑏 if and only if 𝑎⊕ 𝑏 = 𝑏, for all 𝑎, 𝑏 ∈ 𝑆.

We list some of the most common instances of c-semirings:

• Sboolean = ⟨{false, true},∨,∧, false, true⟩

• Sfuzzy = ⟨[0, 1],max,min, 0, 1⟩

• Sprobabilistic = ⟨[0, 1], max,×, 0, 1⟩

• Sweighted = ⟨R+ ∪ {+∞},𝑚𝑖𝑛,+,+∞, 0⟩

The interval [0, 1] used for Sfuzzy and Sprobabilistic is to be considered valid for both real and

rational numbers. We denote with WAFS a Weighted AF endowed with a c-semirings S and we

call it a semiring-based Weighted AF.

Definition 8 (Semiring-based Weighted AF). Let 𝒰 be the set of all available arguments. A

semiring-based Weighted AF is a quadruple ⟨𝒜,ℛ,𝑊, S⟩, where 𝒜 ⊆ 𝒰 is the set of adopted

arguments,ℛ the attack relation on 𝒜,𝑊 : 𝒜×𝒜 → 𝑆 a binary function, and S a c-semiring

⟨𝑆,⊕,⊗,⊥,⊤⟩.

The binary function 𝑊 assigns a weight to attacks between arguments: we use 𝑊 (𝑎, 𝑏) = 𝑠
to indicate that the attack from 𝑎 towards 𝑏 has weight 𝑠 ∈ 𝑆. In our setting, the ⊤ element of

a c-semiring (e.g., 0 for the weighted and 𝑡𝑟𝑢𝑒 for the boolean) denotes the absence of a pair in
the relation 𝑅. Hence, (𝑎, 𝑏) ∈ ℛ if and only if 𝑊 (𝑎, 𝑏) <S ⊤.

Given a WAFS, we can evaluate the overall weight of all the attacks from a set of arguments

towards another set through the binary composition operator ⊗ of the c-semiring S [7, 21]. In

particular, we use
⨂︀

to indicate the ⊗ operator on a set of values.



Definition 9 (Weighted attacks). Let 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ be a WAFS and consider two sets of

arguments 𝐵,𝐷 ∈ 𝒜. We say that 𝐵 attacks 𝐷, and the weight of such attack is 𝑘 ∈ 𝑆, if

𝑊 (𝐵,𝐷) =
⨂︁

b∈B,d∈D

𝑊 (𝑏, 𝑑) = 𝑘.

Following Definition 9, it is also possible to compose the attacks both from a set of arguments

towards a single argument and from a single argument towards a set of arguments. We can

now express the notion of weighted defence.

Definition 10 (Weighted defence). Let 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ be a WAFS. We say that 𝐵 ⊆ 𝒜
𝑤-defends 𝑏 ∈ 𝒜 if and only if ∀𝑎 ∈ 𝒜 such that (𝑎, 𝑏) ∈ ℛ, 𝑊 (𝑎,𝐵 ∪ {𝑏}) ≥S 𝑊 (𝐵, 𝑎).

Consider the WAFS of Figure 3. To verify whether the set {𝑎} 𝑤-defends 𝑑 we need to

check if 𝑊 (𝑐, {𝑎, 𝑑}) ≥S 𝑊 ({𝑎}, 𝑐). We have that 𝑊 (𝑐, {𝑎, 𝑑}) = 3 and 𝑊 ({𝑎}, 𝑐) = 2,
and since 3 ≱S 2, we conclude that 𝑎 alone is not sufficient to 𝑤-defend 𝑑 in this example2.

If we consider the set {𝑎, 𝑏}, instead, we can see that 𝑊 (𝑐, {𝑎, 𝑏, 𝑑}) ≥S 𝑊 ({𝑎, 𝑏}, 𝑐) since
𝑊 (𝑐, {𝑎, 𝑏, 𝑑}) = 𝑊 ({𝑎, 𝑏}, 𝑐) = 3, and therefore {𝑎, 𝑏} 𝑤-defends 𝑑.

Figure 3: Example of a WAFS with S = Sweighted .

Notation 2. Let 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ be a WAFS and consider an argument 𝑎 ∈ 𝒜. We denote the

weight of a set of attacks towards 𝑎 with 𝑤a−↓IN
= 𝑊 (𝑎− ↓IN, 𝑎), and the weight of outgoing

attacks with 𝑤a+↓IN
= 𝑊 (𝑎, 𝑎+ ↓IN).

It is then possible to redefine all the extension-based semantics of Definition 4 by using the

notion of weighted defence for checking the acceptability of arguments [8].

Definition 11 (Extension-based semantics for WAFS). Consider a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊, S⟩ and a subset of arguments 𝐸 ⊆ 𝒜. We have that 𝐸 is 𝑤-conflict-free if

𝑊 (𝐸,𝐸) = ⊤. A 𝑤-conflict-free subset 𝐸 is

• 𝑤-admissible, if ∀𝑎 ∈ 𝐸−. 𝑊 (𝑎,𝐸) ≥S 𝑊 (𝐸, 𝑎)

• 𝑤-complete, if it is 𝑤-admissible and each 𝑏 ∈ 𝒜 such that 𝐸 ∪ {𝑏} is 𝑤-admissible belongs

to 𝐸

• 𝑤-stable, if it is 𝑤-admissible and ∀𝑎 /∈ 𝐸. ∃𝑏 ∈ 𝐸 such that𝑊 (𝑏, 𝑎) <S ⊤

2We remark that 3 <S 2 when S = Sweighted , i.e., greater means worse.



• 𝑤-preferred, if it is a maximal (with respect to set inclusion) 𝑤-admissible subset of 𝒜

• 𝑤-grounded, if it is the maximal (with respect to set inclusion) 𝑤-admissible extension

included in the intersection of 𝑤-complete extensions

As for the non-weighted case, also sets of acceptable arguments in a WAFS can be identified

through special labelling functions. In the next section, we expand the discussion in this

direction, introducing a weighted labelling that differentiates up to four states of acceptability.

3. From Three-State to Four-State Weighted Labelling

The labelling for AFs of Definition 5 and the derived labelling-based semantics are a useful

tool which identifies up to three degrees of acceptability for the arguments while maintaining

a direct connection with set of extensions for the classical semantics introduced by Dung [4].

However, the labelling function shown in the previous section forces all arguments that are

neither IN nor OUT to be labelled UNDEC, thus not allowing to distinguish arguments we don’t

know how to label from arguments we deliberately decide to ignore. In other words, three labels

are not sufficient to express the difference between the possible causes for which an argument

can be labelled UNDEC. Consider for instance the AF in Figure 4, whose arguments are labelled

according to the admissible labelling-based semantics. Arguments 𝑐 and 𝑑 are both labelled

UNDEC, but for two distinct reasons: 𝑐, which could potentially be accepted (it has no IN

attackers), is ignored, while 𝑑 is attacking itself and thus it can neither be accepted nor rejected.

To overcome these inconvenience, more informative labellings have been proposed [22, 6, 23]

that split the UNDEC label into two distinct labels, resulting in a total of four recognisable

acceptability states3.

Figure 4: Example of labelling with two UNDEC arguments.

Before introducing our proposal for a labelling function able to work with WAFS and which

makes use of four labels, we recall the definition of three-state weighted labelling [11, 12, 14].

In order to incorporate the notion of weighted defence into the labelling, also the strength of

the attack relations is taken into account.

Definition 12 (Three-state Labelling for WAFS). Let𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ be aWAFS. A three-

state labelling 𝐿 of 𝐹 is a total function 𝐿 : 𝒜 → {IN, OUT, UNDEC}.

3More nuances of acceptability can be enabled through ranking-based semantics [24], however, losing the corre-

spondence with accepted arguments identified by extension-based semantics.



Definition 13 (Three-state labelling-based semantics for WAFS). Consider a three-state

labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ and an argument 𝑎 ∈ 𝒜.

• 𝐿 is a 𝑤-conflict-free labelling when

– 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN = ∅ and

– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a 𝑤-admissible labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓OUT ∧ ∀𝑏 ∈ 𝑎−. 𝑤b−↓IN
≤S 𝑤b+↓IN

– 𝐿(𝑎) = OUT =⇒ 𝑤a−↓IN
<S ⊤

• 𝐿 is a 𝑤-complete labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓OUT ∧ ∀𝑏 ∈ 𝑎−. 𝑤b−↓IN
≤S 𝑤b+↓IN

– 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

• 𝐿 is a 𝑤-stable labelling for 𝐹 if and only if

– 𝐿 is a 𝑤-complete labelling and

– 𝒜 ↓UNDEC= ∅

• 𝐿 is a 𝑤-preferred labelling for 𝐹 if and only if

– 𝐿 is a 𝑤-admissible labelling and

– 𝒜 ↓IN is maximal among all the 𝑤-admissible labellings

• 𝐿 is a 𝑤-grounded labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN ⇐⇒ for all 𝑤-complete labellings 𝐿′, 𝐿′(𝑎) = IN and

– 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

The sets of arguments labelled IN by the labelling-based semantics of Definition 13 are

equivalent to extensions of the corresponding semantics. OUT and UNDEC arguments, instead,

are considered to be rejected. Our proposal for a richer labelling function is based on four labels,

namely IN, OUT, DK and DC.

Definition 14 (Four-State Labelling for WAFS). Let 𝒰 be a universe of arguments and 𝐹 =
⟨𝒜,ℛ,𝑊, S⟩ a WAFS with 𝒜 ⊆ 𝒰 . A four-state labelling 𝐿 of 𝐹 is a partial function 𝐿 : 𝒰 ⇀
{IN,OUT,DK,DC}.

Notation 3. Given a four-state labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩, 𝐴 ⊆ 𝒜 and 𝑙 ∈
{IN,OUT,DK,DC}, we use 𝐴 ↓l= {𝑎 ∈ 𝐴 | 𝐿(𝑎) = 𝑙} to restrict to arguments in 𝐴 only

labelled with 𝑙. We also denote with 𝐿 ↓A a total mapping 𝐿 ↓A: 𝐴 → {IN, OUT, DK, DC}.

We see in Figure 5 an example of four-state weighted labelling. Accepted and rejected

arguments, labelled with IN and OUT as usual, are still highlighted in green and red, respectively.

An argument with label DK, which is highlighted in yellow, could be both accepted and rejected,

meaning that we cannot decide about its acceptability (we “don’t know”, indeed). The DC label is

depicted in grey and stands for “don’t care” [6] and identifies arguments that are not interesting



Figure 5: Two possible labellings of a WAFS with S = Sweighted .

to analyse and that we just want to ignore. Finally, arguments in 𝒰 ∖ 𝒜 (that are only part of

the universe but not of the AF) are not labelled.

According to the definition of collective weighted defence (Definition 10), a set of arguments

is defended from an attacker 𝑐 only if the
⨂︀

of all the defending arguments is stronger than the⨂︀
of the attacks coming from 𝑐. This means that the strength of the attacks of the defending

arguments is distributed among the defended arguments and it is not guaranteed for two

arguments that are separately 𝑤-defended to still be 𝑤-defended when considered together

(this is what happens in the example of Figure 5 with arguments 𝑑 and 𝑒).
We give a characterisation of four-state weighted semantics through the notion of labelling

of WAFS following the intuition that attacks of defending arguments are “consumed” by the

defended one. In particular, an argument that cannot be accepted because its defenders are

not strong enough will be labelled UNDEC. The first semantics we investigate is the basic

requirement of conflict-freeness.

Fact 1 (𝑤-conflict-free four-state labelling). The 𝑤-conflict-free four-state labelling coin-

cides with the 𝑤-conflict-free labelling.

We want to identify a set of non-conflicting arguments, so we don’t have to consider the

weight of the attacks, but only if attacks exist between arguments in this set. We now define

the 𝑤-admissible four-state labelling.

Definition 15 (𝑤-admissible four-state labelling). Let 𝐿 be a four-state labelling of a WAFS
𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-admissible if and only if:

• 𝐿(𝑎) = IN =⇒
(∀𝑏 ∈ 𝑎−.𝐿(𝑏) ∈ {OUT,DC} ∧ 𝐿(𝑏) = OUT =⇒ 𝑤b−↓IN

≤S 𝑤b+↓IN
)

• 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

The condition𝑤b−↓IN
≤S 𝑤b+↓IN

forIN arguments makes sure that defenders of 𝑎 are stronger
than the attack of 𝑏. For an argument to be OUT, then, we require 𝑤a−↓IN

<S ⊤, meaning that

there must exist at least an attack coming from an IN argument. The two labellings in Figure 5

represent 𝑤-admissible four-state labellings for the considered WAFS.

Definition 16 (𝑤-complete four-state labelling). Let 𝐿 be a four-state labelling of a WAFS
𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-complete if and only if:



• 𝐿(𝑎) = IN ⇐⇒
(∀𝑏 ∈ 𝑎−.𝐿(𝑏) ∈ {OUT,DC} ∧ 𝐿(𝑏) = OUT =⇒ 𝑤b−↓IN

≤S 𝑤b+↓IN
)

• 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

A 𝑤-complete four-state labelling is also 𝑤-admissible. The difference is in the condition for

IN arguments, which needs to be both necessary and sufficient. The four-state labellings in

Figure 5 are not 𝑤-complete, since both have an UNDEC argument (𝑒 and 𝑑, respectively) which
is only attacked by an OUT one.

Definition 17 (𝑤-stable four-state labelling). Let 𝐿 be a four-state labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊, S⟩. 𝐿 is 𝑤-stable if and only if

• 𝐿 is a 𝑤-complete four-state labelling and

• 𝒜 ↓DK= ∅

In contrast with the semantics in Definitions 15 and 16, a 𝑤-stable four-state labelling might

not exist for a certain WAFS, depending on the presence of DK arguments. It is easy to verify

that none of the labellings in Figure 5 is 𝑤-stable. We next present 𝑤-preferred and 𝑤-grounded

four-state labelling for WAFS, which rely on the cardinality of the set of acceptable arguments.

Definition 18 (𝑤-preferred labelling). Let 𝐿 be a four-state labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊, S⟩. 𝐿 is 𝑤-preferred if and only if

• 𝐿 is a 𝑤-admissible four-state labelling and

• 𝒜 ↓IN is maximal among all the 𝑤-admissible four-state labellings

Definition 19 (𝑤-grounded four-state labelling). Let 𝐿 be a labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊, S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-grounded if and only if:

• 𝐿(𝑎) = IN ⇐⇒ for all 𝑤-complete four-state labellings 𝐿′, 𝐿′(𝑎) = IN and

• 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

We summarize in Table 1 the conditions given for the presented labellings. Next, we show how

four-state labelling-based semantics for WAFS can be traced to their three-state counterparts.

Theorem 1. 𝐿 is a 𝑤-conflict-free four-state labelling on 𝐹 = ⟨𝒜,ℛ⟩ if and only if 𝐿 ↓𝒜 is a 𝑤-

conflict-free three-state labelling and there exists a label renaming function such that, for all 𝑎 ∈ 𝒜,

(𝐿(𝑎) = DC ∨ 𝐿(𝑎) = DK) =⇒ 𝐿(𝑎) = UNDEC and 𝐿(𝑎) = UNDEC =⇒ 𝐿(𝑎) = DC.

Theorem 2. 𝐿 is a 𝑤-admissible (𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state
labelling on 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩ with 𝒜 ↓DC= ∅ if and only if 𝐿 ↓𝒜 is a 𝑤-admissible (𝑤-complete,

𝑤-stable, 𝑤-preferred, 𝑤-grounded, respectively) three-state labelling and there exists a label

renaming function such that, for all 𝑎 ∈ 𝒜, 𝐿(𝑎) = DK ⇐⇒ 𝐿(𝑎) = UNDEC.



Table 1

Summary of the labellings for WAFS.

Sem. Conditions on IN arguments Conditions on OUT arguments Other

𝑤-cf 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN= ∅ 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

𝑤-adm
𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN

<S ⊤
∧∀𝑏 ∈ 𝑎− ↓OUT . 𝑤b−↓IN

≤S 𝑤b+↓IN

𝑤-com
𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN

<S ⊤
∧∀𝑏 ∈ 𝑎− ↓OUT . 𝑤b−↓IN

≤S 𝑤b+↓IN

𝑤-stb
𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN

<S ⊤ 𝒜 ↓DK= ∅
∧∀𝑏 ∈ 𝑎−. 𝑤b−↓IN

≤S 𝑤b+↓IN

𝑤-pre
𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN

<S ⊤
𝒜 ↓IN is

∧∀𝑏 ∈ 𝑎−. 𝑤b−↓IN
≤S 𝑤b+↓IN

max 𝑤-adm

𝑤-gde
𝐿(𝑎) = IN ⇐⇒ ∀𝐿′𝑤-com.

𝐿(𝑎) = OUT ⇐⇒ 𝑤a−↓IN
<S ⊤

𝐿′(𝑎) = IN

The intuition behind Theorem 2 is that the acceptability of all labelled arguments in a WAFS
(that is, those labelled by 𝐿 ↓𝒜) must depend only on the state of arguments that are not ignored.

The proof is carried out by comparing Definition 13 with the conditions given for the four-state

case. Moreover, since the four-state labelling introduced in this paper generalises the three-state

one [14], we obtain a direct correspondence with weighted extensions.

Theorem 3. Let 𝐿F be a four-state labelling on 𝐹 = ⟨𝒜,ℛ,𝑊, S⟩. 𝐿F is a 𝑤-conflict-free
labelling if and only if 𝒜 ↓IN is a 𝑤-conflict-free extension of 𝐹 . Moreover, 𝐿F is a 𝑤-admissible

(respectively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state labelling if and only if

𝒜 ↓IN is a 𝑤-admissible (respectively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) extension
of 𝐹 ′ = ⟨𝒜 ↓{IN,OUT,DK},ℛ ↓{IN.OUT,DK}⟩.

Finally, we observe that any four-state weighted labelling instantiated with a boolean c-

semiring corresponds to a four-state labelling. Indeed, when a WAFS is instantiated with a

boolean c-semiring, all the attacks in the framework are associated with the value 𝑓𝑎𝑙𝑠𝑒 and
𝑤a−↓IN

always corresponds to 𝑓𝑎𝑙𝑠𝑒 if 𝑎 has at least one attacker.

Theorem 4. Let 𝐹 be a WAFS where S is a boolean c-semiring. If 𝐿 is a 𝑤-admissible (respec-

tively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state labelling of 𝐹 , then 𝐿 is also an

admissible (respectively complete, stable, preferred, grounded) four-state labelling.

4. Related Work

The problem of extending classical AFs with values expressing the strength of arguments and

attacks is widely studied, and many different approaches have been presented in the literature.

Amgoud and Cayrol [25] take into account preference orderings for comparing arguments,

while in a paper by Bench-Capon [26] the success of an attack conducted by an argument

toward another one depends on an ordering among the “values” promoted by each argument.

A study on bipolar Weighted AFs is conducted by Pazienza et al. [27], who present an

extension for weighted frameworks taking into account two different types of relations: one for



attack and one for support. We consider, instead, Weighted AFs with only one type of possible

relation between arguments (the attack relation). Note that there exist techniques for translating

bipolar AFs into classical AFs [28], although the weighted case has not been investigated yet.

Another formalism based on a notion of strength is given in a paper by Baroni et al. [29], where

arguments in Quantitative Argumentation Debate Frameworks are evaluated through a scoring

system. The main difference with our work lies in the fact that we take into account the basic

definition of Weighted AFs [18], without further refinements on the framework level. Moreover,

our study is focused on the interpretation of the labelling in the weighted case.

Labelling functions using four justification states are proposed by various authors [22, 6,

23]; the additional label identifies those arguments that should not be considered during the

computation of acceptability. A more general labelling has also been proposed [13], which

unifies different representations and can be mapped into sets of extensions. However, weights

are not considered in any of these works.

For what concern the notion of weighted defence, many possible definitions can be considered:

for instance, Martìnez et al. [10] use the relative strength of the attacks in order to determine if

some defence constraints are satisfied, while Coste-Marquis et al. [9] aggregate the weights of

the defence and check if this value is greater than the weight of the corresponding attack. On the

other hand, we exploited the notion of collective weighted defence [7], which also generalises

the other two approaches mentioned above.

5. Conclusion and Future Work

In this paper, we introduce labelling for Weighted AFs that uses up to four states to discern

various grades of acceptability for arguments, namely IN, OUT, DK and DC. We also identify sets

of conditions under which the proposed labelling corresponds to a weighted extension for some

semantics. Our labelling function generalises both the classical approach for the non-weighted

case and the three-state labelling for WAFS.

The work can be expanded in many directions. In our setting, arguments only attacked

by DC arguments are always labelled IN. Is future work, we want to consider a pessimistic

interpretation for ignored arguments: since a DC-labelled argument 𝑎 could be (re)considered

into the AF, thus gaining an IN, OUT or DK label, arguments only attacked by 𝑎 could be labelled
OUT in turn. The definition we give of a four-state labelling-based semantics for Weighted

AFs does not include conditions for DK arguments, since they are indirectly obtained from IN

and OUT. In this sense, we would like to investigate the possible advantages of giving explicit

conditions for labelling the DK arguments, similarly to what is by Modgil and Caminada [30] for

classical AFs. We also plan to consider 𝑤-strongly admissible extensions [31, 14] and introduce

the respective four-state labelling. In addition to the collective weighted defence [7] that we

used in this paper, there are other notions of weighted defence [9, 10] that could be considered

for obtaining different variations of the four-state weighted labelling. We would also like to

take into account a relaxed version of the weighted defence [8] where two parameters (𝛼
and 𝛾) are used to both enable a tolerance threshold for inconsistencies inside extensions and

consider arguments that are not fully𝑤-defended. Finally, extended versions of AFs (e.g., Bipolar

Argumentation Frameworks [32]) could be investigated from the perspective of the four-state



labelling-based semantics.
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Modeling and Solving the Rush Hour puzzle⋆
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Abstract
We introduce the physical puzzle Rush Hour and its generalization. We briefly survey its complexity

limits, then we model and solve it using declarative paradigms. In particular, we provide a constraint

programming encoding in MiniZinc and a model in Answer Set Programming and we report and compare

experimental results. Although this is simply a game, the kind of reasoning involved is the same that

autonomous vehicles should do for exiting a garage. This shows the potential of logic programming for

problems concerning transport problems and self-driving cars.

Keywords
Rush Hour, Planning, MiniZinc, ASP, Autonomous vehicles

1. Introduction

Rush Hour is a physical puzzle created by Nob Yoshigahara in 1970 and sold in USA for the

first time in 1996. The game is played on a 6× 6 board, on which there are a number of cars (of

size 2) and trucks (of size 3). Cars and trucks can only move forwards or backwards (but not

sideways). There is a unique exit door. The aim is to move the vehicles in such a way that the

only red car can be driven out of the exit (see Figure 1 for an example).

The generalized rush hour problem, which has an arbitrary𝑚×𝑛 grid size and allows to place

the exit at any point on the perimeter of the grid, has been proved to be PSPACE-complete [1].

Due to this intrinsic limit we focus on the problem of finding a plan that allows to exit the red

car with a fixed number 𝑡 of moves. Then the solver will be run with 𝑡 = 1, 2, 3, . . . until a
solution (if any) is found.

Apart from [2, 1] where parameterized complexity is studied, in [3] the authors use model

checking techniques for developing initial configurations that require high values for 𝑡 making

the instances difficult.

In [4] the authors studied the reasons why the transport puzzles are that complex, studying

the sokoban, rush hour, and replacement puzzle. The complexity and a solution of sokoban in

declarative programming was also presented in [5].

In this paper, as made in [6] and recently in [7] for other problems/puzzles, we model the
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Figure 1: A six-moves exit plan for the red car on the physical game (the curious reader might find a

plan with only five moves)

(generalization) of the rush hour puzzle in declarative programming using the languageMiniZinc

for a constraint programming encoding and Answer Set Programming for a logic programming

encoding. We show the good results and the limits of the two approaches and set the basis for

future development.

Although this is a game, self driving cars need to solve these kinds of puzzles for leaving a

garage without damaging each other.

The paper is organized as follows: in Section 2 we set the background of the problem. We

assume that the readers are aware of Constraint Programming and Answer Set Programming

so we decided to avoid the definitions of those languages. The modeling in MiniZinc and ASP

are presented in Sections 3 and 4, respectively. In Section 5 we report on the running time of

the two approaches. Finally some conclusions are drawn in Section 6.

2. The problem and its complexity

A 𝑚 × 𝑛 board is a subset of the Cartesian plane identified by points ℬ =
{︀

(𝑥, 𝑦) :
1 ≤ 𝑥 ≤ 𝑚 ∧ 1 ≤ 𝑦 ≤ 𝑛

}︀

. Let us assume (1, 1) is the bottom-left cell, and (𝑚,𝑛) the top-right
cell. (𝑥, 𝑦) is on the border of the grid if 𝑥 ∈ {1,𝑚} or 𝑦 ∈ {1, 𝑛}.

Let 𝑠 be a function reporting the size of vehicles. A vehicle 𝑐 can be of size 𝑠(𝑐) = 2 (a car) or
𝑠(𝑐) = 3 (a truck). A vechicle occupies exactly 𝑠(𝑐) adjacent cells. Given the position (𝑥, 𝑦) of
its front and its polar orientation north, south, east, west, the remaining cells occupied by the

vehicle are univocally determined. For instance, if the orientation of a truck is toward south,

the rest of the truck occupies (𝑥, 𝑦 + 1), (𝑥, 𝑦 + 2).
A garage is a set 𝒢 = {(𝑐1, 𝑠1), . . . , (𝑐r, 𝑠r)} of pairs (𝑐i, 𝑠i) where 𝑐i is the name/index of a

vehicle and 𝑠i = 𝑠(𝑐i) ∈ {2, 3} denotes its size.
An allocation of a garage in a 𝑚 × 𝑛 board is a set of triplets 𝒯 = {𝑡1, . . . , 𝑡r} of the

form 𝑡i = (𝑥, 𝑦, 𝑜) where (𝑥, 𝑦) is the grid cell occupied by the nose of the vehicle 𝑐i and



Figure 2: Allowed moves (right). The grey arrow denotes the exit gate (6, 4)

𝑜 ∈ {𝑁,𝑆,𝐸,𝑊} (north, south, east, west, respectively) is its cardinal orientation, such that

(1) all pieces of the vehicles are on the grid and (2) no pairs of them overlap.

Definition 2.1. A generalized rush hour (briefly, GRH) instance is a tuple

⟨board-size, door,𝒢, ℐ⟩

where

• board-size is a pair (𝑚,𝑛) ∈ N
2 defining the grid size

• door is a pair (𝑥e, 𝑦e) ∈ N
2 on the border of the grid where the exit door is located

• 𝒢 = {(𝑐1, 𝑠1), . . . , (𝑐r, 𝑠r)} is a garage

• ℐ = {𝑡1, . . . , 𝑡r}, called the initial state, is an allocation of 𝒢

We assume that 𝑐1 identify the “red” car of the physical instance.

Every vehicle 𝑐i can be moved of one or more units, in one or the other direction consistent

with its orientation 𝑜 (see Fig 2). The car cannot exit from the board. If the vehicle moves of 𝑘

units, the 𝑘 cells must be free in the current state.

Definition 2.2. Given a generalized rush hour (briefly, GRH) instance ⟨board-size, door, 𝒞, ℐ⟩
a plan of length ℓ is a sequence of ℓ moves such that at the end a part of the vehicle 𝑐1 occupies the

door cell, and it is properly oriented to be allowed to exit the door.

Let us observe that due to the kind of moves allowed, if 𝑡1 = (𝑥1, 𝑦1, 𝐸) or 𝑡1 = (𝑥1, 𝑦1,𝑊 )
then 𝑦e = 𝑦1, and if 𝑡1 = (𝑥1, 𝑦1, 𝑁) or 𝑡1 = (𝑥1, 𝑦1, 𝑆) then 𝑥e = 𝑥1. If this does not holds

then a plan cannot exist and the problem becomes trivial. Thus, we consider only instances that

satisfy the above constraint.

As common in planning, there are two decision problems associated with GRH:



Figure 3: Vehicles cannot overlap, and cannot jump

1. Given an instance of GRH and ℓ ∈ N, establishing whether a a plan of lenght ℓ exists, and

2. Given an instance of GRH establishing if there is an ℓ ∈ N such that a plan of lenght ℓ

exists

Flake and Baum in [1] show how to encode Boolean formulas into instances of GRH proving

NP-completeness of the former and PSPACE completeness of the latter.

Of course, the physical, 6× 6 game has a finite number of possible instances, so, in principle

it admits a constant time complexity using a program of huge size, storing features of all the

possible instances. This size is of course not acceptable, thus we develop a program for GRH

that, as particular case, solves 6 × 6 instances without making use of simplifications due to

particular cases.

3. MiniZinc modeling

We describe our constraint programming encoding using the modeling language MiniZinc [8].

As common in planning we refer to a pair of garage (the set and kind of vehicles) 𝒢 and their

allocation 𝒯 on a 𝑚× 𝑛 grid as a state. We have to model states, actions, and the state change.

The main constraints to be considered are the following:

• A vehicle cannot exit the board (neither completely nor partially)

• A vehicle cannot change its initial row or column or orientation

• Two different vehicles cannot overlap each other (see Figure 3)

• When the state is updated, a vehicle cannot jump over another (see Figure 3)

There are two main choices for the representation of a state:

• Focusing on the grid, namely defining a matrix 𝐵 of size𝑚× 𝑛 where 𝐵[𝑖, 𝑗] = 0 means

that the cell is free and 𝐵[𝑖, 𝑗] = 𝑘 that the cell is occupied by the vehicle 𝑘

• Focusing on the vehicles, namely using vectors of size 𝑟 storing, in some way, the initial

point and the orientation of all vehicles



Figure 4: Example of representation: size[A]=2, size[B]=3, versus[A]=4, versus[B]=-5,

initial[A]=2, initial[B]=1

Each representation has its pros and cons. For instance the matrix representation implements

implicitly the non overlap constraint, while the vechicle representation uses less space and

allows an easy update (only one vehicle per time-step). After the first empirical tests, we decided

to focus on the second approach. Let us present it in some more detail.

For the sake of simplicity we’ll use the standard board in what follows (i.e.,𝑚 = 𝑛 = 6). The
encoding is easy to generalize.

The input consists in three arrays of length 𝑟. An array size stores for each vehicle its

size (2 or 3). Changing direction of a vehicle is not possible. This means that once we know

if it is horizontal (resp., vertical), the 𝑦 coordinate (resp., 𝑥 coordinate) is the same for all the

computation. We store this info with a unique array versus that takes values in -6..6. If

versus[𝑖] > 0 then the vehicle is horizontal, and versus[𝑖] denotes its 𝑦 coordinate (row). If

versus[𝑖] < 0 then the vehicle is vertical, and versus[𝑖] denotes its 𝑥 coordinate (column).

The GRH instance is completed by the array initial that fixes the other coordinates of each

vehicle. For breaking symmetries, we do not store where the front of the vehicle is located. We

store instead the smallest coordinate of the cells occupied by the vehicle (see Figure 4 for an

example). Without loss of generality we assume that the red car is horizontal and that the exit

door is located in the eastern cell of its row.

These were the static and input information. The dynamic behavior depends on two matrices

that include the decision variables: pos[i,j] stores the smallest cell occuped by vehicle i at

time j. move[i,j] is 0 if vehicle i does not move at time j, and 𝛿 ̸= 0 if it moves (positively

or negatively) of 𝛿 positions. Although we don’t need a matrix for the latter information (two

vectors are sufficient) the matrix will allow an easy encoding of the inertia laws (as shown later).

The initial state can be stated as follows:

constraint

forall(v in 1..vehicles)(pos[v,1]=initial[v]);

We will omit the declaration constraint before the following constraints.



The goal should be reached by a plan of exactly 𝑡 time steps1

pos[1,t]=5;

The constraint stating that vehicles cannot exit the board is set in this way (pos[v, s] ≥ 1 is

guaranteed by the domain of the variable):

forall(v in 1..vehicles, s in 1..steps)

(pos[v,s]+size[v]-1<=6);

We need to state the non overlapping constraint. First we deal with pairs of vehicles in the

same column or row:

forall(v1,v2 in 1..r,s in 1..t

where (v1 < v2 /\ versus[v1] = versus[v2]))

(pos[v1,s]+size[v1]-1 < pos[v2,s] \/

pos[v2,s]+size[v2]-1 < pos[v1,s]);

Then we deal with pairs of hortogonal vehicles. In this case we explicitly avoid that they form a

“cross”

forall(v1,v2 in 1..r,s in 1..t

where (versus[v1] > 0 /\ versus[v2] < 0))

(not (pos[v1,s] <= -versus[v2] /\

-versus[v2] <= pos[v1,s]+size[v1]-1 /\

pos[v2,s] <= versus[v1] /\

versus[v1] <= pos[v2,s]+size[v2]-1));

Let us focus now on the moves. We need to state that there is exactly one move per time step.

forall(s in 1..t-1)

(sum(v in 1..r)(move[v,s]!=0) = 1);

Other lower level, and slightly faster definitions have been tested, as well. The effect of a move

action can be defined by this constraints. The fact that move[v,s] contains 0 for all vehicles v

but one allows us to easily deal with inertia.

forall(v in 1..r, s in 1..t-1)

(pos[v,s+1] = pos[v,s] + move[v,s]);

It remains to state that cars cannot jump during the move. This can be made as follows. For

jumps on vehicles in the same row/column:

forall(s in 1..t-1, v1,v2 in 1..r

where ((v1<v2) /\ versus[v1]=versus[v2]))(

not (pos[v1,s]<=pos[v2,s] /\ pos[v1,s+1] > pos[v2,s+1]) /\

not (pos[v2,s]<=pos[v1,s] /\ pos[v2,s+1] > pos[v1,s+1]));

1Or alternatively, of at most t steps by defining a variable min as var 1..t: min and requiring pos[1,min]=5.



And for vertical and horizontal jumps on orthogonal cars

forall(s in 1..t-1, v1,v2 in 1..r

where (versus[v1] < 0 /\ versus[v2] > 0))(

(pos[v2,s] <= -versus[v1] /\

-versus[v1] <= pos[v2,s]+size[v2]-1)

-> (pos[v1,s] < versus[v2] -> pos[v1,s+1] < versus[v2]) /\

(pos[v1,s] > versus[v2] -> pos[v1,s+1] > versus[v2]));

forall(s in 1..t-1, v1,v2 in 1..r

where (versus[v1] > 0 /\ versus[v2] < 0))(

(pos[v2,s] <= versus[v1] /\

versus[v1] <= pos[v2,s]+size[v2]-1)

-> (pos[v1,s] < -versus[v2] -> pos[v1,s+1] < -versus[v2]) /\

(pos[v1,s] > -versus[v2] -> pos[v1,s+1] > -versus[v2]));

Finally, some symmetry breaking can be obtained by forbidding consecutive moves of the

same vehicle:

forall(v in 1..r,s in 1..steps-2) (move[v,s] * move[v,s+1]=0);

4. Answer Set Programming Modeling

We developed two ASP models, one of them is based on the same ideas of the just described

MiniZinc model. We explain below another approach that proved to be faster. As for the

MiniZinc encodingwe use the 6×6 grid, but the code is written in order to be easily generalizable.
The code is tested with the ASP solvers clingo [9] and DLV [10].

First of all we set the grid size, the exit location and other domain predicates including the

time range

grid(1..6, 1..6).

exit(6-1, 6/2 + 1).

move_amount(1..6).

direction(up; down; left; right).

time(0..t).

Vehicles are represented by facts of the kind

vehicle(Index, Size, Direction).

Where Index is the index (the name) of the car, Size is its size (2 or 3) and Direction states if

it is horizontal or vertical, and its initial posizion is given as

position(Index, 0, X, Y).



where 0 stands for time 0, and X and Y are its initial coordinates. Precisely, if its an horizontal

vehicle X is its minimal coordinate, if it is a vertical vehicle Y is its minimal coordinate (as made

for the constraint modeling in the previous section).

We use intervals in the head of the rules to establish whether a grid cell is occupied or not:

busy(X, Y..Y+S-1, T) :- grid(X, Y), time(T),

vehicle(A, S, vert), position(A, T, X, Y).

busy(X..X+S-1, Y, T) :- grid(X, Y), time(T),

vehicle(A, S, horiz), position(A, T, X, Y).

free(X, Y, T) :- not busy(X, Y, T), grid(X, Y), time(T).

We use input allocations that do not overlap vehicles, however it would be simple checking

consistency with a variation of the predicate busy. It is sufficient to add a parameter in the

head and say that a cell is made busy by vehicle A and then requiring that it is impossible that

a cell is made busy by two different vechicles. Similarly, we assume that the vehicles do not

exit the board in the input allocations. These kind of constraints are instead controlled when

actions are applied.

Let us set the executability conditions of a move:2

movable(A, T, up, N) :- grid(X,Y), grid(X,Y+S+N-1), time(T),

vehicle(A, S, vert), position(A, T, X, Y),

N {free(X, Y+S..Y+S+N-1, T)} N, move_amount(N).

movable(A, T, down, N) :- grid(X,Y), grid(X,Y-N), time(T),

vehicle(A, S, vert), position(A, T, X, Y),

N {free(X, Y-N..Y-1, T)} N, move_amount(N).

movable(A, T, left, N) :- grid(X,Y), grid(X-N,Y), time(T),

vehicle(A, S, horiz), position(A, T, X, Y),

N {free(X-N..X-1, Y, T)} N, move_amount(N).

movable(A, T, right, N) :- grid(X,Y), grid(X+S+N-1,Y), time(T),

vehicle(A, S, horiz), position(A, T, X, Y),

N {free(X+S..X+S+N-1, Y, T)} N, move_amount(N).

The four cases above are very similar: for a move of N steps, there must be N free cells in that

direction. Let us observe how the aggregate is used in clause body.

Exactly one move per time is made:3

1 {move(A, T, D, N) : vehicle(A, S, D), direction(D),

movable(A, T, D, N), move_amount(N) } 1 :-

2The rules have been unfolded for N from 1 to 4 in the DLV encoding.
3The first rule was substituted with a choice rule and four constraints in the DLV encoding



time(T).

moved(A, T) :- move(A, T, D, N), direction(D), move_amount(N).

The following rules compute the new position for moved and not moved vehicles:

position(A, T+1, X, Y+N) :- move_amount(N) vtime(T), time(T+1),

move(A, T, up, N), movable(A, T, up, N),

vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X, Y-N) :- move_amount(N) vtime(T), time(T+1),

move(A, T, down, N), movable(A, T, down, N),

vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X-N, Y) :- move_amount(N) vtime(T), time(T+1),

move(A, T, left, N), movable(A, T, left, N),

vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X+N, Y) :- move_amount(N) vtime(T), time(T+1),

move(A, T, right, N), movable(A, T, right, N),

vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X, Y) :- grid(X, Y), time(T), time(T+1),

not moved(A, T), position(A, T, X, Y),

vehicle(A, S, O).

And finally we set the goal:

goal :- position(1, t, X, Y), exit(X, Y).

:- not goal.

A Python interface has been written to call clingo and provide a graphical view of the plan.

The input can be also given in command line using a string of chars. In the string, empty cells

are represented by o, while vehicles are labeled by letters A, B, C, . . . . The 36 char string is

obtained by storing the content of the rows, starting from the top one. The number of steps 𝑡 is

also passed. An example is reported in Figure 5.

5. Experimental Results

We compared the running time of the two proposed encodings on a set of benchmarks on the

“official” 6× 6 grid. Instances require increasing plan length. We run the codes on the minimum

plan length leading to a solution. Tests are run on a system equipped with a AMD Ryzen 7

4700U CPU system, 16GB RAM, with OS 20.04 OS. We used version 2.5.5 of the MiniZinc to

FlatZinc converter, the version 0.10.4 of the Chuffed solver [11], the version 5.4.0 of clingo, and

the version 2.1.1 of DLV (for linux-x86_64). We set a timeout of 5 minutes.



Figure 5: Example of the execution of the script:

Python3.8 rush_hour.py "02 oooooooooooBAAoooBoooooooooooooooooo" lp

Let us observe that the vehicle that just moved is highlighted

We used two benchmark sets. The first one was developed by us, it contains several instances

of the physical game (there are cards with instances on them in the toy box) and other similar

instances; globally it is a set of one hundred of instances from 5 to 17 steps. The second one is a

set of 35 instances extracted fromMichael Fogleman’s database of Rush Hour configurations [12].

In this case, the plan length goes from 6 to 51 steps.

As far as the MiniZinc is concerned, we tested other solvers compatible with MiniZinc,

namely Gecode version 6.3.0 and OR Tools version 9.3.10497. Both the solvers, with or without

search annotations, performed considerably worse than Chuffed on simple instances, so we

did not use them. The model without search annotations is the one which leads to the best

performance with Chuffed. The default settings of both the MiniZinc compiler and Chuffed

seem to be the ones which lead to the best performance. The default settings for clingo are also

the ones that lead to the best performance.



Figure 6: Comparison of the running time of the two encodings on a set of instances ordered by plan

leght (maximum 17)

Both the approaches are sufficienlty efficient to solve all the instances of the first step of

Figure 6 whitin the time limit, actually most of them in less than 0.2 seconds. Instead, with the

second test, it can be oberved that the constraint modeling scales better as the number of steps

increases. The problems arise when the plan length is more than 30. We have noticed that it

is not simply a grounding problem, since for the most difficult instances (plan length 51), the

grounded file has 71K lines, with a size in the text format of 6 MB, still not an issue. By the way,

the solution in this case is found in 20 minutes (the timeout was set to 5 minutes). On these

instances, with the default settings, DLV performs slightly better than clingo.

6. Future work and conclusions

We have presented two declarative encodings of the Rush Hour transport puzzle. Both of them

are written using declarative code, without particular optimizations. The Mininizinc code, also

thanks to the efficiency of the solver Chuffed is capable of solving hard instances in less than

one second. The ASP code is extremely fast for plan lengths less than 30. Then solving takes

more time, in any case within 20 minutes.

As future work, we would like to experiment the whole set of tests of Fogleman [12] (we

have used only a sampling of it) and the whole set of instances of the physical game (printed on

cards sold with the toy). We will embed some domain heuristics [13, 14] and adding a graphical



Figure 7: Comparison of the running time of the two encodings on a set of 35 instances (plan lenght

from 6 to 51, timeout 5 minutes)

interface for generating the input and for the animation of the solutions.

Moreover, in order to add some realism to the game, we would like to admit cars and trucks

to turn right/left of 90∘. Another interesting aspects would be the one of a multiagent systems

where more cars can move in parallel.

The codes are written almost completely in the paper, however, we will report them together

with the set of instances in http://clp.dimi.uniud.it/sw/.
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Abstract
A fuzzy multi-preferential semantics has been recently proposed for weighted conditional knowledge

bases with typicality, and used to develop a logical semantics for Multilayer Perceptrons, by regarding

a deep neural network (after training) as a weighted conditional knowledge base. Based on different

variants of this semantics, we propose some new gradual argumentation semantics, and relate them

to the family of the gradual semantics. This also suggests an approach for defeasible reasoning over a

weighted argumentation graph, building on the proposed semantics.

This extended abstract reports about some work [24] investigating the relationships between

the weighted conditional knowledge bases with typicality, under a fuzzy semantics, and gradual

argumentation semantics [17, 36, 21, 22, 2, 5, 3, 46], and discusses some extension of this work

in the direction of allowing defeasible reasoning over weighted argumentation graphs [26].

Argumentation is a reasoning approach which, in its different formulations and semantics,

has been used in different contexts in the multi-agent setting, from social networks [42] to

classification [4], and it is very relevant for decision making and for explanation [47]. The

argumentation semantics are strongly related to other non-monotonic reasoning formalisms

and semantics [20, 1].

Our starting point in this work is a preferential semantics for commonsense reasoning which

has been proposed for a description logic with typicality. Preferential description logics have

been studied in the last fifteen years to deal with inheritance with exceptions in ontologies, based

on the idea of extending the language of Description Logics (DLs) by allowing for non-strict

forms of inclusions, called typicality or defeasible inclusions, of the form T(C) ⊑ D (meaning

“the typical C-elements are D-elements" or “normally C’s are D’s"), with different preferential

semantics [28, 13] and closure constructions [15, 14, 29, 8, 44, 16, 27]. Such defeasible inclusions

correspond to Kraus, Lehmann and Magidor (KLM) conditionals C |∼ D [40, 41], and defeasible

DLs inherit and extend some of the preferential semantics and closure constructions developed

within preferential and conditional approaches to commonsense reasoning by Kraus, Lehmann

and Magidor [40], Pearl [43], Lehmann [41], Geffner and Pearl [23], Benferhat et al. [7].

In previous work [33], a concept-wise multi-preferential semantics for weighted conditional

knowledge bases (KBs) has been proposed to account for preferences with respect to different

concepts, by allowing a set of typicality inclusions of the form T(C) ⊑ D with positive or
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negative weights, for some distinguished concepts C . The concept-wise multi-preferential

semantics has been first introduced as a semantics for ranked DL knowledge bases [32], where

conditionals are given a positive integer rank, and later extended to weighted conditional KBs,

in the two-valued and in the fuzzy case, based on a different semantic closure construction

in the spirit of Lehmann’s lexicographic closure [41] and Kern-Isberner’s c-representations

[37, 38], but exploiting multiple preferences with respect to concepts.

The concept-wise multi-preferential semantics has been proven to have some desired proper-

ties from the knowledge representation point of view. In the two-valued case [32], it satisfies the

KLM properties of a preferential consequence relation [40, 41], it allows to deal with specificity

and irrelevance and avoids inheritance blocking or the “drowning problem" [43, 7], and deals

with “ambiguity preservation" [23]. The plausibility of the concept-wise multi-preferential

semantics has also been supported [30, 31] by showing that it is able to provide a logical inter-

pretation to Kohonen’ Self-Organising Maps [39], which are psychologically and biologically

plausible neural network models. In the fuzzy case, the KLM properties of non-monotomic

entailment have been studied in [25], showing that most KLM postulates are satisfied, depending

on their reformulation and on the choice of fuzzy combination functions. It has been shown [33]

that (both in the two-valued and in the fuzzy case) the multi-preferential semantics allows to

describe the behavior of Multilayer Perceptrons (MLPs), after training, in terms of a preferential

interpretation which, in the fuzzy case, can be proven to be a model (in a logical sense) of the

weighted KB which is associated to the neural network.

The relationships between preferential and conditional approaches to non-monotonic rea-

soning and argumentation semantics are strong. Let us just mention, the work by Geffner and

Pearl on Conditional Entailment, whose proof theory is defined in terms of “arguments” [23].

To investigate the relationships between the fuzzy multi-preferential semantics for weighted

conditionals and gradual argumentation semantics [17, 36, 21, 22, 2, 5, 3, 46], we have in-

troduced a new notion of ϕ-coherent fuzzy multi-preferential semantics [24] for weighted

conditionals, besides the previously introduced notions of coherent [33] and faithful [25] fuzzy

multi-preferential semantics. For weighted argumentation graphs, where positive and negative

weights can be associated to pairs of arguments, we have proposed three new gradual semantics

(namely, a coherent, a faithful and a ϕ-coherent semantics) inspired by the fuzzy preferential

semantics of weighted conditionals, and we have studied their relationships.

The relationship of the ϕ-coherent semantics with the family of gradual semantics studied

by Amgoud and Doder [2] has also been investigated, by slightly extending their gradual

argumentation framework to deal with positive and negative weights to capture the strength

of supports and of attacks. A correspondence between the gradual semantics based on a

specific evaluation method Mϕ and ϕ-coherent labelings has been proven [26]. Differently

from the Fuzzy Argumentation Frameworks by Jenssen et al. [36], where an attack relation is a

fuzzy binary relation over the set of arguments, here we have considered real-valued weights

associated to pairs of arguments.

While in [33] a deep neural network (possibly containing cycles) is mapped to a weighted

conditional knowledge base, a deep neural network can as well be seen as a weighted argumen-

tation graph, with positive and negative weights, under the proposed semantics. In this view,

ϕ-coherent labelings correspond to stationary states of the network (where each unit in the

network is associated to an argument and the activation value of the unit can be regarded as



the weight of the corresponding argument). This is in agreement with previous work on the

relationship between argumentation frameworks and neural networks, first investigated by

Garcez, Gabbay and Lamb [19] and recently by Potyca [45].

The work by Garcez, et al. [19] combines value-based argumentation frameworks [6] and

neural-symbolic learning systems by providing a translation from argumentation networks

to neural networks with 3 layers (input, output layer and one hidden layer). This enables the

accrual of arguments through learning as well as the parallel computation of arguments. The

work by Potyca [45] considers a quantitative bipolar argumentation frameworks (QBAFs) similar

to [5] and exploits an influence function based on the logistic function to define an MLP-based

semantics σMLP for a QBAF. The paper studies convergence conditions both in the discrete and

in the continuous case, as well as the semantic properties of MLP-based semantics, and proves

that all properties for the QBAF semantics proposed in [2] are satisfied. On the other hand, as

shown in [26], the ϕ-coherent model semantics fails to satisfy some of the properties in [2].

The strong relationships between the semantics for weighted conditionals and gradual

argumentation semantics also leads to an approach for defeasible reasoning over a weighted

argumentation graphs, building on ϕ-coherent labelings to evaluate conditional properties of

the argumentation graph [26]. In essence, a multi-preferential model can be constructed over a

(finite) set of ϕ-labelling Σ, which allows (fuzzy) conditional formulas over arguments to be

validated by model checking over a preferential model. This would, for instance, allow to verify

properties like: "does normally argument A2 follows from argument A1 with a degree greater

than 0.7?" This query can be formalized by a fuzzy inclusion T(A1) ⊑ A2 > 0.7, similarly

to those considered for weighted knowledge bases. This approach has been exploited for the

verification of defeasible properties of Multilayer Perceptrons [34]. Whether this approach can

be extended to the other gradual semantics, and under which conditions on the evaluation

method, requires further investigation for future work.

Observe also that, in a weighted conditional knowledge base, the conceptsC andD occurring

in a typicality inclusion T(C) ⊑ D are not required to be concept names, but can be complex

concepts. In particular, in the boolean fragment ℒ𝒞 of𝒜ℒ𝒞,D can be any boolean combination

of concept names. The correspondence between weighted attacks/supports (Ai, Aj) in the argu-

mentation graph G and weighted conditionals T(Ai) ⊑ Aj suggests a possible generalization

of the structure of the weighted argumentation graph by allowing attacks/supports by a boolean

combination of arguments. The labelling of arguments in the set [0, 1] can indeed be extended

to boolean combinations of arguments using the fuzzy combination functions, as for boolean

concepts in the conditional semantics (e.g., by letting σ(A1∧A2) = min{σ(A1), σ(A2)}, using
the minimum t-norm as in Zadeh fuzzy logic). This also relates to the work considering “sets of

attacking (resp. supporting) arguments”; i.e., several argument together attacking (or support-

ing) an argument. Indeed, for gradual semantics, the sets of attacking arguments framework

(SETAF) has been studied by Yun and Vesic [46], by considering “the force of the set of attacking

(resp. supporting) arguments to be the force of the weakest argument in the set" [46]. This

would correspond to interpret the set of arguments as a conjunction, using minimum t-norm.

The correspondence between Abstract Dialectical Frameworks [12] and Nonmonotonic

Conditional Logics has been studied by Heyninck, Kern-Isberner and Thimm [35], with respect

to the two-valued models, the stable, the preferred semantics and the grounded semantics of

ADFs. Whether the coherent/faithful/ϕ-coherent semantics developed in the paper for weighted



argumentation (as well as their two-valued and many-valued variants) can be reformulated for

a (weighted) Abstract Dialectical Frameworks, and which are the relationships with the work

in [35], also requires investigation for future work.

Undecidability results for fuzzy description logics with general inclusion axioms (e.g., by

Cerami and Straccia [18] and by Borgwardt and Peñaloza [9]) motivate restricting the logics

to finitely valued semantics [10], and the investigation of decidable approximations of fuzzy

multi-preferential entailment, under the different semantics. An ASP approach for reasoning

under finitely multi-valued fuzzy semantics for weighted conditional knowledge bases has been

proposed in [34], by exploiting asprin [11] for defeasible reasoning through the computation of

preferred answer sets. As a proof of concept, this approach has been experimented for checking

properties of some trained Multilayer Perceptrons. A similar investigation of the two-valued

and many-valued case might also be of interest for the semantics of weighted argumentation

graphs introduced in this work.
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Abstract
The problem of finding Master Surgical Schedules (MSS) consists of scheduling different specialties to

the operating rooms of a hospital clinic. To produce a proper MSS, each specialty must be assigned to

some operating rooms. The number of assignments is different for each specialty and can vary during the

considered planning horizon. Realizing a satisfying schedule is of upmost importance for a hospital clinic.

A poorly scheduled MSS may lead to unbalanced specialties availability and increase patients’ waiting list,

negatively affecting both the administrative costs of the hospital and the patient satisfaction. In this paper,

we present a compact solution based on Answer Set Programming (ASP) to the MSS problem. We tested

our solution on different scenarios: experiments show that our ASP solution provides satisfying results in

short time, also when compared to other logic-based formalisms. Finally, we describe a web application

we have developed for easy usage of our solution.

Keywords
Healthcare, Scheduling, Answer Set Programming

1. Introduction

Digital Health, defined as the usage of information and communication technologies in medicine

and in the management processes of healthcare, arose several years ago, but has gained increasing

importance in recent years. Thanks to new technologies and also due to new challenges such as

an aging society, the COVID-19 pandemic and the need to reduce high costs. One of the major

problems related to the modern hospitals are long waiting lists that reduce patients’ satisfaction

and the level of care offered to them. The Master Surgical Schedule (MSS) represents which

specialty is assigned to each operating room in a particular day and session. The administrative

practices of surgical departments, such as deciding which operating rooms are assigned to the

specialties, can have a large impact on hospital costs, patient outcomes and on the overall

efficiency of a hospital. Many papers have analyzed this problem (see for example [1, 2, 3, 4]);
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in particular, the introduction of an effective MSS lead to efficiency gains at the operating room

department: At Beatrix hospital the annual budget for operating room hours is reduced from

12,848 hours to 9,972 hours (22.4% reduction) while the patients operated increased by 7.7% in

2007 respect to 2006, using the same capacity as at the same time surgery duration decreases by

9.0% [5]. The MSS is often considered as an already available input in many healthcare problem

solutions but, due to the different aspects that need to be taken into account for computing a

valid schedule, the MSS is an interesting combinatorial problem that deserves its own interest.

Going in some more details, the MSS problem is the task of assigning the specialties to the

available operating rooms in the different days and sessions, taking into account that not all the

specialties need to be assigned the same amount of time and that, during the considered days, the

amount of time each specialty should be assigned can vary. The aim of the MSS is to support

the hospital to organize the resources and plan the different specialties in the next weeks/months.

In particular, by developing a MSS early a hospital can properly manage the personnel and the

resources, thus leading to a reduction of the costs. Moreover, by helping the hospital to manage

the surgeries and reducing the surgery waiting list, a proper solution to the MSS problem is

vital to improve the degree of patients’ satisfaction. Complex combinatorial problems, possibly

involving optimizations, such as the MSS problem, are usually the target applications of AI

languages such as Answer Set Programming (ASP). Indeed ASP, thanks to its readability and

the availability of efficient solvers, e.g., CLINGO [6], has been successfully employed for solving

hard combinatorial problems in several research areas, and it has been also employed to solve

many scheduling problems [7, 8, 9, 10, 11], also in industrial contexts (see, e.g., [12, 13, 14] for

detailed descriptions of ASP applications).

In this paper we present a mathematical formulation of the MSS problem. We then apply

ASP to solve the MSS problem, by presenting a compact ASP encoding obtained by modularly

representing input specifications in ASP, and then running an experimental analysis on randomly

generated MSS benchmarks, obtained by varying the number of days and trying different scenar-

ios, created with realistic sizes and parameters inspired from data seen in literature. Results using

the state-of-the-art ASP solver CLINGO show that ASP is a suitable solving methodology also

for the MSS problem, since we are able to solve optimally instances of the MSS problem in few

seconds even considering planning horizon up to 180 days. We also compare the performance

of our ASP solution to those of top performing Max-SAT, Pseudo-Boolean and ILP solvers run

on instances obtained by automated translation of ASP encoding and instances: Results show

that CLINGO, run on the ASP encoding contribution of this paper and employing an optimization

algorithm based on unsatisfiable cores, is almost always the best option. Finally, we describe

the implementation of a web application we have developed in order to support users in the

usage of our solution. The application allows for inserting the main parameters of the problem,

running CLINGO on the encoding without actually installing nothing locally, and showing results

graphically.

The paper is structured as follows. Sections 2 and 3 present an informal description of the

MSS problem, and its precise mathematical formulation, respectively. Then, Section 4 shows

our ASP encoding, whose experimental evaluation is presented in Section 5. Section 6 describes

the implementation of our web application. The paper ends by discussing related work and

conclusions in Section 7 and 8, respectively.



2. Problem Description

With the computation of an MSS, a hospital can see in which days, sessions and operating rooms

(ORs) each specialty will do the surgeries. This is important since by looking at the MSS the

hospital can manage the personnel and the resources in advance. The MSS is thus often scheduled

for long periods of time and as soon as possible, to be able to assign the surgery to the patients in

time and to properly organize the personnel. To schedule the MSS a hospital should evaluate the

percentage of time that needs to be assigned to each specialty and the allowed errors for such a

period of time, in order to better respond to the patients’ needs. The percentage of assignments

is evaluated as the number of times each specialty is assigned divided by the total number of

sessions available in the period considered. To produce a proper schedule, the solution must

assign the specialties taking into account the percentage targets and the allowed errors of each

specialty. At most n sessions are associated to each day, where n is equal to the maximum number

of sessions that could be assigned to an OR. Each session is identified by an id. For example, in a

hospital with the maximum number of sessions equal to 2, day 1 will be linked to sessions 1 and 2,

while day 2 will be linked to sessions 3 and 4, and so on for all the remaining days. Each session

is then linked to all the ORs and the scheduler must assign a specialty to each session. Since the

MSS is planned for a long period of time, hospitals could desire that the target assignment of

each specialty is respected not for all the considered days, but may vary, e.g., on a monthly or

weekly basis. Another aspect that could change during the considered period and between the

ORs are the sessions. The usage of each OR is often splitted in two sessions for each day but,

sometimes, some ORs can be split in a different number of sessions, higher or used even for just

one session. In particular, the single-session solution could be used when a specialty requires

particular resources and the time to prepare them is long enough that changing the specialty at

mid day would be a waste of time. Moreover, some ORs could be unavailable in some days and

the scheduler must be able to consider these unavailability.

Overall, the MSS problem takes as input the number of ORs and specialties, the number

of days to consider for the scheduling, the number of sessions for each day, and the different

target values for each specialty, and computes the assignment of the different specialties to the

available ORs of a hospital in the considered planning horizon. An optimal solution minimizes

the difference between the percentage of usage of each specialty and the target value of each

period. An example of MSS is presented in Table 1. In particular, the table is the result obtained

by our solution, that we will show later in the paper, considering 90 days and fixed target value

for each month. Moreover, we considered a hospital with 10 ORs, each splitted in 2 sessions in

each day, and 5 specialties (these numbers corresponding to hospitals of small-medium size in

Italy) SP1 . . . SP5 : The table shows the MSS for the first 7 days of the solution. In particular,

each row represents a day and the sessions linked to that day, the columns report the ORs, and the

intersection shows the specialty assigned to the OR in that day and session.

3. Mathematical formulation of the MSS problem

In this section, we provide a mathematical formulation of the basic version of the problem (called

Scenario A later).



Table 1

Example of MSS generated by our solution.

Day Session OR1 OR2 OR3 OR4 OR5 OR6 OR7 OR8 OR9 OR10

1
1 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

2 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

2
3 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

4 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

3
5 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

6 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

4
7 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

8 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

5
9 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4

10 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SP1 SP4

6
11 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SP1 SP4

12 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SP1 SP4

7
13 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SP1 SP4

14 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SP1 SP4

Definition 1. Let

• day be a constant that is equal to the number of days considered;

• max_session be a constant that is equal to the maximum number of session associated to

an operating room in a day;

• s_count be a constant that is equal to day×max_session and represents the number of

sessions that must be assigned to each operating room;

• D = {t : t ∈ [1..day]} be the set of all days;

• DD = {(d1,d2)1, . . . ,(d1,d2)n} be a set of n pair of days such that for every pair d2 is

greater than d1;

• OR = {o1, . . . ,om} be a set of m operating rooms;

• SP = {sp1, . . . ,spk} be a set of k specialties;

• S = {s1, . . . ,ss_count} be a set of s_count sessions id;

• δ : OR×SP ↦→ {0,1} be a function associating an operating room to a specialty such that

δ (o,sp) = 1 if the operating room o can be assigned to the specialty sp, and 0 otherwise;

• ρ : OR×D ↦→ S be a function associating an operating room and a day to a session id such

that ρ(on,dm)≥ max_session∗dm - (max_session-1) and ρ(on,dm)≤ max_session∗dm;

• ε : SP×D×D ↦→N be a function associating a specialty, a starting day and an ending day

to a value representing the percentage target to reach from the starting day to the ending

day;

• ω : SP×D×D ↦→ N be a function associating a specialty, a starting day and an ending

day to a value representing the maximum error that is allowed from the starting day to the

ending day;

• ζ : SP×D×D ↦→ N be a function associating a specialty, a starting day and an ending

day to a value representing the percentage of times that a session has been assigned to the

specialty.



Let mss : OR×S×SP D ↦→ {0,1} be a function such that mss(o,s,sp,d) = 1 if the session s in

the day d and in the operating room o is assigned to the specialty sp, and 0 otherwise. Moreover,

for a given mss, let Amss = {(o,s,sp,d) : o ∈ OR,s ∈ S,sp ∈ SP,d ∈ D,mss(o,s,sp,d) = 1}.

Then, given sets OR, SP, S, D, DD and functions δ , ρ , ε , ω , ζ , the MSS problem is defined as

the problem of finding a schedule x, such that

(c1) |{ρ(o,d) = s}|=1 ∀o ∈ OR,∀d ∈ D,∀s ∈ S;

(c2) |{sp : mss(o,s,sp,d) = 1}|=1 ∀o ∈ OR,∀s ∈ S,∀sp ∈ SP,∀d ∈ D,ρ(o,d) = s;

(c3) |{mss(o,s,sp,d) = 1}|=0 ∀o ∈ OR,∀s ∈ S,∀sp ∈ SP,∀d ∈ D,ρ(o,d) = s,δ (or,sp) = 0;

(c4) |{mss(o,s,sp,d) = 1}|=0 ∀o ∈ OR,∀s ∈ S,∀sp ∈ SP,∀d ∈ D,ρ(o,d) ̸= s;

(c5) ζ (sp,d1,d2)> 0 ∀sp ∈ O,∀(d1,d2) ∈ DD;

(c6) |ε(sp,d1,d2)−ζ (sp,d1,d2)| ≤ ω(sp,d1,d2) ∀sp ∈ O,∀(d1,d2) ∈ DD;

Condition (c1) ensures that at each operating room is assigned to a session scount times. Condi-

tion (c2) ensures that each operating room, in each day and session is assigned to exactly one

specialty. Condition (c3) ensures that no operating room is assigned to a not allowed specialty.

Condition (c4) ensures that each specialty is assigned to an operating room in the right session

and day. Condition (c5) ensures that the percentage of times a specialty is assigned is bigger than

0 in every range of days required. Condition (c6) ensures that the percentage target of time a

specialty is assigned minus the actual percentage is less than the allowed error.

Definition 2 (Distance target percentage). Given a solution mss,

let tmss = ∑
sp∈SP,(d1,d2)∈DD;

| ε(sp,d1,d2)− ζ (sp,d1,d2) | . Intuitively, tmss represents the sum of

the distance between the target percentage and the actual percentage of times each specialty is

assigned to the operating rooms in the range between d1 and d2.

Definition 3 (Optimal solution). A solution mss is said to dominate a solution mss’ if |tmss|<
|tmss′ |. A solution is optimal if it is not dominated by any other solution.

4. ASP Encoding for the MSS problem

We assume the reader is familiar with syntax and semantics of ASP. Starting from the specifi-

cations in the previous section, here we present our compact and efficient ASP solution for the

MSS problem, organized in two paragraphs containing input and output data model, and the ASP

encoding, respectively. The ASP encoding is based on the input language of CLINGO [15]. For

details about syntax and semantics of ASP programs we refer the reader to [16].



1 session(SID,DAY,OR) :- operatingRoom(OR,_), sessionN(OR,N,DAY), SID=1..s_count, SID >=

((max_session*DAY)-(max_session-1)), SID<=((max_session*DAY)-(max_session-N)), not

inactive(OR,DAY).

2 n_session(N,START,END) :- N = #count{SID,OR,DAY : session(SID,OR,DAY), DAY >= START, DAY <

END}, targetShare(_,_,_START,END).

3 {mss(OR,SID,SP,DAY) : operatingRoom(OR, SP)} == 1 :- session(SID,DAY,OR).

4 effectiveShare(SP,PERCENTAGE,START,END) :- SESSION = #count{ OR,SID,DAY : mss(OR,SID,SP,DAY), D

>= START, D < END}, n_session(N,START,END), specialty(SP), PERCENTAGE = ((SESSION*100) /

N).

5 :- effectiveShare(SP,PERCENTAGE,START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE

< (TARGET-ERROR).

6 :- effectiveShare(SP,PERCENTAGE,START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE

> (TARGET+ERROR).

7 :- effectiveShare(SP,PERCENTAGE,START,END), PERCENTAGE <= 0.

8 :∼ effectiveShare(SP,ES,START,END), targetShare(SP,TS,ERR,START,END). [|ES-TS|@1,SP,START]

Figure 1: ASP encoding of the MSS problem

Data Model. The input data is specified by means of the following atoms:

• Instances of sessionN(OR,N,DAY) represent the number of sessions (N) in which the

operating room identified by an id (OR) is split in the day (DAY).

• Instances of operatingRoom(OR,SP) represent which specialty (SP) can be assigned to

the operating room identified by an id (OR).

• Instances of specialty(SP) represent the different specialties identified by their id (SP).

• Instances of targetShare(SP,TARGET,ERROR,START,END) represent for each spe-

cialty (SP) the target percentage (TARGET) of utilization and the maximum distance allowed

to the target value (ERROR) in the range of days between START and END.

• Instances of day(DAY) represent the available days.

The output is an assignment represented by an atom of the form mss(OR,SID,SP,DAY),

where the intuitive meaning is that the operating room with id OR in the session with id SID and

in the day DAY is assigned the specialty SP.

Encoding. The related encoding is shown in Figure 1, and is described next. To simplify the

description, we denote as ri the rule appearing at line i of Figure 1.

Auxiliary atoms in the heads of rules r1, r2 and, r4 are derived by the encoder to simplify the

other rules. In particular, rule r1 assigns the correct session ids to each operating room for all the

days considered. The assignment is made assigning an id such that the number of ids assigned in

each active day is equal to the number of sessions in which the operating room is splitted. Rule

r2 evaluates the total number of sessions available in the range of days between the values start

and end. This value is then used to evaluate the percentage of assignment of each specialty. Rule

r3 assigns one of the possible specialties to a session of every operating room. Rule r4 derives

an atom that represents the assignment percentage of each specialty. In particular, it counts the

number of sessions linked to each specialty and divides it by the total number of sessions that

are available in that period. Then, rules r5 and r6 check that the percentage of each specialty is

compatible with the target values and the allowed errors. Rule r7 ensures that the percentage of



each specialty is bigger than 0. Finally, weak constraint r8 minimizes the difference between the

assigned and target percentage of each specialty in each period of time.

5. Experimental Results

In this section, we report the results of an empirical analysis of the MSS problem via ASP (second

paragraph). For the problem, data have been randomly generated using parameters inspired by

literature and real world data (first paragraph). A third paragraph compares results obtained

with alternative logic-based formalisms. The experiments were run on a AMD Ryzen 5 2600

CPU @ 3.40GHz with 16 GB of physical RAM. The ASP system used was CLINGO [15] 5.4.0,

using parameters --opt-strategy=usc for faster optimization and --parallel-mode 4 for parallel

execution. This setting is the result of a preliminary analysis (but presented later in Table 3) done

also with other parameters, i.e., the default configuration and the one having --restart-on-model

for optimization. The time limit was set to 30 seconds. Encodings and benchmarks employed in

this section can be found at: http://www.star.dist.unige.it/~marco/RuleMLRR2022/material.zip .

MSS benchmarks. Data are based on the sizes and parameters of a typical middle sized

hospital, with 5 different specialties and 10 ORs. Each specialty is associated with a target value

for each month and an error, that is equal to 10 for all the specialities. Each specialty can be

assigned to just some randomly selected ORs and the target value is assigned by dividing the

number of ORs in which the specialty can be assigned to the total number of ORs, and adding

to the result a random value in the range between -5 and 5. To test our solution we considered

four different scenarios. In the first scenario, that we will call Scenario A, we considered to

have the constant max_session equal to 2, while the constant d_count has values from 30 to 180.

Moreover, in this scenario the target value for each specialty is equal for each month. For this

scenario, we considered 10 instances, each with different target values for all the specialties,

for each range of days considered. In particular, we tested the scalability of the scheduler by

considering an increasing number of days: 30, 60, 90, 120, 150 and, 180.

Then, we generated a second scenario, that we will call Scenario B, that is based on the

Scenario A considering 90 days. The difference with Scenario A is that for each month the target

value is increased or decreased by a random value between -2 and 2, thus for each specialty

there are three different target values. Changes in the target values could be done by the hospital

manager because of different availability of doctors or due to the increase of the surgeries of

some specialty.

For the third and fourth scenario, named Scenario C and D, respectively, we again considered a

planning horizon fixed to 90 days. The constant max_session is equal to 2 for the Scenario C,

while for the Scenario D is equal to 3. This means that, in the fourth scenario, one randomly

selected operating room is splitted in three sessions. The difference between the Scenario C and

the others is that, for 5 days, three ORs are unavailable, meaning that no session can be assigned

to them during that days. The scenarios C and D aim thus at evaluating what is the impact of

limiting the usage of the ORs, or changing the number of sessions, respectively.

http://www.star.dist.unige.it/~marco/RuleMLRR2022/material.zip


Figure 2: Results obtained by solving 10 instances per group of days in Scenario A. The box starts from

the first quartile and ends at the third quartile. The mean time is represented by the (green) triangle,

while the (orange) line represents the median value.

Results of our MSS solution. First, we tested the performances of the scheduler in the basic

scenario (Scenario A). The results for this scenario are shown in Figure 2, which represents the

range of seconds required to reach the optimal solution in all the 10 instances tested with the

different number of days considered, identified by the minimum and maximum times for solving

the instances in the set, together with the mean and the median time. From the figure it can be

seen that the scheduler is able to optimally schedule the MSS in a mean time of less than 10

seconds even considering 180 days of planning horizon, which is a remarkable result. Moreover,

besides being able to reach an optimal solution in less than 10 seconds on average, from the figure

it can be noted that even in the worst case, the scheduler is able to find the optimal solution in

less than 30 seconds.

Then, we tested the performance of the scheduler in the Scenario B. Testing the scheduler with

the 10 instances with 90 days in this scenario we found that the scheduler was able to reach the

optimal solution on average in 3 seconds, that is a time that is very near to the time required in

Scenario A. Thus, this analysis reveals that even changing the target values in each month for all

the specialties, our solution maintains very good performance.

Having evaluated now the performance in Scenario A and B, we then tested the scheduler in

Scenario C and D. Table 2 reports the time required by each instance in Scenario A and in these

more constrained scenarios, on 90 days planning horizon.

From the table we can see that the timing obtained by Scenario C is almost equal to the original

one. So, even if three ORs are unavailable for 5 days, the scheduler is able to compute the optimal

solution in the same time required in the Scenario A. In the Scenario D, the scheduler obtained



Table 2

Time required for each instances in the different Scenarios and considering 90 days

Instance Time (s) Time (s) Time (s)

# Scenario A Scenario C Scenario D

1 1.7 1.7 1.7

2 0.3 0.2 0.3

3 1.8 1.1 4.3

4 2.0 3.0 2.0

5 0.9 2.2 0.9

6 1.9 1.0 2.1

7 0.8 0.6 0.6

8 2.2 1.6 2.3

9 0.9 0.8 0.9

10 0.9 5.2 0.8

Mean 1.3 1.7 1.5

the optimal solution almost in the same time as in the Scenario A for all but one instance: Indeed,

the third instance requires 4 seconds instead of 2 seconds to reach the optimal solution (from a

preliminary analysis, this harder instance corresponds to a setting in which a higher number of

sessions is set to an OR assigned to only one specialty with low target).

Overall, we can say that also in Scenario C and D the scheduler is able to reach highly satisfying

results, also when compared to the basic Scenario A.

Comparison to alternative logic-based formalisms. In the following, we present an empirical

comparison of our ASP-based solution with alternative logic-based approaches, obtained by

applying automatic translations of ASP instances. In more detail, we used the ASP solver

WASP [17], with the option –pre=wbo, which converts ground ASP instances into pseudo-

Boolean instances in the wbo format [18]. Then, we used the tool PYPBLIB [19] to encode wbo

instances as MaxSAT instances.

Then, we considered three state-of-the-art MaxSAT solvers, namely MAXHS [20], OPEN-

WBO [21], and RC2 [22], and the industrial tool for solving optimization problems GUROBI [23],

which is able to process instances in the wbo format. Concerning CLINGO, we used (i) its default

configuration (CLINGO-DEF); (ii) the option restart-on-model (CLINGO-ROM); and (iii)

the option –opt-strategy=usc (CLINGO-USC). The latter enables the usage of algorithm

OLL [24], which is the same algorithm employed by the MaxSAT solver RC2.

The experiments were executed on Scenario A considering the 10 instances with 30 days

horizon, with a timeout of 30 seconds. Results are reported in Table 3, where for each solver and

instance we report the ranking obtained by each solver, counting optimal solutions. The solver is

in the first position if it finds the solution in the shortest time; a dash means that the solver did not

compute the solution before the time limit. As a general observation, CLINGO-USC obtains the

best performance overall, since it is the first to find the optimal solution in all but one instance.

The performance of CLINGO-ROM is in general slightly worse than the one of CLINGO-USC,

even if in the majority of the instances the required time to reach the optimal solution is similar

to the time required by CLINGO-USC. GUROBI is able to reach the optimal solutions before



Table 3

Comparison of ASP solution with alternative logic-based solutions.

Instance clingo-def clingo-rom clingo-usc MaxHS open-wbo rc2 gurobi

1 4 3 2 6 5 - 1

2 4 2 1 - - - 3

3 4 2 1 - - - 3

4 4 2 1 - - - 3

5 4 2 1 - - - 3

6 4 2 1 - - - 3

7 4 2 1 - - - 3

8 4 2 1 - - - 3

9 4 2 1 - - - 3

10 2 2 1 - - - 3

CLINGO-USC and CLINGO-ROM in the first instance while in all the other instances it ranked third.

Concerning MaxSAT solvers, we observe that both OPEN-WBO and MAXHS are able to reach the

optimal solution before the time limit just in the first instance, while in all the other instances they

can not obtain the optimal solution before the time limit. RC2 can not return an optimal solution

in any of the instances evaluated. Concerning CLINGO-DEF, we obtain the optimal solution in all

the instances but, without using any of the available options, the solutions are obtained in more

time than the other options and GUROBI, but for instance 10.

6. Web Application

After having presented our solution and compared it with other solvers, we have wrapped the

encoder and the CLINGO solver inside a NodeJS architecture and developed a simple graphical

user interface (GUI) to configure the different inputs of the problem. By developing the web app,

we want to reduce the burden related to the installation and the proper usage of the ASP-based

solution, mainly for non-technical users. Moreover, even if our solution was able to solve all the

tested instances in less than 30 seconds, without a proper interface even the best solution could

be discarded because of the difficulties caused by the technology itself.

In particular, the first page of the web app, shown in Figure 3, is devoted to the definition of

the characteristics of the problem. It allows setting:

• The number of months to schedule.

• The number of sessions per each ORs.

• The number of ORs.

• The starting day of the MSS.

• The different specialties, each with a specific target and error.

• The timeout of the scheduler.

Once the user is satisfied with the inserted data, by clicking on the "START PLANNING"

button, she can start the scheduling. The web app processes the data to transform them to a

format that allows the compatibility with the CLINGO solver and, once the solver finds the optimal



Figure 3: The first page of the web app. From this page the user can define the inputs of the problem.

solution or the timeout time is reached, the user is redirected to the second page. In the second

page, reported in Figure 4, there are two cards available. In the first card, called "Table", is

shown a properly processed result obtained by the solver (assuming that at least a solution is

provided, even if not optimal; however, this is not the case of all our analysis). The card shows

the MSS obtained by the solver in a table format. In each row of the table there are the day and

the linked session plus the information regarding the specialties assigned to the different ORs,

thus mimicking the MSS output of Table 1. In the second card, called "Graphics", are shown the

graphs comparing the target and the actual percentage of time each specialty is assigned for every

range of days considered. This card helps the user to evaluate the quality of the result in a simple

way.

7. Related Work

The section is organized in two paragraphs: the first presents works that highlights the impor-

tance of solving the MSS problem and alternative methods for solving the problem, while the

second mentions works in which ASP has been already successfully employed to closely related

scheduling problems.

Solving the MSS problem. In [4] is presented a literature review on how different Operations

Research techniques can be applied to the surgical planning. Presenting the different approaches

to the MSS problem, the authors pointed out that a more efficient MSS can improve the usage



Figure 4: The second page of the web app. From this page the user can evaluate the quality of the MSS

obtained by the solver.

of the different resources involved (such as wards, that we do not take into account). [5] shows

the benefit of implementing an effective MSS in a regional hospital in the Netherlands. In

particular, thanks to the suggestion of the solution proposed, the hospital was able to reduce the

budget while increasing the number of patients operated. In this work, the MSS is evaluated

as a cyclic schedule composed of different individual surgical case types. Thus, the MSS is

composed by a sequence of surgeries instead of blocks of specialties. Moreover, the MSS is

planned for 3 weeks only. In [3], the authors proposed a solution to the MSS problem and the

surgical case assignments problem formulating it using a mixed integer nonlinear programming

approach. They compared their solutions to the historical data of an Australian public hospital.

Differently from our work, the solution proposed by the authors maximizes the number of patients

operated instead of focusing on target values required by the hospital. The work in [25] used a

simulation-optimization approach to solve the MSS problem. In particular, they used a two-stage

stochastic optimization model and a discrete-event simulation model to handle uncertainty such

as the surgery duration. Differently from our work, they did not consider a target value for the

different specialities. The authors of [26] used a mixed-integer linear programming model to

address the problem. They used the required surgeries of the week to assign the ORs to the

different specialties and considered a fixed (two) number of sessions for each day. In [27], the

authors addressed the MSS problem by proposing a cyclic schedule for the frequently performed

surgical procedures, maximizing the operating room utilization.



Solving scheduling problems with ASP. ASP has been successfully used for solving hard

combinatorial and application scheduling problems in several research areas. In the healthcare

domain, the first solved problem was the Nurse Scheduling Problem [28, 29, 10], where the goal

is to create a scheduling for nurses working in hospital units. Then, the problem of assigning

ORs to patients, denoted as Operating Room Scheduling, has been treated, and further extended

to include bed management [9]. More recent problems include the Chemotherepy Treatment

Scheduling problem [30], in which patients are assigned a chair or a bed for their treatments, and

the Rehabilitation Scheduling Problem [11], which assigns patients to operators in rehabilitation

sessions. Often problems in which an MSS needs to be computed, including those dealing with

the Operating Room Scheduling problem mentioned above, consider the MSS as an input of the

problem; however, as we have seen in this paper and by the presence of a number of works at

the state-of-the-art dealing uniquely with the problem, the MSS is per se of interest and deserves

devoted solutions, to be possibly integrated with other problem solutions building on it.

Concerning scheduling problems beyond the healthcare domain, ASP encoding were proposed

for the following problems: Incremental Scheduling Problem [31], where the goal is to assign

jobs to devices such that their executions do not overlap one another; Team Building Problem [7],

where the goal is to allocate the available personnel of a seaport for serving the incoming ships;

the work in [32], where, in the context of routing driverless transport vehicles, the setup problem

of routes such that a collection of transport tasks is accomplished in case of multiple vehicles

sharing the same operation area is solved via ASP, in the context of car assembly at Mercedes-

Benz Ludwigsfelde GmbH, and the recent survey paper by Falkner et al. [13], where industrial

applications dealt with ASP are presented, including those involving scheduling problems.

8. Conclusion

In this paper, we have presented an analysis of the MSS problem modeled and solved with ASP.

We started from an informal description of the problem, formulated it in precise mathematical

terms, and then presented our ASP solution. Results on synthetic benchmarks show that the

ASP solution is able to optimally solve the MSS problem even when considering large planning

horizons, up to 6 months. Moreover, solving more difficult scenarios, in which, e.g., targets and

number of sessions change within the planning horizon, reduce just slightly the performance of

the scheduler. We also compared our solution to other logic-based languages and tools for solving

combinatorial problems, on instances obtained by automatic transformation of ASP instances:

The analysis shows that, on instances of our basic scenario, our solution with CLINGO employing

optimization algorithms based on unsatisfiable cores [33] has the best performance. For what

concerns future works, we are currently working on extending our experiments. Moreover, we

would like to implement and test optimization algorithms (see, e.g., [34]), and to investigate re-

scheduling solutions, that may come into play when the MSS scheduling can not be implemented

for some reasons, e.g., sudden unavailability of ORs. Finally, we plan to propose our benchmarks

to future ASP Competitions [35].
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